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Noise filtering of SMOS observations

Abstract

The 2D-interferometric radiometer on board SMOS has been providing a continuous dataset of
brightness temperatures, at different viewing geometries, containing information of the Earth’s sur-
face microwave emission. This dataset is affected by several sources of noise, which are a combina-
tion of the noise associated with the radiometer itself and the different views under which a heteroge-
neous target, such as continental surfaces, is observed. Asa result, the SMOS dataset is affected by
a significant amount of noise. For many applications, as soilmoisture retrieval, reducing noise from
the observations while keeping the signal is necessary, andthe accuracy of the retrievals depends on
the quality of the observed dataset. This paper investigates the averaging of SMOS brightness tem-
peratures in angular bins of different size as a simple method to reduce noise. All the observations
belonging to a single pixel and satellite overpass were fitted to a polynomial regression model, with
the objective of characterizing and evaluating the associated noise. Then the observations were aver-
aged in angular bins of different size and the potential benefit of this process to reduce noise from the
data was quantified. It was found that if a 2-degree angular bin is used to average the data, the noise
is reduced by up to 3 K. Furthermore, this method complementsnecessary data thinning approaches
when a large volume of data is used in data assimilation systems.

1 Introduction

The Soil Moisture and Ocean Salinity (SMOS) satellite of the European SpaceAgency (ESA), launched
in November 2009, is providing a large amount of data sensitive to soil moisture over continental surfaces
(1). The instrument on board the SMOS platform is the Microwave Imaging Radiometer by Aperture
Synthesis (MIRAS). This is the first time that a 2D-interferometric radiometer isbeing used to measure
soil moisture and ocean salinity from a space sensor. The cross-correlation of the signal collected by a
series of antennas equally distributed along three arms makes it possible to provide observations with a
spatial resolution between 35 and 50 km over continental surfaces and atarget accuracy of 0.04m3m−3

(2; 3; 1).
The challenges the SMOS mission face are multiple. Not only is a new instrument being tested, but also
a new type of observation. SMOS provides multi-angular measurements of polarised brightness temper-
atures, i.e. a region on the Earth’s surface is being observed under different viewing angles producing
different pixel sizes and orientations, as well as different noise and precision for each pixel (2). De-
pending on the location of the observed area within the Field Of View (FOV), the number of views can
vary up to 160. The observed areas furthest from the centre of the ground track are sampled fewer times
than those located near the centre. The geometry of the observation is complex; a complete image of the
surface emission is produced by inverting the visibilities associated to the interferometric technique (4).
Errors in the reconstructed image should be expected due to inaccuraciesin the antenna pattern estima-
tion, the Noise Injection Radiometers’ (NIR) brightness temperature measurements (5) and the algorithm
which reconstructs the image. The latter is as a first approximation an inverseFourier transform (6) or a
more sophisticated G-matrix inversion ((7; 8)), with a potential degradation of the radiometric sensitivity
in terms of a higher noise. Another source of noise is the radiometer itself. Any imaging radiometer, in
fact, is affected by three types of noise (9): a) the radiometric resolution (temporal standard deviation
of the zero-mean random error due to the finite integration time) (10), b) the radiometric bias (spatial
average of all the systematic errors) and c) the radiometric accuracy (spatial standard deviation of the
sum of all the systematic errors (11)). Although these sources of noise are linked to the instrumentation
and measurement technique used for SMOS, another new potentially large source of noise is embedded
in the measurements. In SMOS, the same area of the Earth’s surface can beobserved under different
viewing geometries, and that can turn into quite different pixel shapes andsizes, especially at large inci-
dence angles. This implies that even at slightly different viewing angles, thesurface contribution to the
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final observation value can arise from very different areas and landcover types, all of them with very
different emission properties. This is especially important when looking at inhomogeneous targets, such
as the Earth’s surface. Therefore, a significant angular noise contribution is expected due to the strong
inhomogeneities of the Earth’s continental surfaces.
This paper aims at; (i) characterizing the angular noise of SMOS brightnesstemperatures. To this end,
the observations were fitted to a polynomial regression model, which was used as a reference model of
the observations angular distribution, (ii) filtering noise of the observed dataset, while still retaining the
signal. For this purpose, a simple method consisting in averaging SMOS brightness temperatures in an-
gular bins of different size is proposed and tested, and (iii) validate the effectiveness of angular binning
the data to filter noise. For that, the same type of polynomial regression model employed to characterize
the noise of the observations, was used. Applications which use SMOS brightness temperatures, such as
soil moisture retrievals, drought monitoring or Numerical Weather Predictions (NWP) systems, benefit
from filtering noise of the original dataset. For NWP applications, noise filtering forms part of a set of
preprocessing activities (such as bias correction, thinning, quality control) ensuring that data assimila-
tion systems make optimal use of satellite and model data. Indeed, any data assimilation system aims
at assimilating only observations of high quality, carrying signal rather thannoise. They are able to use
observations more effectively if noise is removed at this stage. Furthermore, angular binning the data is
computationally affordable and simple enough to be implemented in a complex NWP system, such as
the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts
(ECMWF). As pointed out by (12), the implementation of SMOS data in the IFS is a big challenge and
methods that reduce complexity are preferable.
After the description of the observations used in this study (section2.1), the methodology employed to
investigate the noise affecting the observations and the benefits of averaging the data in angular bins
is described (sections2.2 and2.3) and analysed (section3). The sensitivity of the noise affecting the
observations to different types of soil texture and vegetation cover, aswell as to the incidence angle and
the radiometric accuracy of the observations, is also investigated in section4. In section5 a case study
shows the benefits of binning the data as input in a real analysis experiment.Finally, section6 provides
a brief summary of the methodology presented in this paper and the most important conclusions.

