

WWRP/THORPEX Workshop on Polar Prediction, ECMWF, 24-27 June 2013

Forecast Verification

Pertti Nurmi

Finnish Meteorological Institute

Member of WWRP Polar Prediction Project (PPP) Steering Group Member of WWRP Joint Working Group on Forecast Verification Research (JWGFVR)

Acknowledgements: ✓ JWGFVR ✓ ECMWF ✓ M. Matsueda Photo © Timo Vihma

A few words about JWGFVR : Goals & activities

- Verification component of WMO WWRP, in collaboration with WGNE, WCRP, CBS
- Serve as a focal point to develop and promote new verification methods
- **Promote importance of verification (as vital part of experiments)**
- Promote collaboration among verification scientists, model developers, forecast providers AND end-users (customers)
- **▶** Emphasize user-aspects of forecast verification ⇔ Impacts
- **Provide training on verification methodologies**
 - ✓ 3 extensive tutorials organized so far ; Next in spring 2014 ?
- **Does NOT** provide "verification services" per se ...

References ...

8 papers by JWGFVR members in Special Issue (June 2013) of Met. Apps.

incl. a "lead paper" Progress and challenges in forecast verification

Our popular website : www.cawcr.gov.au/projects/verification

Finnish Meteorological Institute

References : Only few addressing **Polar Verification** per se

Based on survey to find relevant papers covering past c. 10 years :

- 1. Bromwich et al, 2013. A comprehensive evaluation of Polar WRF forecast performance in the Antarctic. J. Geophys. Res: Atmospheres, 274-292.
- 2. Jakobson et al, 2012. Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett, 39.
- 3. Kilpeläinen et al, 2012. Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard. Q. J. R. Meteorol. Soc, 1867-1883.
- 4. Tastula et al, 2012. Evaluation of Polar WRF from the Modeling the Atmospheric Boundary Layer over Antarctic Sea Ice in Autumn and Winter, Mon. Weather Rev.
- 5. de Boer et al, 2012. A Characterization of the Present-Day Arctic Atmosphere in CCSM4. J. Climate, 2676-2695.
- 6. Hines et al, 2011. Development and Testing of Polar WRF. Part III: Arctic Land. J. Clim, 26-48.
- 7. Liston & Hiemstra, 2011. The Changing Cryosphere: Pan-Arctic Snow Trends (1979–2009). J. Clim, 5691-5712.
- 8. Lammert et al, 2010. Comparison of three weather prediction models with buoy and aircraft measurements under cyclone conditions in Fram Strait. Tellus Ser. A, 361-376.
- 9. Dworak & Key, 2009. Twenty Years of Polar Winds from AVHRR: Validation and Comparison with ERA-40. J. Appl. Meteor. Climatol, , 24-40.
- 10. Walsh et al, 2009. Arctic Cloud Fraction and Radiative Fluxes in Atmospheric Reanalyses. J. Clim, 2316-2334.
- 11. Fogt & Bromwich, 2008. Atmospheric Moisture and Cloud Cover Characteristics Forecast by AMPS. Weather Forecast, 914-930.
- 12. Hines & Bromwich, 2008. Development and Testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet Meteorology. Mon. Wea. Rev, 1971-1989.
- 13. Schweiger et al, 2008. Relationships between Arctic Sea Ice and Clouds during Autumn. J. Clim, 4799-4810.
- 14. Tjernström et al, 2008. How Well Do Regional Climate Models Reproduce Radiation and Clouds in the Arctic? J. Appl. Meteor. Climatol, 2405-2422.
- 15. Jung & Leutbecher, 2007. Performance of the ECMWF forecasting system in the Arctic during winter. Quart. J. Roy. Meteor. Soc, 2007, 1327-1340.
- 16. Nordeng et al, 2007. Improvement of weather forecasts in polar regions. WMO Bulletin 56(4) October 2007.
- 17. Rinke et al, 2006. Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA year. Climate Dynam, 459-472.
- 18. Bromwich et al, 2005. High-Resolution Regional Climate Simulations over Iceland Using Polar MM5. Mon. Wea. Rev.
- 19. Tjernström et al, 2005. Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project. Boundary-L. Meterol, 337-381.
- 20. Guo & Bromwich, 2003. Evaluation of Polar MM5 Simulations of Antarctic Atmospheric Circulation. Mon. Weather Rev, 384-411.
- 21. Gauthier & Falkingham, 2002. Long Range Ice Forecasting Techniques in the Canadian Arctic Initial Verification. Proc. 16th IAHR Int'I Symposium on Ice, Dunedin, New Zealand.
- 22. Mailhot et al, 2002. Mesoscale simulation of surface fluxes and boundary layer clouds associated with a Beaufort Sea polynya. J. Geophys. Res, 8031.
- 23. Bromwich et al, 2001. Mesoscale Modeling of Katabatic Winds over Greenland with the Polar MM5. Mon. Wea. Rev, 2290-2309
- 24. Braaten & Tucker, A Ceiling and Visibility Prediction System Suitable for Antarctic Flight Operation. https://ams.confex.com/ams/pdfpapers/20168.pdf.
- 25. Bromwich et al. Evaluation of Operational Weather Forecasts for Antarctica from Polar MM5-AMPS. www.mmm.ucar.edu/mm5/workshop/ws02/Bromwich.pdf.
- 26. Guo et al. Verification of Polar MM5 Simulations of Antarctic Atmospheric Circulation. https://ams.confex.com/ams/pdfpapers/20475.pdf.
- 27. Leatham et al. Veerifying Model Forecasts of Arctic Fronts in Advance of Winter Storms in the Southern Plains. www.caps.ou.edu/reu10/papers/Leatham.pdf
- 28. Sechrist et al, 1989. Forecasters Handbook for the Arctic. 9.2. Verification of Numerical Model Forecasts. Naval Environmental Prediction Research Facility. Monterey, CA. Tech. Rpt.
- 29. The International Antarctic Weather Forecasting Handbook.
- 30. www.antarctica.ac.uk/met/momu/International_Antarctic_Weather_Forecasting_Handbook/update%20Antarctic%20NWP%20-%20USA.php

