Developing Apps for tempo-spatial meteorological satellite data - using OGC Services

EUMETSAT ImageGallery
Key Concepts for better MapApps

Uwe Voges (con terra GmbH)
Michael Schick (EUMETSAT)
Udo Einspanier (con terra GmbH)
New EUMETSAT Image Gallery webApp:
- Under development in context of EO Portal
- EUMETSAT data is visualized by OGC Web Map Services (WMS), including
 - On-the-fly Image generation for user-defined area
 - retaining native resolution, data values, georeferencing information
 - WMS 1.3.0 supporting horizontal and temporal Reference System (RS)
 - Important time support, e.g. moments (TIME=2000-08-03) or intervals
- provision of OGC Web Services
- Automatic updates of images
 - regular 3-hourly feed
• Client shows global base data from a WMS
• User can select a product from a list
 – Product is overlayed on base map (default: most recent)
 – Available timerange for product is displayed
• User can:
 – Zoom in/out, pan, toggle layer visibility, switch background layer
 – Switch SRS (e.g. North Stereographic)
 – Add custom WMS
 – Select date and time for product
 – Show product abstract
 – Display product in GoogleEarth
• Animation support: first select animation settings
• meteorological products mainly stored in formats:
 – BUFR (edition 4)
 – GRIB (second edition)
 – Cinesat converts into GeoTIFF
 – Most COTS geodata and map support GeoTIFF

• For temporal dimension a specific physical and logical view must be prepared:
 – one physical dataset for each timestep used
 – Advantage: every image format can be used
 – Web mapping requires logical organization of data as layers
 – here: one single layer represents the whole period
 – responsibility to request / return data for timeframe is on server & client-side
 – Time selection tbd by special parameter within requests
 – requires map service supporting WMS 1.3.0 with dimension parameters
• based on Geoserver 2.2.4
 – open source, written in Java
 – supports WMS- and WCS-Interfaces
 – lots of input (incl GeoTIFF) and output formats
 – Important(!): RESTful interface for configuration

• ArcGIS considered: good option
 – Image Server extension for
 – WMS/WCS and RESTful config interface too
 – lots of client development tools based on JS
 – But: ArcGIS 10 last version with Solaris support

For time dimension support a WMS 1.3.0 Façade (servlet filter) was developed
 – aggregates images representing points in time to virtual layer with time dimension (workspace)
 – transforms WMS 1.3.0 requests to WMS 1.1.1 requests
 – The latter reference image(s) corresponding to requested time)
for automatic updates of images, a "Publisher" (Geoserver Updating) was implemented

- publishes new GeoTIFFs to Geoserver for WMS 1.3.0 Façade via

Image Gallery Client:
- webApp accessing products via WMS 1.3.0
- implemented with:
 - Google Web Toolkit (GWT) 2.x
 - JavaScriptAPI OpenLayers 2.8 for mapdisplay
 - GWT-OpenLayers (Java wrapper to integrate GWT)
Frequent shortcomings of map applications (applies partly for the ImageGallery too):

- Focussed often on “geo-IT terminology”: layers, CRS, opacity, ...
 - user often do not (want to) know anything about this
- “Content overload”
 - often provide too much content in one single app in parallel
 - not focussed on specific content/solution
- Device often not recognized:
 - Mobile solutions often don’t consider device specific features
- Design:
 - often driven by technologists and not by user interface designers
- Known concepts of app controls not considered
 - Users prefer interface that is aligned with known concept
- Too much development needed
 - For adaptations of existing apps or for the creation of new focussed apps there is much programming needed

In the following a few key concepts will be shown which should be taken into account for better map apps
- Problem Fit: Simplified & Focused
 - Risk analysis (flooding, heavy rain, storm) for German Bundesland Saxonia
Key Concepts of Modern map applications

- Recognize the Context: Device
 - Ground values for German Bundesland NRW
Key Concepts of Modern map applications

- Design (better composed, more clear)
Key Concepts of Modern map applications

- Known Concepts: mapFlow (like music selection/information in iPod)
Key Concepts of Modern map applications

- Known Concepts: mapFlow
Key Concepts of Modern map applications

- Known Concepts: mapFlow
Key Concepts of Modern map applications

- Known Concepts: mapFlow
Key Concepts of Modern map applications

- Collaboration: FollowMe

You have been invited to a Follow Me session

To: Christian Elfers
Cc:
Subject: You have been invited to a Follow Me session

Please join me in my holidays at the fishing lake experience tour.

Goto my map
http://www.byteschlund.de:8080/mapapps_pre/?lang=en&app=nacht

Join me: session269764920

See you soon, cheers, Christian
Key Concepts of Modern map applications

- Collaboration: FollowMe
Key Concepts of Modern map applications

- Collaboration: FollowMe
Key Concepts of Modern map applications

- Collaboration: FollowMe
map.apps: software solution to build focussed geospatially enabled app’s in an attractive, easy-to-use form

- Provides Standard Architecture, Platform and Building Blocks
- Cross-platform (web/mobile) and cross-device capable
- Pure JavaScript/HTML(5) Client (no plug-ins)
- Based on ArcGIS:
 - Esri JavaScript API, REST API, ArcGIS Server, ArcGIS Online
- OSGi Framework for JavaScript
 - s. Javamagazin 3/2013

- app.Builder creates app’s based on App-Templates

www.conterra.de/mapapps