

The role of sea-ice in extended range prediction of atmosphere and ocean

Virginie Guemas

with contributions from Matthieu Chevallier, Neven Fučkar, Agathe Germe, Torben Koenigk, Steffen Tietsche

Outline

- I Sea ice loss and impacts
- II Seasonal prediction
- III ... and longer timescales

Outline

I - Sea ice loss and impacts

II - Seasonal prediction

III - ... and longer timescales

September sea ice extent from NSIDC (National Snow and Ice Data Center)

2012 Sea Ice Outlook: July report

Why 2012 record-low missed by all the forecast systems?

Attributing the September 2012 Arctic ice minimum

1 of the 8 most extreme summer storm over the 1979-2012 period

NASA

2012 record-low due to climate change or natural variability?

Attributing the September 2012 Arctic ice minimum

Sea ice Loss relative to the average of the September minima over the 2000-2011 period

CTRL = NEMO3.2 ocean model + LIM2 sea ice model initialized on 1 June 2012 from a 5-member sea ice reconstruction and forced with ERAinterim.

OBS

Guemas et al, BAMS, 2013

Our sea ice model overestimates the 2012 excess sea ice loss relative to the 2000-2011 average

Attributing the September 2012 Arctic ice minimum

Impact of the ice decline on the adjacent continents

Arctic climate change in EC-Earth (Torben Koenigk)

Outline

I - Sea ice loss and impacts

II - Seasonal prediction

III - ... and longer timescales

Potential predictability: ice thickness distribution

Chevallier and Salas y Mélia, JCLIM, 2012

Thick ice = best predictor of September extent, thin ice good predictor for March extent

Seasonal hindcasts with CNRM-CM5.1: September (Matthieu Chevallier)

Hindcast initialized 1 May 1990-2008

Concentration: mean bias

Chevallier et al, JCLIM, 2012

Substantial added-value of sea ice thickness initialization for September sea ice extent

Seasonal hindcasts with CNRM-CM5.1: March (Matthieu Chevallier)

Hindcast initialized 1 November 1990-2008

Concentration: mean bias

Chevallier et al, JCLIM, 2012

Substantial added-value of ocean transport initialization for March sea ice extent

Added-value from initializing the sea ice cover (IceHFP)

Seasonal forecasts initialized on 1 Nov 2007:

- 1) From realistic sea ice cover
- 2) From a climatology

The difference is shown for DJF Z500 (hPa)

Figure provided by Mathieu Chevallier

Outline

- I Sea ice loss and impacts
- II Seasonal prediction
- III ... and longer timescales

The APPOSITE Project (Steffen Tietsche)

Ensemble hindcasts initialized on 1 July from a ~200 year present-day control simulation with fixed external forcings

Potential predictability until 3 years, especially in Arctic sea ice volume, and in summer

A 5-member 1958-present sea ice reconstruction

- > NEMO3.2 ocean model + LIM2 sea ice model
- Forcings: 1958-2006 DFS4.3 / 1979-2010 ERA-interim
- Nudging: T and S toward ORAS4
- Wind perturbations + 5-member ORAS4
 - ---> 5 members for sea ice reconstruction

Guemas et al, CD, 2013

Longest available multi-member reconstruction

A 5-member 1958-present sea ice reconstruction

Too much ice in central Arctic, too few in Chucki + East Siberian Seas, ice extent biased but reasonable interannual variability

Improvement in forecast quality in the Arctic region

Root Mean Square Error

Arctic Sea Ice Area

Arctic 2m temperature

Versus NCEP (continuous) and ERA40 (dots)

Guemas et al, CD, 2013

Better forecast skill in the Arctic region all along the prediction

Regionaly contrasted sea ice predictability: Winter extent (Agathe Germe)

- CNRM-CM5.1

- 16 Decadal hindcasts (DEC)
- 1960-1996
- . 10 member ensembleInitialized 1st january
- CMIP5 Historical simulation
 (HIST)
- . 1850-2012
- .10 member ensemble
- . Initialized from PICTL

Germe et al. CD, 2013

Higher Potential Predictability in the Atlantic Sector Gin Seas

Winter Anomaly Correlation Coefficient (Agathe Germe)

Labrador Sea

Germe et al. CD, 2013

Added-value of initialization for the first 2 years, reemergence of predictability due to exernal radiative forcing

Conclusion

- 1) Half of the sea ice extent lost in a few decades, climate sensitivity underestimated by climate models
 - Impact of sea ice loss on the winter snow cover and winter blocking frequency
- 2) Predictability of the September sea ice extent from the spring distribution of sea ice thickness
 - No robust impact of sea ice initialization on the atmosphere on seasonal timescales
- 3) Forecast skill improvement in the Arctic region up to 3 years ahead in EC-Earth when refining the sea ice initialization
 - Potential predictability on decadal timescales larger in the Atlantic Sector in CNRM-CM

virginie.guemas@ic3.cat

MINISTERIO
DE ECONOMÍA
Y COMPETITIVIDAD

This work was supported by the EU- funded SPECS project, under grant agreement 308378