Introduction

models / data 00 ERA-interim / Crocus

20CR snow cover

Persectives

Add-ons

Using reanalyses for studying past Eurasian snow cover and its relationship with circulation variability

> E. Brun, Y. Peings, V. Vionnet A. Boone, B. Decharme, H. Douville *CNRM-GAME, Toulouse, France* F. Karbou, S. Morin *CNRM-GAME, CEN, Grenoble, France*

ECMWF-WWRP/THORPEX Workshop on Polar Prediction Reading, UK / 24 - 27 June 2013

Introduction ●○○	models / data 00	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
Outline	es				

- Challenging reconstruction of past snow conditions
- Snowpack models : a complementary approach to snow reanalysis and to satellite retrievals
- Reconstruction of Eurasian snow cover based on Crocus simulations driven with Era-interim
- 20CR snow cover over Northern Eurasia in Fall and its relationship with the Arctic Oscillation
- Some weaknesses in the ERA-interim and 20CR snowpack representation over pan-Arctic and Antarctic regions

Snow cover and predictability in polar regions

Multi time scales influence of the snow cover on the atmosphere

- Daily scale : high impacts on the boundary layer (cooling effects, stability ...) ⇒ weather forecast errors
- Seasonal scale : Eurasian snow extent in Fall is a potential source of predictability for the Arctic Oscillation during the following Winter
- Climate scale : an important source of feedbacks (albedo) and high impacts (permafrost thawing, ecosystems, hydrological cycle...)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
000					

Poor knowledge of past and present snow conditions

In-situ snow observations

- Only a few long term series of snow depth in the past
- Uneven distribution of observations in space and time

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
000					

Poor knowledge of past and present snow conditions

In-situ snow observations

- Only a few long term series of snow depth in the past
- Uneven distribution of observations in space and time

Satellite snow retrievals

- Daily snow cover and SWE products but ...
- Several shortcomings in the retrieval of snow conditions from satellites :
 no depth retrievals, only snow cover and snow water equivalent (SWE)
 no cover observations under cloudy conditions, no SWE observations in melting conditions
- No observations before the 1970's

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
000					

Poor knowledge of past and present snow conditions

In-situ snow observations

- Only a few long term series of snow depth in the past
- Uneven distribution of observations in space and time

Satellite snow retrievals

- Daily snow cover and SWE products but ...
- Several shortcomings in the retrieval of snow conditions from satellites :
 no depth retrievals, only snow cover and snow water equivalent (SWE)
 no cover observations under cloudy conditions, no SWE observations in melting conditions
- No observations before the 1970's

 \implies Snow cover reanalyses suffer from time and space inconsistencies \implies A complementary approach based on snowpack simulations driven by reanalysed meteorological conditions

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
000	00	000000	0000	000000	00000000

Introduction

- 2 Snow models and evaluation data
- 3 ERA-interim / Crocus
- 4 20CR Snow cover evaluation
- 5 Persectives

6 Add-ons

Introduction

models / data

ERA-interim / Crocus

20CR snow cover

Persectives

Add-ons

Crocus : a detailed snowpack model coupled with the ISBA-DF soil model

(Brun et al., 1992; Vionnet et al., 2012)

Historical data sets for model evaluation

- Historical Soviet Daily Snow Depth (HSDSD) :
 - daily snow depth at synoptic stations (open fields) / year-round
 - 263 stations : > 1,100,000 quality-controlled obs. (1979-1993)
 - some records start in 1891
 - easy access from NSIDC portal

- + co-located observations of SWE 3 times/month
- + co-located monthly observations of soil temperature

Introduction	models / data oo	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons

- 2 Snow models and evaluation data
- 3 ERA-interim / Crocus
- 4 20CR Snow cover evaluation
- 5 Persectives

6 Add-ons

Introduction	

models / data 00 ERA-interim / Crocus

20CR snow cover

Persectives

Add-ons

Simulation configurations

ERA-interim reanalysis ECMWF

- $m low \sim$ 80 km resolution
- 4D-Var assimilation system
- precipitation from model forecasts
- radiation from model forecasts

(Dee et al., 2011)

- + additional configurations/options :
 - forcings from Global Forcing Princeton University data set (PGF) (NCEP-NCAR reanalysis and monthly precipitation scaling from CRU/GPCP)

• ..

Crocus snow model ISBA-DF soil model

- simulations at each station site (altitudinal correction)
- 2D simulations over Eurasia
- outputs : snow depth, SWE, density, soil and snow internal profiles

Similar performance to local simulations driven with observed meteorological observations !

