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Outline

Introduction: Cloud observational techniques; surface energy budget terms

Observations

Arctic cloud statistics-clouds prevall

Two main types of Arctic clouds, Sc and Ns: characteristics, environmental context
Formation mechanisms; moisture supply; thermodynamic/kinematic environments
Emphasize environmental Impacts: Cloud-Atmospheric BL-Surface system, esp. SEB

Modeling of clouds

Types: process; mesoscale, operational (reanalyses); regional, global climate

Validation

Process/mesoscale modeling issues:

Sc: supercooled LW (mixed phase); persistence; moisture source
Ns: supercooled LW (mixed phase); dynamical formation?; moisture transport

Key deficiencies
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Remote sensing of cloud properties — macro/microphysical

Surface-based Remote Sensors
1) Ka-band (A = 8 mm) cloud radar, dual-channel (24/31
GHz) microwave radiometer, ceilometer/lidar

- measure reflectivity, vertical velocity, spectral width, cloud
base, brightness temperatures

- retrieve cloud properties, (cloud & precipitation
boundaries, liquid water path, vertical air motion, liquid
water content, ice water content, turbulence dissipation
rate, cloud phase mask)

-~30 stime scale, 0.1 — 12 km, Az=45m

ASCQOS B :
ual-channel ;SHEBA lidar

microwave
radiometer

—

B
L

2) Extra-sensitive S-band (A = 10 cm) cloud and
precipitation radar (ASCOS)
- cloud macrophysical properties, reflectivity,
vertical velocity, spectral width, precipitation rate

Ka-band radar microwave radiometer
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Surface Energy Budget (SEB)

- SEB key relationship linking atmospheric
processes to surface energy fluxes

Net energy flux to surface, F,

I:net = |:atm + I:o = Qnet - Hs - I_ll + I:o

e T VT
TR P

Qet = SW, o + LW, o, = SW, - SW,, - SW, + LW, - LW, — net radiative flux

= SWd (1-a) (1 - f(DS, Di) ) + SS(LWd — GTS4) Long- & short-wave

. up/_down-welling
a = SW /SW, - albedo ; ¢, — emissivity of surface (~0.985 for snow) S

SWy, SW,, LW, and LW, - downwelling/upwelling SW/LW rad. fluxes g i
SW, = SW, (1-a) f(D, D;) - shortwave radiation transmitted through

surface (only applicable for sea ice)
H,, H, - turbulent sensible/ latent heat fluxes (H,,, = Hs + H))

F, — surface conductive heat flux

f(Ds, D)) - shortwave extinction function dependent on snow (D) and ice (D;) thickness

Clouds directly impact SW, , LW,, and a, indirectly impact all of the other terms
(e.g., H, H,, Fy) through system responses given by SEB (egn 1).
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Height Distributions of Arctic Cloud Statlstlcs Shupe et al 2011 (JAMC)

- cloud fraction and cloud persistence (< 0.5 h gaps) 10 [ LA B R
- sites with cloud radar or lidar Annual Mean ' , % Barrow
- profiles [ ——T—= ¢ Eureka
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1) High frequency of low clouds (<1.2 km) at all 3 sites (40-55% of time) 10 10%10°
2) Low clouds most frequent Aug-Nov at Barrow and SHEBA and Persistence [hours] Cases [#]
Sep-Mar at Eureka _
3) Mid-level clouds (2-6 km) least frequent at Barrow (2-20% of time) Median 75%  95%
and most frequent at SHEBA (15-35% of time) 1) Low clouds most persistent  (2.5-4.5 h; 10-18 h; 50-65 h)
4) Mid-level clouds most frequent in late summer/autumn and Mar-Apr 2) Mid-level clouds more transitory (2.5-4.0 h; 7-10 h; 20-30 h)
(BRW, SHEBA) or Sep-Mar (EUR) (frontal time-scale?)
3) High frequency of low clouds due to greater persistence
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ASCOS Storm Case, Aug 12-13, 2008

