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1 Introduction

Snow on the ground, due to its high albedo and high latent heat of fusion, has a strong influence on
surface energy balance and surface-atmosphere interactions. It is therefore desirable to have accurate
analyses of snow properties for initialization of numerical weather predictions (Drusch et al. 2004).
Available snow data present some challenges for assimilation: ground measurements of snow depth may
only be representative of limited areas and are sparse in some regions, satellite measurements of snow
extent are not strongly related to other important snow properties, and there are no sources of reliable
and timely snow mass, temperature or liquid water content observations. This paper considers some
simplifications of generic data assimilation equations when they are applied to the specific problems of
assimilating snow depth or snow mass measurements in a land surface model. Results are illustrated
using data from a highly instrumented site in arctic Finland.

2 Snow model state variables

Operational NWP has traditionally used very simple single-layer representations of snow thermodynam-
ics, but multi-layer snow options with fixed or variable numbers of layers are now becoming available
in land surface schemes used by operational models, e.g. HTESSEL at ECMWEF (Dutra et al. 2012),
JULES at the Met Office (Best et al. 2011) and ISBA-ES in SURFEX (Boone 2002). The thermo-
dynamic state of a snow layer can be specified by variables representing its solid and liquid mass,
temperature and density or thickness. Temperature and liquid water variables do not need to be stored
separately because both can be diagnosed from layer heat content. A few sophisticated snow physics
models include state variables for snow grain sizes and shapes in layers.

Mass and heat content state variables are governed by conservation equations. For the bulk solid mass
S, liquid water mass W and temperature T of a snowpack of depth d, these might be written as

ds
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where Sf and Rf are snowfall and rainfall rates, Eg and Ey are sublimation and evaporation rates, M
is melt rate, Ro is runoff rate at the base of the snow, C is heat capacity, G; and G; are heat fluxes at
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the surface and base of the snow, and Ly is the latent heat of fusion. Much of the complexity in snow
modelling lies in parametrizing the flux terms within the snowpack and at its boundaries.

Parametrization of snow compaction is a different class of problem not constrained by a fundamental
conservation law. The simplest approach, still used in the operational configuration of the Met Office
model for example, is to assume a constant density; the optimum value for this constant will under-
estimate snow density early and overestimate late in the winter. Several models, including ISBA-FR
(Douville et al. 1995) and TESSEL (van den Hurk et al. 2000), use an empirical parametrization

dp _

1 .
7= (Pmax—p) )

for bulk density p with two parameters: a compaction timescale T and a maximum attainable density
Pmax- A more physical parametrization for density in layers, used in HTESSEL and ISBA-ES amongst
other models, is given by

ldp Mg

pd n(Tp)
where M is the mass of overlying snow, g is gravitational acceleration, 1 is a compactive viscosity and &
parametrizes thermal metamorphosis of fresh snow. Models differ in how they parametrize the viscosity,
but most are based on Kojima (1967).

+¢(T,p), )

3 Research and operational snow data assimilation

Many recent studies have investigated assimilation of data in snow models using Ensemble Kalman
Filters (Andreadis and Lettenmaier 2006, Dechant and Moradkhani 2011, Durand and Margulis 2006,
Durand et al. 2009, Kumar et al. 2008, Slater and Clark 2006, Su et al. 2008, Toure et al. 2011),
while a few others have used Extended Kalman Filters (Dong et al. 2007, Sun et al. 2004) or Particle
Filters (Dechant and Moradkhani 2011). In stark contrast, operational systems use methods for snow
analyses that are much simpler than the state of the art in data assimilation and, indeed, simpler than
methods often used for operational analyses of other components of the Earth system. For example,
the current cycle (38rl) of the ECMWF Integrated Forecast System (IFS) uses 4D-Var for atmospheric
analyses and a simplified Extended Kalman Filter for soil moisture analyses, but the snow analysis
was only recently updated to use Optimal Interpolation (OI) with fixed background and observation
error variances (ECMWF 2012). Snow depth reports from ground stations and satellite-derived snow
extent are assimilated in IFS, but it is striking that no NWP centre currently assimilates either direct
measurements or retrievals of snow mass.

