

Status of the WCS 2.0 Standard

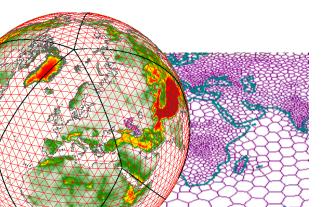
[gamingfeeds.com]

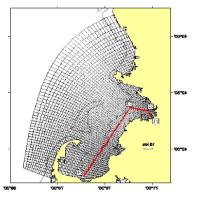
4th Workshop On The Use Of GIS/OGC Standards In Meteorology ECMWF, Reading, 2013-mar-05

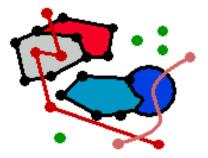
Peter Baumann

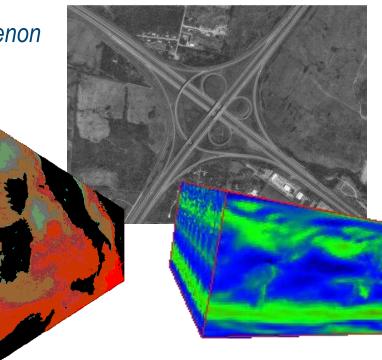
Jacobs University | rasdaman GmbH

Research funded through EU *EarthServer* and ESA *DREAM*

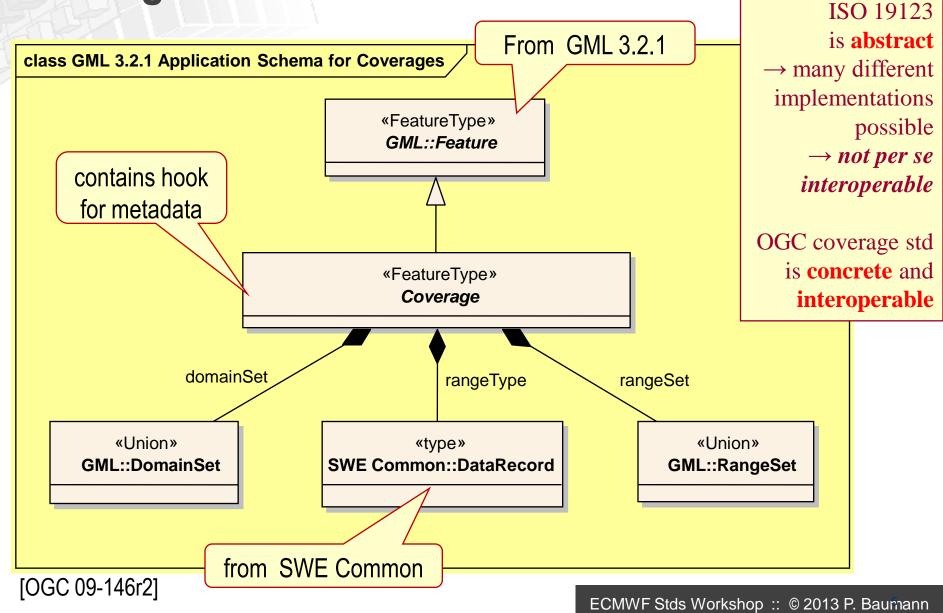

Roadmap


- Motivation
- Coverages: the data structure
- WCS: the data access service
- WCPS: the query language for ad-hoc processing & filtering
- WCS vs WPS vs SWE: brief comparison
- Wrap-up