pertti.nurmi@fmi.fi

Service-oriented Research

Societal and Economic Research Applications (SERA)

Verification

Modeling perspective \Leftrightarrow <u>User perspective</u>!

Underpinning Research

Predictability and Diagnostics

Teleconnections

Forecasting System Research

Observations Data Assimilation Modelling Ensemble Forecasting

User perspective !

Road surface friction forecast verification on northern roads

New Issue : *"Seamless"* or *consistent* verification across all scales \Leftrightarrow applying same verification measures to all forecasts, to allow comparison

A. Observations

- Identification, definition & establishment of optimal, high-resolution observing networks
- ✓ Utilization of in-situ & remote sensing observations
- ✓ *"Invention"* of new, mobile (?) observing means; cf. road transport
- ✓ Issues with complex terrain + surface properties

B. Raise awareness of the necessity for comprehensive verification

- C. Verification methods and metrics
 - ✓ Dedicated metrics for dedicated, high-impact polar phenomena
 - Low cloud, fog, visibility, blizzards, wind, temperature extremes
 - Verification methods R&D
 - Exploration of existing vs. new, upcoming verification metrics
 - Definition and adoption of "seamless verification" to cope with seamless forecasting
 - ✓ Address both deterministic and probabilistic forecasts (obviously)

Q1

Q1

GA1. Review & examine present verification state-of-the-art

- ✓ Literature review
- ✓ Applicability to polar specific phenomena and applications
- ✓ All forecast variables and types & all forecast scales : hourly-to-seasonal
- ✓ Seamless applicability, multi-dimensionality

GA2. Distinguish key user-relevant, high-impact weather elements (not forgetting sea ice)