Aug 12 00Z

AVHRR 0808‘12 1001

Aug A2 10 UTC
Canadian Weather Service L/ L y

sea-level pressure analyses
ata) 00 UTC Aug. 12, b) 12
. UTC Aug. 12, c) 00 UTC

/ Aug. 13, and d) 12 UTC
Aug. 13. The Oden is the
reporting station at 87.5° N,
2° W.
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Sequence of AVHRR satellite
images showing the synoptic
evolution. The satellite-derived
winds and the surface frontal
features are shown in each image.
The tracks of the DC-8 (green)
and Oden (yellow) are shown in b)
using a system phase velocity of
14.5 m st from 81°.

AQUA 080813 0033
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Linking Storm Clouds to Thermodynamic/Kinematic Structure
ASCOS, Aug. 12-13,2008 NI T T _EEE 08 W

Time-height cross section of a) 6, (deg C), wind barbs, and S- a) g, (deg C), wind barbs, and S-band SNR; b
band SNR; b) temperature (deg C) and S-band vertical velocity; AB— 7
and c) mixing ratio (g kg') and S-band spectral width.

51 G6

Each panel is overlaid with a frontal analysis based primarily on
6, (heavy red, blue, and purple lines), theDC-8 flight track data
(heavy black line), radiosondes (red stars on abscissa & vertical
dashed lines), and dropsondes (vertical dashed blue lines). The
heavy red isopleth in b) is the 0° C isotherm, and the heavy
magenta line shows the location of a strong inversion.

Main Points J i , —
1) Classical occluded frontal system, with ( : . JT(.deg ’C) énd S—1band vert;cal velhocit'y (;n/55 "
warm/moist advection in narrow warm B epmtg
sector above surface inversion
2) Post-frontal warm air separated from
surface by inversion
3) Deep clouds and precipitation primarily
associated with warm-front
4) Elevated warm-air advection producing
period of surface freezing rain and sleet
5) Turbulence near top of warm-frontal clouds
likely producing convective generating
cells for warm-frontal precipitation and
possibly supercooled liquid water
6) Classical occluded frontal structure (except
low-level inversion); clouds dynamically

forced Site:asc ~ Year: 08 Day: 225 UTC{f) Beamindex:  Year: 08 Day: 226 uTc ) Beam index: 2
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Linking Storm Clouds to Thermodynamic/Kinematic Structure
ASCOS, Aug. 12-13,2008 NI T T _EEE 08 W

Time-height cross section of a) 6, (deg C), wind barbs, and S- a) g, (deg C), wind barbs, and S-band SNR; b
band SNR; b) temperature (deg C) and S-band vertical velocity; AB— 7
and c) mixing ratio (g kg') and S-band spectral width.

51 G6

Each panel is overlaid with a frontal analysis based primarily on
6, (heavy red, blue, and purple lines), theDC-8 flight track data
(heavy black line), radiosondes (red stars on abscissa & vertical
dashed lines), and dropsondes (vertical dashed blue lines). The
heavy red isopleth in b) is the 0° C isotherm, and the heavy
magenta line shows the location of a strong inversion.

Main Points J i , —
1) Classical occluded frontal system, with ( : . JT(.deg ’C) énd S—1band vert;cal velhocit'y (;n/55 "
warm/moist advection in narrow warm B epmtg
sector above surface inversion
2) Post-frontal warm air separated from
surface by inversion
3) Deep clouds and precipitation primarily
associated with warm-front
4) Elevated warm-air advection producing
period of surface freezing rain and sleet
5) Turbulence near top of warm-frontal clouds
likely producing convective generating
cells for warm-frontal precipitation and
possibly supercooled liquid water
6) Classical occluded frontal structure (except
low-level inversion); clouds dynamically

forced Site:asc ~ Year: 08 Day: 225 UTC{f) Beamindex:  Year: 08 Day: 226 uTc ) Beam index: 2
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TD/kinematic environment for Sc
Reflectivity (dE?Z) (ASCOS, Aug 24- Sep 1, 2008)