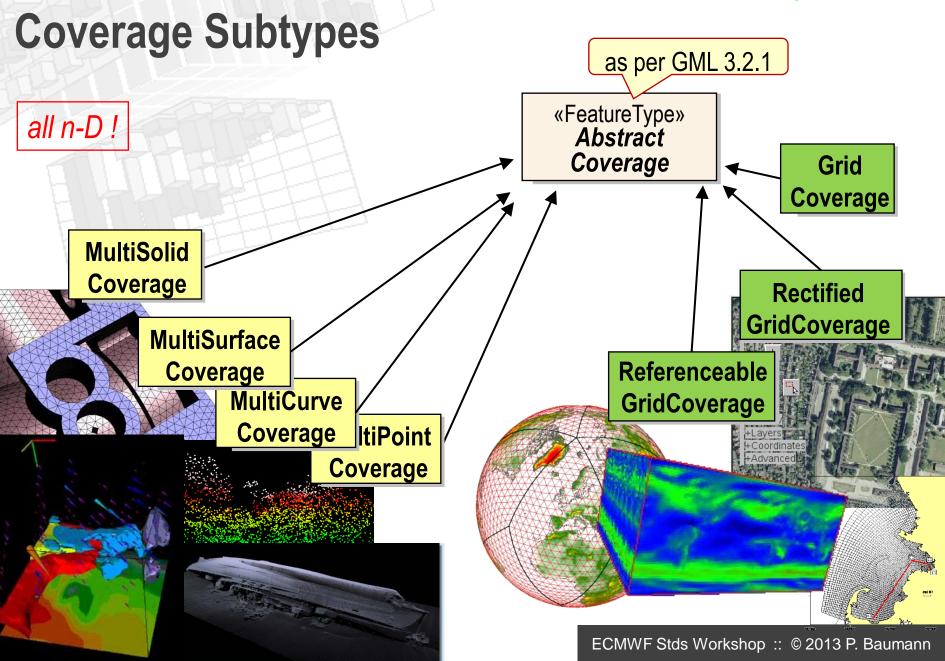



Features & Coverages

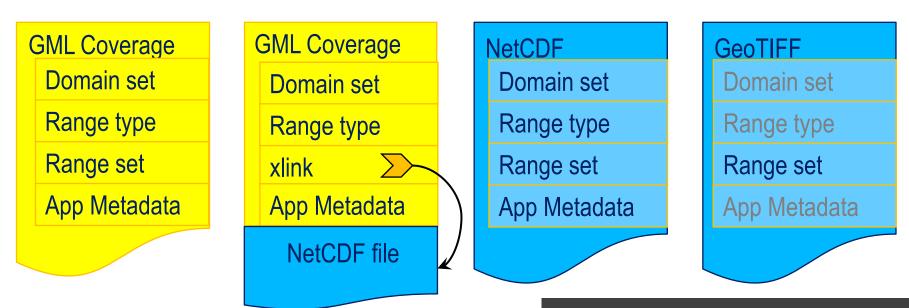
- The basis of all: geographic feature
 - = abstraction of a real world phenomenon [OGC, ISO]
 - associated with a location relative to Earth
- Special kind of feature: coverage
 - = space-time varying multi-dimensional phenomenon
 - Classic: 2-D raster image
 - ...but there is more!
- Often Big Geo Data are coverages


WCS Evolution

• WCS 1.0.0


- 34p + 15p annexes
 - First attempt; limited to lat/lon + time; in places inconcise, no rigorous testing
- WCS 1.1.0
 - 56p + 60p annexes
 - More concise, but complex (65p CRS discussion!)
 - Corrigenda: WCS 1.1.1, 1.1.2
- WCS 2.0
 - 43 requirements
 - Data & service model separated
 - All coverage types, n-D, harmonized, testable, interoperable

Coverage Data Structure

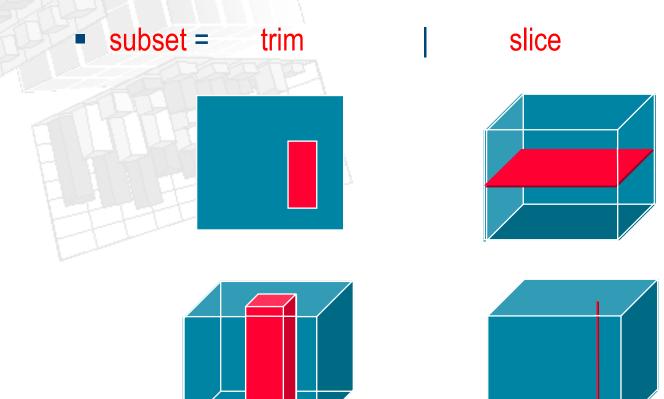


Coverage Encoding

- Pure GML: complete coverage represented by GML
- Special Format: other suitable file format (ex: MIME type "image/tiff")
- Multipart-Mixed: multipart MIME, type "multipart/mixed"
 - Option (future): more files