- ✓ Low cloud, fog, visibility, blizzards, wind, temperature extremes
- Definition of variables and their temporal and spatial scales, followed by verification specifications for each

GA3. Try to devise and apply polar-tailored – *potentially new* - Q1-3 verification techniques

✓ User-relevance ⇔ Impacts

pertti.nurmi@fmi.fi

Loosely following Implementation Plan

GA4. Carry out polar vs. mid-latitude verification comparison

- Verification of existing forecasting systems present forecast performance and progress
- ✓ Compare polar vs. non-polar (mid-latitude) forecast performance
- ✓ Systematic comparison between different Forecast Centres
- ✓ Investigation of polar lows
 - Possibly utilize methodology like for tropical cyclones

GA5. Is there potential / interest to develop *spatial* verification techniques for polar areas ?

- ✓ Feasibility with lack of data ? Only polar orbiter data available ? Only for cloud verification ? Can we distinguish cloud from ice ? ...
- Needs motivation and commitment Potential collaboration with spatial forecast verification methods inter-comparison initiatives and programs

Loosely following Implementation Plan

pertti.nurmi@fmi.fi

Q**1-3**

Q1

GA6. Define and adopt "headline" performance measures

- To monitor polar fc performance throughout the 10-year project lifetime
- Comparison between different forecasting systems and Centres

GA7. Devise and perform *user-oriented* verification

- ✓ Distinguish specific (end-) users and their requirements
- ✓ Define & apply "simplified" verification metrics addressing end-users
- Provide guidance to Weather Services to adopt and apply meaningful user-oriented verification measures
- ✓ Forecast value (c/b; C/L) issues addressing impacts ⇔ SERA

GA8. Analyze present and explore new observation means ⇔ YOPP observation & verification strategy

- E.g. mobile observation platforms; utilization of non-conventional data; new telecommunication techniques facilitating rapid applicability
- Observation uncertainties

Q1-4

Q1-3

11

Q1-4

- Many Centres, possibly, apply own differing non-uniform metrics
- Seek for potentially interested host Meteorological Service(s)

GA12. Set up a dedicated verification expert team

- PPP expert team members enforced by verification "enthusiasts"
- ✓ Lead Centres of verification; WMO meso-scale working group etc...

Loosely following Implementation Plan

Q2-3

01-4

03-4

Q1-4

Desirable specific <u>properties</u> for a verification measure :

- ✓ Dependency on the verification, or analysis, grid should be minimised
- Dependency on spatial and temporal scales and sampling of observation data should be minimised
- ✓ Behaviour should not depend on the base value, i.e. on the magnitude of verified quantity
- ✓ Behaviour should not depend on the base rate, i.e. *climatology*
- ✓ Should remain useful for rare events: Most conventional measures become unusable beyond c. 90 percentile
- ✓ Should converge quickly for relatively small samples
- ✓ Should be accompanied by estimates of uncertainty error bars
- ✓ Should take both hits and false alarms into account, for categorical fcs
- ✓ Should be "proper", "equitable" and not reward "hedging"

➡ No currently available metrics satisfy all these !!!

Examples of some relatively new verification metrics / methods

GA-3

"Traditional" scores tend to zero with the rarity of the event, i.e. are highly dependent on base rate (i.e. local climatology) !

ECMWF Precipitation fcs, 2003-2009: + 42 hr (~ 100 stations)

Looking at multiple scores at one time Only need to plot POD and 1-FAR (Success Ratio)

(From Roberts et al. 2011; after Roebber 2009 and C. Wilson 2008)

Spatial verification

- Lots of activity during past and probably during coming several years
- Designed to diagnose spatial structures like precipitation areas, fronts ...
 Cover different scales
- Provide information on error in physical terms
- Account for uncertainties in location and timing
- Typically utilize remote sensing satellite and/or radar data

Would require a high density observation network !

- Neighborhood methods, Fractions Skill Score, Feature-based methods, CRA, SAL, MODE, etc...
- Starting to penetrate to ensemble forecast verification

Evolution of ECMWF scores comparison northern and southern hemispheres

... but how about polar prediction forecast quality?