Comparison between observed (circles) and simulated density (2D field) on 10 March (average 1979-1992)

(Brun et al., 2013)

Snow simulations derive characteristics which cannot be directly analysed

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-on
		000000			

Comparison with GlobSnow SWE retrievals

GlobSnow :

- ESA funded snow product developed by FMI
- Gridded daily SWE products based on in-situ snow depth observations and satellite Micro-Wave observations

(Luojus et al., 2011)

All observations	GlobSnow	Crocus/ERA-I
number of obervations	137,379	109,189
bias (kg m $^{-2}$)	-4.8	0.9
RMSe(kg m ⁻²)	44.9	44.6

The domain and the period sightly differ.

Snow simulations : ERA-Interim meteorological forcing / blowing snow sublimation

Crocus/ERA-Interim simulations and GlobSnow retrievals perform very similarly for SWE

Evaluation of soil temperature (at 20 cm depth)

soil temperature \iff snowpack depth and density

For a given SWE, the snowpack thermal resistance $\sim \propto \frac{1}{\rho^3}$ 2× density $\implies \sim 8 \times$ snow / soil heat flux

Evaluation of soil temperature (at 20 cm depth)

soil temperature \iff snowpack depth and density

For a given SWE, the snowpack thermal resistance $\sim \propto \frac{1}{\rho^3}$ 2× density $\implies \sim 8 \times$ snow / soil heat flux

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
		000000			

Main results

Present performance of reanalyses and snow models \Rightarrow very performing simulations of local snowpacks

- Small bias in snow depth, onset and melt-out dates, density, SWE and soil temperature (open field and flat)
- A few stations are poorly simulated (unresolved local meteorological conditions : wind, precipitation)
- Much better performance with ERA-Interim than with PGF
- Blowing snow sublimation is a critical process
- Similar performance to satellite snow products which assimilate snow observations → complementarity still to be exploited !
- Similar performance for snow variables with HTESSEL in ERA-interim/Land (not shown / see Balsamo et al., 2012)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover ●ooo	Persectives	Add-ons
20CR	snow cove	r			

Introduction

- Snow models and evaluation data
- 3 ERA-interim / Crocus
- 4 20CR Snow cover evaluation

5 Persectives

6 Add-ons

Introduction

nodels / data

ERA-interim / Crocus

20CR snow cover

Persectives

Add-ons

20CR snow cover

Evaluation of the possibility to drive snow models with 20CR (Compo et al., 2011)

- 20CR targets the highest possible consistency over time
- All variables for driving snow models are available
- 20CR includes an intermediate complexity snow model (NOAH)
- 20CR does not assimilate any snow related observation

 \implies Detailed evaluation of 20CR snow cover and depth as a first stage

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
			0000		

Evaluation of 20CR snow cover

- Extraction of 20CR daily snow cover gridded field
- Transformation into a binary field (snow / no snow) (threshold 50%) :
 ⇒ SC-20CR
- Same process with Northern Hemisphere weekly snow cover extent : ⇒ SC-NOAA
- Transformation of in-situ snow depth observations into "snow / no snow" (threshold 5 cm)
- Creation of a snow detection performance index :
 - rate of daily in-situ observations in agreement with SC-20CR
 - rate of daily in-situ observations in agreement with SC-NOAA

models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
		0000		

(Peings et al., 2013)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
			0000		

(Peings et al., 2013)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
			0000		

(Peings et al., 2013)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons	
			0000			

⁽Peings et al., 2013)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
			0000		

Homogeneous performance of 20CR snow cover in Fall

models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
		0000		

Homogeneous performance of 20CR snow cover in Fall

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
			0000		

Homogeneous performance of 20CR snow cover in Fall

Unsteady relationship between Eurasian SC and the AO

⁽Peings et al., 2013)

Introduction 000 models / data 00 ERA-interim / Crocus

20CR snow cover

Persectives

Add-ons

Conclusions and Perspectives

ERA-interim : excellent forcings for driving snow models

- a very reliable source of meteorological variables
- better than PGF data set which uses observed monthly precipitation
- \Rightarrow realistic and unbiased simulations of snow depth, SWE, density \Rightarrow realistic and unbiased simulations of snow covered periods \Rightarrow snow reconstruction as reliable as in-situ/satellite gridded products

... but some weaknesses in ERA-interim snow scheme probably hidden by the analysis process

Weaknesses in surface temperature (South Pole)

courtesy (Tatarinova and Fréville)

 \implies warm bias in annual snow surface temperature \sim 3°C.

Weaknesses in surface temperature (South Pole)

courtesy (Tatarinova and Fréville)

 \implies warm bias in annual snow surface temperature \sim 3°C.

Introduction	models / data 00	ERA-interim / Crocus	20CR snow cover	Persectives ○○●○○○	Add-ons

Impressive performance of 20CR snow cover in Fall

- steady performance since 1891
- homogeneous performance over Northern Eurasia
- not as good as ERA-i/Crocus but better than satellite products !