Adding Metadata To Coverages

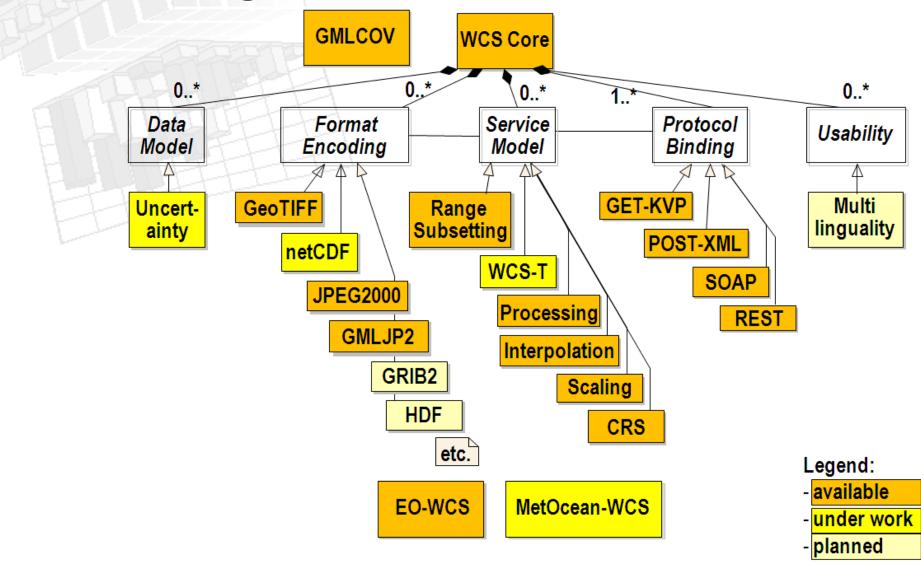
Coverage has slot "metadata" allowing to link in <any> kind of metadata


- WCS will deliver this, even without knowing contents

Ex: EO-WCS
 GetCoverage
 result contains
 EO-Metadata

- <wcseo:rectifieddataset< th=""></wcseo:rectifieddataset<>
gml:id="MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_r
xsi:schemaLocation="http://www.opengis.net/wcseo/1.0 http://schemas.opengis.net/wc
/1.0/wcsEOAll.xsd">
+ <gml:boundedby></gml:boundedby>
+ <gml:domainset></gml:domainset>
+ <gml:rangeset></gml:rangeset>
+ <gmlcov:rangetype></gmlcov:rangetype>
- <gmlcov:metadata></gmlcov:metadata>
- <wcseo:eometadata></wcseo:eometadata>
- <eop:earthobservation< th=""></eop:earthobservation<>
gml:id="eop_MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_007"
xsi:schemaLocation="http://www.opengis.net/opt/2.0/xsd/opt.xsd">
+ <om:phenomenontime></om:phenomenontime>
+ <om:resulttime></om:resulttime>
+ <om:procedure></om:procedure>
<om:observedpropertyxlink:href="#params1"></om:observedpropertyxlink:href="#params1">
+ <om:featureofinterest></om:featureofinterest>
<om:result></om:result>
+ <eop:metadataproperty></eop:metadataproperty>
+ <wcseo:lineage></wcseo:lineage>

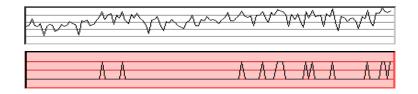
WCS Core: Simply Subsetting

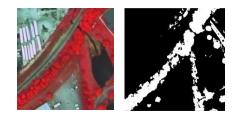

Extensions add bespoke functionality

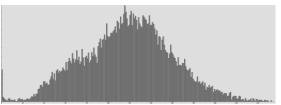
- Versatile encoding, scaling, CRS, interpolation, WCPS, ...

demo on www.earthlook.org

WCS: The Big Picture & Status

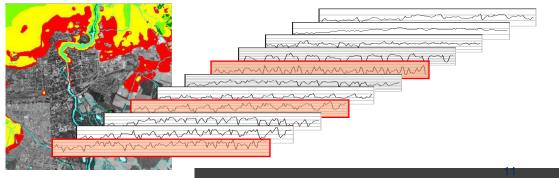



Web Coverage Processing Service


"XQuery for rasters": ad-hoc navigation, extraction, aggregation, analytics

Time series

Image processing



- current value is 8220.0
- average over all values up to now currently is 7461.7692307692305

Sensor fusion
 & pattern mining

Summary data

WCPS By Example

 "From MODIS scenes M1, M2, and M3, the absolute of the difference between red and nir, in HDF-EOS"

```
for $c in ( M1, M2, M3 )
return
encode(
    abs( $c.red - $c.nir ),
    "hdf"
)
```


WCPS By Example

 "From MODIS scenes M1, M2, and M3, the absolute of the difference between red and nir, in HDF-EOS"

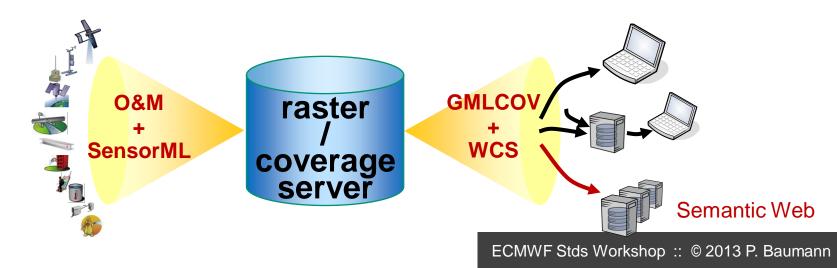
...but only those where nir exceeds 127 somewhere

```
for $c in ( M1, M2, M3 )
where
    some( $c.nir > 127 )
return
    encode(
        abs( $c.red - $c.nir ),
        "hdf"
        )
```