Height (m)
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Year Day 2008 (UTC) Year Day
Weak 6, gradients T~-9--8°C at cloud top and ~ - 2 °C at sfc
High/rising surface pressure Mixed phase cloud, with LWP ~ 20-200 g m-2
Some variability in winds and sfc pressure and IWP ~ 1 - 300 g m?
Near-neutral stability within cloud, with LW important for radiative effects
occasional near-surface stability Strong T inversion at cloud top, with
— cloudtop-surface coupling/decoupling occasional T > 0 °C above cloud

Processes modulating cloud top height & cloud in top 200-400 m of reflectivity region
coupling/decoupling not fully understood

3nna

Mix. Rat|o (g kg?t) (red>2.5 g kgt) & reflectivity

0 - M
23?23? 5238233 5239239 5240240 5241 241, 5242242 5243243 5244244 5245245 5246

Year Day (wrt Jan. 1, 2008)

Water vapor inversion often seen with

T inversion at cloud top

- significant for cloud formation &
persistence

- unique for Arctic Sc compared to
subtropical Sc
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https://mail.google.com/mail/?ui=2&ik=470fdaa1e9&view=att&th=13f78c8aa80d516a&attid=0.1&disp=inline&safe=1&zw
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Visible images of Sc clouds on morning of Aug 28 (YD 241.2 — 241.6)

- illustrate extensive scale of clouds and advective nature of character changes
- 300-400 m lifting of Sc top at 06 UTC associated with advection of 300-400 km arced feature

0423 UTC

Aug 28 2008
0423 UTC

1404 UTC

Aug 28 2008
1404 UTC

% Images provided by
& ' Dundee Satellite Service
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1) Long-distance freéhfrposhéric advection _
of heat and moisture significant =1 ce surface

2) Associated clouds (esp. with liquid) have
strong impact on LW, F, ., and T

3) Thermal structure in snow and ice

respond strongly to synoptic/mesoscale -

atmospheric events and presence of liquid 2 I S 'oe bottom
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Observed Responses to Radiation Changes over Arctic Sea Ice
SHEBA Polar Night (Nov. 7, 1997 — Feb. 2, 1998; No solar radiation)

Beaufort Sea — Multi-year Arctic sea ice

30

e Turb Flux
| ® Cond Flux

SHEBA
Nov. 7 - Feb. 2
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Net Radiation (W m2)

Observations clearly show
clouds and CLW also impact
Hs + Hyand Fy

Process Relationships:
I:net ~ LWnet - (Hs + HI) + C;
H,+ H,vs LW, C vs LW

Clear skies
- surface warmed by both H.+H, and C

-Fo ~-17.5 W m?2

Cloudy skies (with liquid water)

- both C & H+H, respond to LW, increase
by -7.1 W m-2? and +13.5 W m?, respectively
- surface warmed by C but cooled by H, + H,
- Fret ~ t1.5W m™

ECMWF-WWRP/THORPEX Workshop on Polar Prediction

June 24-27, 2013 Reading, UK




Modeling of Polar Clouds

Process models (nested WREF, classical LES, single-
column models)

Sc clouds | |
- how to improve microphysical structure?

- how to improve radiative impacts?
- understand moisture supply and cloud persistence
- aerosol impacts

Validations of:

Mesoscale/Forecast Models, Reanalyses (WRF,
ERA40, ERA-I)

Regional (large suite) and Global Climate Models
(CCSM4)

ECMWF-WWRP/THORPEX Workshop on Polar Prediction June 24-27, 2013 Reading, UK



Downwelling short wave radiation
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ERA40 analysis of SHEBA January Case:

a) Cloud ice peak matches observed deep cloud time; b) LW not as consistently elevated as in
obs; c) Q, maximum (> 1 g/kg brown) arrives with warm air as in obs, but ~ 0.5 g/kg less ; d) Very
little liquid water in ERA40!; e) No snow cover and assumed 1.5 m thickness produces more rapid
thermal wave penetration and heat loss, and larger in-ice thermal gradients.