Observed snow depths can be multiplied by a model forecast of snow density to obtain an estimate of
snow mass per unit area for assimilation in the model. Figure 1 shows an example of ECMWF and
HIRLAM snow depth and mass analyses in the winter of 2010-2011 for the grid box containing the
Finnish Meteorological Institute (FMI) Arctic Research Centre at Sodankylad (67°22°N, 26°39°E, 179 m
a.s.l.). Because there is a synoptic station making daily snow depth reports at Sodankyld, the snow depth
analyses are very close to the observations. Snow density and mass are also measured at Sodankyld but
not assimilated. Compaction of snow is slower in the cold and dry conditions of arctic Finland than
in many other snowy environments, but the use of a constant model snow density clearly could not
capture variations over the whole winter. The HIRLAM snow density, predicted using Equation (4),
rapidly approaches a prescribed maximum of 300 kg m~3 for dry snow that is higher than observed at
Sodankyld; the accurate depth but overestimated density give an overestimate of snow mass. Equation
(4) was replaced by Equation (5) for ECMWF snow density in March 2009 (Dutra et al. 2010) and
the snow analysis was updated to use OI in November 2010 (de Rosnay et al. 2012). The improved
prediction of snow density gives better analyses of snow mass for most of the winter at Sodankyl4.
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Figure 1: Snow depth, density and mass from ECMWF (solid lines) and HIRLAM (dashed lines)
analyses and observations (dots) at Sodankyld in 2010-2011.

Bouttier and Courtier (1999) have given a useful review of data assimilation methods. A dynamical
model of a system described by a vector of state variables x can be regarded as an operator f mapping
between model (“background”) estimates of the state vector x; at times k and k4 1 such that

Compared with the true state of the system x,, the model state has errors &, = x;, — X, with average &,
and covariance

B=(&—8&)(&—8&)", (7

partly due to model imperfections and partly due to imperfect initial conditions. Unless the model is
perfect, it will have error & = f[x, (k)] — x,(k+ 1) and error covariance

Q= (et*ét)(gt*ét)T )]

even in forecasts from perfect initial conditions. If there are N variables in the state vector, B and Q are
symmetric N X N matrices.

Observations for data assimilation, gathered in an observation vector y, need not be state variables but
have to be related to state variables by an observation operator h such that

y=h(x) ©)

in the absence of errors. Observation errors €, =y — h(x;) are then characterized by bias &, and covari-
ance matrix

R=(g,—&)(e,—&)T. (10)
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Data assimilation attempts to make an optimal estimate of the true state (the “analysis”) given the model
background, observations and knowledge of their error statistics. For unbiased Gaussian errors, the
maximum likelihood estimate of x; is X = X, which minimizes the cost function

J(x)=(x— xb)TB*1 (x—x,)+[y—h(x)] "R [y —h(x})]. (11)

The minimization may be performed iteratively or by solving VJ(x,) = 0, which gives

x, = Xp + K[y —h(x;)] (12)
where
K =BH? (HBH” +R) ! (13)
is the Kalman gain matrix and
dh
H=— 14
x (14)

is the Jacobian of the observation operator.

Several data assimilation methods use Equations (12) and (13) but differ in how they handle background
errors. The Extended Kalman Filter (EKF) uses the forecast equation

B(k+1)=FB(k)F' +Q (15)
and analysis error covariance
A = (I-KH)B, (16)
where Py
F= > (17)

If the model is expensive to run then Equation (15) is very expensive to run for a large state vector, and
if the model is a complicated piece of code then the adjoint model giving F7 is also a complicated piece
of code that has to be maintained. The Simplified Extended Kalman Filter (SEKF) instead uses a finite
difference approximation

filx+6xj) — fi(x)

ox j

with a perturbed forecast for each state variable. The same method can be used to approximate H
for complex non-linear observation operators. Without the benefit of perfect observations to determine
model error, the elements of Q are usually calibrated to optimize the filter performance in some way
(Reichle et al. 2002, Seuffert et al. 2004).

Fj= (18)

Data assimilation need not, and often does not, operate on the whole model state variable; x is then a
“control vector” containing a subset or functions of the state variables. The analysis equations in matrix
form, reproduced in many publications, reduce greatly in complexity for the simple case of assimilating
one observable variable that is also a control variable. Matrices and vectors are replaced by scalars:
B = Gg, F=F.H=H Q= qu, R= Grz, x = x and y = x,,. The Jacobian of the observation operator
has the trivial form H = 1, and the state analysis equation reduces to

o2

o} +0?

xasz+< >(xo—xb), (19)

which shows that the analysis increment just depends on the difference between the model and observed
state, and the ratio of the background and observation error variances. Observations are not used if the
model is perfect (x, = x;, if 6, = 0), and a perfect observation directly replaces the model state (x, = x,
if 0, = 0). For EKF, the background error forecast equation is

o (k+1)=F*c; (k) + 0, (20)
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Figure 2: Snow depth, density and mass simulations in open-loop (dashed lines) and with direct
insertion of observations (solid lines) analyses, compared with independent observations (dots) at
Sodankyld in 2010-2011.

and the analysis error

2 < o} 2
o, = 2’) o, (21)
o, +0?
provides the initial condition for the background error forecast after an analysis step. For a linear model,
F is a constant and the Extended Kalman Filter reduces to the linear Kalman Filter. Moreover, the

background error at analysis times then tends to a constant after repeated applications of Equations (20)
and (21) if analyses are performed at regular intervals.