Some weaknesses :

- overestimation of snowfalls in mid-winter
- overestimation of humidity in presence of snow
- too cold air temperatures during the melting season

observations from station 59.62 N/65.78 E elev.: 72.0m

Introduction models / data ERA-interim / Crocus 20CR snow cover Persectives Ac ooo oo ooooo oooo ooooo ooooo ooooo

Acknowledgements

Thanks for your attention !

This study was supported by :

- ANR project CLASSIQUE
- EU project COMBINE
- CONCORDIASI

⁽Peings et al., in press)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
					000000

Overall performance

						-	
Forcing data set		ERA-I	PGF	ERA-I	PGF	ERA-I	ERA-I
GPCC precipitation scaling		no	no	yes	yes	no	yes
Blowing snow sublimation		no	no	no	no	yes	yes
Variable	Statistics						
Snow depth	Mean	0.150	0.168	0.120	0.165	0.118	0.093
(m)	Bias	0.039	0.056	0.008	0.053	0.006	-0.019
()	Corr.	0.887	0.844	0.889	0.862	0.884	0.865
	RMSe	0.117	0.151	0.096	0.143	0.097	0.103
Annual snow	Mean	152.0	156.2	145.3	155.6	144.2	134.9
duration	Bias	6.6	10.8	-0.1	10.2	-1.2	-10.5
(days)	Corr.	0.952	0.946	0.958	0.948	0.950	0.939
	RMSe	21.3	24.0	19.0	23.4	20.8	25.3
Onset of continuous	Mean	134.7	130.2	136.7	130.6	138.4	142.4
snow cover	Bias	-5.1	-10.1	-2.9	-9.8	-1.2	3.0
(days since 1st July)	Corr.	0.893	0.849	0.896	0.854	0.878	0.840
	RMSe	17.1	21.8	16.3	21.5	17.9	21.2
End of continuous	Mean	284.9	284.7	280.7	284.3	280.1	274.9
snow cover	Bias	7.2	7.4	2.6	7.1	2.0	-3.6
(days since 1st July)	Corr.	0.873	0.860	0.879	0.863	0.875	0.858
	RMSe	19.1	20.1	17.2	19.8	17.5	18.7
Snow water	Mean	88.1	87.8	70.2	86.3	68.9	53.1
equivalent	Bias	20.1	19.8	2.3	18.3	1.0	-14.8
(kg m ⁻²)	Corr.	0.712	0.633	0.736	0.678	0.710	0.712
	RMSe	49.1	56.0	40.5	52.0	41.6	42.8
Density	Mean	215.5	195.5	212.6	195.5	211.4	205.7
(kg m ⁻³)	Bias	-6.6	-26.7	-9.7	-26.7	-10.3	-15.4
-	Corr.	0.669	0.623	0.665	0.626	0.662	0.652
	RMSe	46.2	55.0	47.3	55.0	48.0	50.1

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
					000000

Melt-out date distribution

PGF temperature/soil inconsistency (ex. Pirovskoe)

Pirovskoe (57.6 N / 93.3 E)

Pirovskoe (57.6 N / 93.3 E)

Introduction	models / data	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons
					00000

Evaluation of the simulations (no reinitialization, no calibration)

Statistical indices over 263 stations x 14 years simulations bias, RMSe and correlation

- Daily snow depth
- Annual snow duration (Snow Depth > 1 cm)
- Annual dates of onset and melt-out of continuous snow cover
- Snow Water Equivalent (SWE) and density (3 obs. per month)

Evaluation of soil temperature (at 20 cm depth)

Comparison between observed and simulated soil monthly soil temperature (1979 to 1990) ERA-Interim meteorological forcing / blowing snow sublimation

 $\label{eq:Year-round:11760} \begin{array}{l} \mbox{Year-round:11760} \mbox{monthly obs.} \ \Rightarrow \mbox{Bias} = 0.1 \ \mbox{K} \ / \ \mbox{RMSe} = 2.5 \ \mbox{K} \end{array}$ Winter (DJF) : 2900 monthly obs. $\Rightarrow \mbox{Bias} = -0.5 \ \mbox{K} \ / \ \mbox{RMSe} = 2.8 \ \mbox{K}$

Introduction	models / data oo	ERA-interim / Crocus	20CR snow cover	Persectives	Add-ons

- Simple single-layer snow models :
 - NWP and climate models
 - simulation of grid cell snow mass, temperature and albedo
- Intermediate complexity snow models (\sim 5 layers) :
 - climate or hydrological models and regional snow analysis systems
- Snowpack models (> 10 layers, grain size and shape) :
 - avalanche forecast and snow sciences
 - local snowpack simulations

Detailed models perform better only over open fields (SNOWMIP1 / SNOWMIP2)