SHEBA Observations _

500 ma=77]

ERAA40: Cloud ice
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“Thin, liquid clouds” in Observations and Reanalyses (Models)

For the purpose of this plot, ‘thin, liquid-bearing’ clouds are defined as clouds in the range of 10 gm==2 < LWP < 60 g m™2,
corresponding to the range of maximum enhanced cloud radiative forcing at the surface. a—d, Comparisons of ground-based
observed (blue, microwave radiometer (MWR)) and ERA-Interim simulated (red, ERA) frequencies of occurrence of these clouds
for four Arctic observation sites for all seasons; a, Barrow, Alaska; b, Surface Heat Budget of the Arctic Ocean (SHEBA) experiment
c, Eureka, Nunavut; and d, Summit, Greenland. e, Circumpolar map of the frequency of occurrence of these clouds from 32 yr of
ERA reanalysis (1979-2011). The plot in e is conditionally sampled to only include cases with solar zenith angle lower than 80° and
a surface albedo higher than 0.5.
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Frequency of thin, LW clouds too low for ERA-I in spring/autumn and much too low in winter.

R Bennartz et al. Nature 496, 83-86 (2013) doi:10.1038/nature12002
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Fig. 8. Cloud and aerosol observations from the 5th regime
(a) radar reflectivity, (b) observed net shortwave and long-
wave radiative fluxes and (¢) accumulation mode particle
(60 nm < diameter < 800 nm) concentration from the DMPS (black
line) and mean CCN concentration (black dots), computed from
measurements made at a range of supersaturations (coloured dots,
red 0.11%, green 0.16%. cyan 0.21 %, blue 0.42% and yellow
0.73 %). The vertical dashed lines show the times of the two ra-
diosondes used in the SCM runs mn Figs. 9-11.

Observafions CON=100 CCN=20  CON=5 _ CCN=2 __ GCN=1
Fig. 10. Mean radiative flux observations between 05:00 and

06:00 UTC, DoY 245 and radiative flux diagnostics at 1 + 6h from
the SCM run mtialised at 23:30 UTC, DoY 244.
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Summary of Arctic Clouds

|. Observations
A) Clouds are a key component of the Arctic environmental system
B) Primarily 2 types of clouds have major impacts — Sc (low, shallow) and Ns

(deep, precipitating)

) Ns — dynamical (fronta g, esp
vs advection from lower latitudes uncertain
2) Sc —longwave atmospheric (cloud-top) radiative cooling

- produces intermittent vertical mixin , and impacts BL structure
3) moisture transport from lower latitudes I|kely |mportant for both, though transport from
local surface also occurs for Sc :

1) radiative forcing on surface
- both cloud types have significant impacts, but some (unknown) differences may exist

- cloud phase (presence of LW) key aspect for impact on surface energy budget ~
- sensitivity strong for the low values of LWP often encountered

2) precipitation :
- albedo change; important for surface energy budget balance and triggering
melt/freeze transitions
- thermal conductivity; important for sea ice/permafrost growth & melt



Summary of Arctic Clouds - cont.

lI. Modelling
Issues in Quantitatively Modeling Key Arctic Cloud Processes & Feedbacks

turbulence (entrainment)
3) unknown validation of deeper synoptic/mesoscale clouds and precipitation in Arctic

- lack of observations
- OK because of good SLP validation? =Sl

4) coupling between aerosols (CCN and IN) for cloud formation inadequate in most models
(often constant concentrations throughout domain) — low CCN/IN concentrations lead to
greater sensitivity

5) radiative errors from poor cloud representation interacting with other inadequate
representations (e.g., snow/sea-ice representation) produce inaccurate process -
relationships and frequently compensating errors in surface energy budget =7

6) poor representation of clouds (and sea-ice environment) in reanalyses important
because of their frequent use for forcing regional atmospheric, cryospheric, and ocean
models, and because of their use in climate diagnostics studies
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