WCPS By Example

 "From MODIS scenes M1, M2, and M3, the absolute of the difference between red and nir, in HDF-EOS"

...but only those where nir exceeds 127 somewhere


...inside region R

```
for $c in ( M1, M2, M3 ),
    $r in ( R )
where
    some( $c.nir > 127 and $r )
return
    encode(
        abs( $c.red - $c.nir ),
        "hdf"
    )
```


OGC SWE vs WCS

- SWE O&M and SensorML (+ friends): high flexibility to accommodate all sensor types
 → upstream data capturing
- GMLCOV and WCS (+WCPS): one generic schema for all coverage types; generically n-D; scalable; versatile processing
 - → downstream access & processing services

Semantic Interoperability: WPS vs WCPS

• WCPS: semantics in query \rightarrow machine understandable

```
for $c in ( M1, M2, M3 )
return encode abs( $c.red - $c.nir ), "hdf" )
```

WPS: semantics in human-readable text

<ProcessDescriptions ...>

<ProcessDescription processVersion="2" storeSupported="true" statusSupported="false">
 <ows:Identifier>Buffer</ows:Identifier>

<ows:Title>Create a buffer around a polygon.

<ows:Abstract>Create a buffer around a single polygon. Accepts the polygon as GML and
provides GML output for the buffered feature. </ows:Abstract>

<ows:Metadata xlink:title="spatial" />

<ows:Metadata xlink:title="geometry" />

<ows:Metadata xlink:title="buffer" />

<ows:Metadata xlink:title="GML" />

<DataInputs>

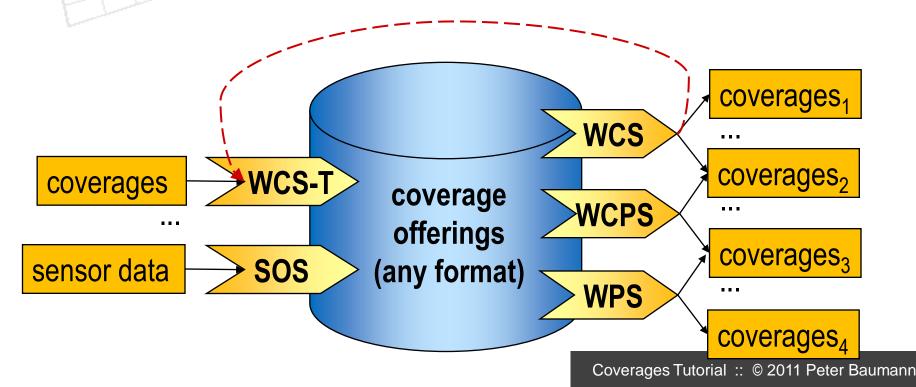
<Input>

<ows:Identifier>InputPolygon</ows:Identifier>

<ows:Title>Polygon to be buffered</ows:Title>

<ows:Abstract>URI to a set of GML that describes the polygon.</ows:Abstract>
<ComplexData defaultFormat="text/XML" defaultEncoding="base64" defaultSchema="http</pre>

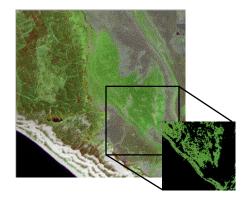
://foo.bar/gml/3.1.0/polygon.xsd">

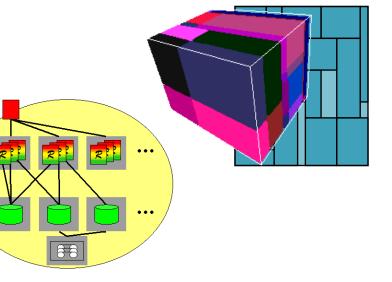

<SupportedComplexData>

1,1

Synopsis of Coverage-Related Stds

- WCS -- simple coverage access (subsetting, transforms, ...)
- WCPS -- on-demand processing & filtering by raster query language
 - WPS -- on-demand processing & filtering by server code
 - SOS -- sensor data acquisition