Welcome to the TIGGE museum!

Daily scores for TIGGE

running mean: 365-day

seum! http://tparc.mri-jma.go.jp/TIGGE/index.html © Dr. Mio Matsueda Skill comparison of TIGGE medium-range ensemble forecasts ACC Z500 control run (OCT2006-MAR2013)

Welcome to the TIGGE museum!

GA-4, **GA-11**

Daily scores for TIGGE

http://tparc.mri-jma.go.jp/TIGGE/index.html © Dr. Mio Matsueda

pertti.nurmi@fmi.fi

GA-4, GA-11

Welcome to the TIGGE museum!

http://tparc.mri-jma.go.jp/TIGGE/index.html © Dr. Mio Matsueda

Comparison of TIGGE medium-range ensemble forecasts (Z500) +168hr

Anomaly Correlation

GA-4, GA-11

GA-4, GA-11

Obs availability, spring 2013

(Acknowledgement: Marion Mittermaier)

North - South Comparison

GA-4, GA-11

NB: UK @ full resolution; EC & US @ coarser CBS grip resolution

(Acknowledgement: Marion Mittermaier)

North - South Comparison

NB: UK @ full resolution; EC & US @ coarser CBS grip resolution

(Acknowledgement: Marion Mittermaier)

✓ No such thing as observed "truth"

- Regardless how good your observations, they are always estimates !
- Forecast verification would require knowing the "truth", however
- ✓ Observational uncertainty need to be taken into account
 - E.g., how well do nearby observations match each other?
 - Quality checking of observations
 - o Removal of gross errors, instrument and reporting errors; biases
- ✓ Observations generally are "more true" than model analyses
 - ⇔ Utmost care if using model analysis as verifying "truth"
 - ⇔ Analyses typically are highly model dependent!
 - ✓ Especially so in polar regions with lack of observations

⇔ Analyses suited for comparison between versions of same model e.g. operational vs. experimental suite – rather than comparing different models against each other

Verification : Observations &/or Analyses

Observations are THE cornerstone of forecast verification !

RPSS for 850 hPa temperature in the tropics (TIGGE data) (from Park et al, 2008)

You always get best verification scores when using your <u>own</u> analysis

- Own model climatology brings advantage
- Differences largest in the tropics and at low levels

Repeat this kind of experiment for the Polar regions

Predictability - Free atmosphere

✓ 1990 ⇔ 4 days

Predictability \Leftrightarrow ECMWF "headline" measure

✓ 2000 ⇔ 5 days

ACC of Z 500 remains above 80 %

Predictability - Surf. weather 🖾 End-user perspective

Predictability \Leftrightarrow ECMWF "headline" measure

✓ 1995 ⇔ 2 days

"1 - SEEPS" of 24 hr precipitation remains above 45 %

✓ 2010 \Leftrightarrow 3.5 days \Leftrightarrow Expected increase \Leftrightarrow 1 day / decade

0,9

0,75

0.7

' Summary "

- 1. Investigate and test present and new, upcoming verification measures
- 2. Utilize verification as a means to assist observing system design YOPP
- 3. Agree on (at some stage) a <u>common set of verification metrics</u> (for YOPP)
- 4. <u>YOPP data centre \Leftrightarrow Include a verification module</u>
- 5. Seamless forecasting calls for <u>seamless verification</u>
- 6. Focus on forecasting capabilities of meaningful <u>high-impact weather</u> <u>events</u>, taking into account (end-) <u>user aspect</u> ⇔ <u>Impacts</u> ⇔ SERA
 - 7. Potentially set up a real-time verification framework/system
- 8. Set up a <u>verification expert team</u> linkages + outreach and education
- Verification is MUCH more than bias, RMSE & ACC...

Polar forecast quality monitoring

Interest in polar region dedicated verification has clearly increased since the initiation of PPP !