4 Assimilation of point snow data

In addition to the regular manual measurements, automatic instruments at Sodankyld measure snow
depth by ultrasonic ranging and snow mass by gamma radiation absorption. These data can be assimi-
lated in a snow model, reserving the manual measurements for independent evaluations of snow depth
and mass simulations. A 3-layer snow model (Essery et al. 2013) using Equation (5) for compaction has
been found to give good simulations of the snowpack at Sodankyld when driven with the high-quality
in situ meteorological data available from the site. Here, the model is instead driven with NWP data
from HILRLAM: temperature, humidity, wind speed and pressure analyses, and 3 to 6 hour forecasts
of shortwave radiation, longwave radiation, snowfall and rainfall. Figure 2 shows results from an open-
loop simulation without assimilation and a direct-insertion assimilation with the model snow depth and
mass replaced by the automatic measurements once a day. The HIRLAM short-range forecasts for So-
dankyld, which has synoptic and upper-air stations in an area of limited relief, are generally good, but
the open-loop simulation underestimates snow depth and mass due to underestimates of forecast snow-
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Figure 3: Snow depth and mass errors with assimilation of either snow depth (solid lines) or snow
mass (dashed lines) observations. Horizontal lines show errors for open-loop simulations (upper)
and direct insertion of observations (lower).

fall and overestimates of longwave radiation compared with in situ measurements. The automatic snow
depth measurements are very close to the manual measurements and give low errors when used to cor-
rect the model by direct insertion. The automatic snow mass sensor was calibrated to previous manual
measurements and so has a low bias, but measurement noise introduces some spurious variations in the
model snow mass and density when inserted in the model.

Figure 3 shows how rms errors in snow depth and mass simulations with SEKF assimilation of either
daily snow depth or snow mass observations vary as the model error parameter is adjusted. As expected,
errors tend towards the errors for open-loop simulations when o, is small and tend towards the errors for
direct insertion when it is large. The differences between automatic measurements used for assimilation
and manual measurements used for evaluation are sufficiently small that there is no parameter value
for which SEKF outperforms direct insertion. To investigate the influence of observations errors, the
assimilation experiments were repeated with observations degraded by the addition of random errors.
The results plotted in Figure 4 now show clear minima for which analysis errors are lower than both
open-loop forecast errors and observation errors.

For deep snow, sublimation and melt rates can be expected to be insensitive to small mass perturbations.
The mass balance Equation (1) then gives
dS(k+1)
F = — ) 1’ 22
25(K) @2)
which is confirmed by model results in Figure 5. With daily assimilation of snow mass observations, the
background error is almost constant; Equations (20) and (21) give this constant as

1/2
o 462
ﬁ:%1+1+é : (23)
q

If the background error is constant, there is no need for it to be updated by the SEKF; it can instead be
taken as a parameter and adjusted to give an optimized interpolation between modelled and observed
snow mass that minimizes the rms analysis error. In fact, it is found that the minimum errors obtained
with assimilation of degraded observations are very similar for SEKF and OI (15.4 and 14.1 kg m~?
respectively).

It is less clear that Equation (5) will give a model that is linear in snow depth. For the slow compaction
in the cold conditions at Sodankyld, however, the model turns out to be nearly linear for much of the
winter. F and 0, are then nearly constant for assimilation of snow depth measurements, as seen in Figure
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Figure 4: As Figure 3, but for assimilation of degraded observations.
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Figure 5: Background error and F for assimilation of degraded snow depth (solid lines) or snow
mass (dashed lines) observations.

5. Again, the minimum analysis errors that can be achieved by adjusting the model error parameter in
SEKF and OI are very similar (3.2 and 3.0 cm).

5 Conclusions

Assimilation of either snow depth or snow mass observations requires a model estimate of snow density
if information from increments in one of these variables is to be used to update the other. Multi-layer
snow models with reasonable parametrizations of density already exist, but they are not yet widely used
in operational NWP.

The use of data from a highly-instrumented site such as FMI-ARC at Sodankylé allows detailed inves-
tigations of assimilation performance and assumptions but does not represent all of the challenges of
data assimilation in practice. Although independent measurements are available for assimilation and
evaluation of the resulting analyses, they are so close that the optimum strategy is simply to replace
the modelled snow depth or mass with an observation whenever one is available. With degraded obser-
vations, it is possible to make a better analysis by combining model and observation estimates. In the
simple case considered here of predicting snow depth and mass at a cold site, where snow accumulates
gradually through the winter and melts rapidly in the spring, the model error turns out to be nearly con-
stant for most of the winter and there is no benefit from using an assimilation method that forecasts the
error. The use of a Kalman Filter will still be beneficial if information can be propagated to unobserved
state variables through off-diagonal elements in the gain matrix, either due to correlation between state
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variables in the model or the use of a complex observation operator such as a microwave emission model
for assimilation of radiance data.
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