The rasdaman Raster Analytics Server


- Raster DBMS for massive n-D raster data
 - Data integration: rasters stored in standard database
- Extending SQL with raster processing

select img.green[x0:x1,y0:y1] > 130
from LandsatArchive as img

- Architecture: strictly tile-based
 - n-D array \rightarrow set of n-D tiles
 - extensive optimization, hw/sw parallelization
- In operational use
 - dozen-Terabyte objects
 - Analytics queries in 50 ms on laptop

www.rasdaman.org

coverage

Α

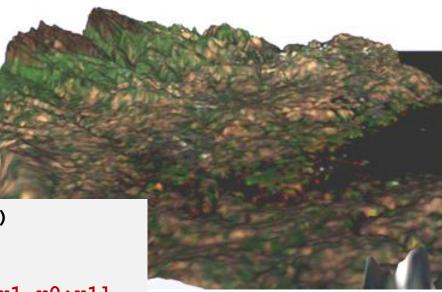
coverage

В

Distributed Query Processing

- WCPS peer-to-peer cloud
 - each node accepts all requests
 - Incoming node distributes query, semantics based
 - Manifold optimization criteria

for \$a in (A) return encode((\$a.nir - \$a.red) / (\$a.nir + \$a.red), "array-compressed") for \$a in (A), \$b in (B) return encode(((\$a.nir - \$a.red) / (\$a.nir + \$a.red) for \$b in (B) - (\$b.nir - \$b.red) / (\$b.nir + \$b.red)), "HDF5")

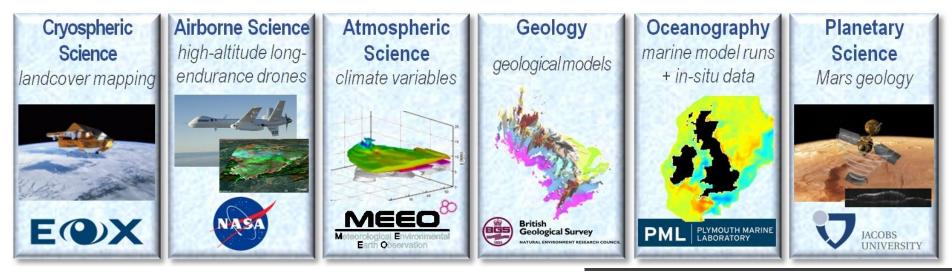

return encode((\$b.nir - \$b.red) / (\$b.nir + \$b.red), "array-compressed")

3D Clients: Experiments

- Problem: coupling DB / visualization
- Approach:
 - deliver RGBA image to X3D client, transparency as height
 - Feed directly into client GPU

```
for s in ( SatImage ), d in ( DEM )
return
    encode(
        { red: (char) s.b7[x0:x1,x0:x1],
        green: (char) s.b5[x0:x1,x0:x1],
        blue: (char) s.b0[x0:x1,x0:x1],
        alpha: (char) scale( d, 20 )
      },
        "PNG"
```


[JacobsU, Fraunhofer 2012]



EarthServer: Big Earth Data Analytics

- Scalable On-Demand Processing for the Earth Sciences
 - EU funded, 3 years, 5.85 mEUR

www.earthserver.eu

- 6 * 100+ TB databases for all Earth sciences + planetary science
- Platform: rasdaman Array Analytics Server
 - Distributed query processing, integrated data/metadata search, 3D clients
 - Strictly open standards: WMS + WCS + WCPS

WCS Reference Implementations

• Current version:

WCS 2.0 rasdaman rasdaman GmbH

Deprecated versions:

WCS 1.1 OpenGeo GeoServer WCS 1.0 deegree lation

See http://cite.opengeospatial.org/reference

Status & Future

- GMLCOV 1.0.1 + WCS Core 2.0.1
- CITE testing established; candidate reference implementation: rasdaman
- Spatio-temporal CRS definitions established
 - CRS Name Type Specification, OGC 11-135
- Future:
 - Mixed regular / irregular axes
 - Streaming coverages
 - WCS-T
 - Coverage hierarchies, both homogeneous ("mosaic") & heterogeneous

[seriouseats.com]

The Data Model: GML Coverages

- All GML coverage types: *nD rasters, curvilinear grids, point clouds, meshes, surfaces, ...*

OGC has a stable suite of coverage standards

Single, coherent model \rightarrow cross-domain integration

- Service-independent → coverages interchangeable between OGC services
- Various representation schemes
 → efficient encoding & interchange

- The Service Suite: WCS
 - Modular : Core, encodings, CRS, WCS-T, WCPS, EO-WCS, ...
 - from simple access to advanced processing
 - Concisely defined interoperability
 - efficient implementation proven (rasdaman: n-D, MapServer: 2-D)