2 Material and Methods

2.1 Observations

The product used at ECMWF is the near-real-time (NRT) brightness temperatures. It is a reprocessed
sub-product of level-1b data and they differ from the latter in that they are geographically sorted swath-
based maps of brightness temperature. The geolocated product received at ECMWF is arranged in an
equal-area grid system called ISEA 4H9 (Icosahedron Snyder EqualArea grid with Aperture 4 at reso-
lution 9) (13). For this grid, the centres of the cell grids are at equal distance of 15 km with a standard
deviation of 0.9 km. This constitutes the SMOS Discrete Global Grid (DGG). Thisfine grid has been
adopted in order to provide the correct sampling for the measurements at a spatial resolution of 30 Km
according to the Nyquist criteria (14).
The data is organized in messages. Each message corresponds to a snapshot where the integration time
is 1.2 seconds, as this is the time in which all correlations of a single scene are measured. Each snapshot
contains a number of subsets, each providing an observation at a node of the ISEA grid. On average,
each snapshot contains more than 4500 subsets if the instrument runs in dual-polarisation mode. In this
running mode, dataset records are generated each 1.2 seconds at theXX and YY polarisations alter-
nately. In full-polarisation mode (current operational mode) all receivers in the three arms are in the

2 Technical Memorandum No. 715



Noise filtering of SMOS observations

same polarisation for the first integration, whereas in the next integration thereceivers in an arm switch
the polarisation and two dataset records are generated, thus doubling theinformation per snapshot. The
NRT product reaches ECMWF archives with a few hours of delay sinceafter the sensing time. This
makes it possible to ingest the data in the IFS soon after they are generated,to enable SMOS brightness
temperatures to be monitored operationally and produce first-guess departures (12). It also opens the
possibility to produce an NRT soil moisture analysis.

2.2 Angular noise characterization and validation strategy

The natural emission of the soil in the lower-frequency microwave domain depends on several surface
variables. In general, for electromagnetic waves polarised horizontally,the observed brightness tem-
peratures decrease as the incidence angle increases, whereas the opposite behaviour is observed for the
vertically polarised component. The ratio of increase or decrease with the incidence angle depends criti-
cally on the soil state (soil moisture, soil temperature), type of vegetation cover and soil properties (soil
roughness, soil texture, density of the vegetation canopy, etc.). However, as a first-order approximation,
the angular signature of a target at a given time can be characterized by anth order polynomial. In this
study only polynomials of second and third order were used. The method employed here to validate the
angular binning approach consists in fitting all the observations of the same SMOS DGG node (corre-
sponding to spatially averaged values centered on the node) and orbit to polynomials of 2nd and 3rd order.
If the polynomial regression model is a good representation of the observed brightness temperature dis-
tribution, then the coefficient of determination (r2) will have a high value.r2 explains what percent of the
total brightness temperature variance is explained by the polynomial regression model, and varies from
0 to 1. The remaining variance (1-r2) is the variability of the observations from the regression model.
The standard deviation of the residues to the fitted curve (STD) provides an approximate indication of
the noise associated with the observations. Averaging the observations in angular bins of different size is
expected to reduce the residues to the fitted curve and hence the noise associated with different viewing
geometries. Note that the polynomial fit does not lead to noise filtering or to derive any angular relation-
ship, but is just a tool used here to validate the binning approach as a practical way of reducing noise,
while retaining the signal of the data. As an indirect thinning scheme, binning the data also reduces the
number of entries for assimilation. The added value compared to early thinningstrategies ((15; 12)) is
that it avoids excluding useful data at early stages. This simple validation strategy can be used under the
following considerations:
a) As brightness temperatures measured at the top of the atmosphere are very sensitive to the geophysi-
cal characteristics and meteorological conditions of the soil (soil moisture,temperature, vegetation cover,
surface roughness, etc.), the polynomial fit will be representative of these observations only if measure-
ments acquired during a single orbit pass are considered. Otherwise, thenatural geophysical variability
of the signal could be embedded in the estimated level of noise of the observations. For example, if over
a certain target it rains between two satellite passes, the observed brightness temperatures will be very
different, thus mixing natural variability and noise of the signal. If severalorbits are to be used, then
areas which have demonstrated to be very stable in time (e.g. Antarctic, a desert) may be used.
b) In order to avoid contamination of the signal due to Radio Frequency Interference (RFI), only Aus-
tralia, South America and North America were analysed separately in this study. Although these conti-
nents are not free from RFI, at least the RFI effect is less serious than over Europe and Asia.
c) Averaging over relatively small angular bins should be acceptable to reduce observational noise due
to surface heterogeneities, but over large bins (5 degrees or more) thismethod could mistakenly not only
reduce the random nature of the noise affecting the observations, but also the natural variability of the
signal, because brightness temperatures can change significantly with the incidence angle (specially for
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large incidence angles).
d) The data used in this study are not reprocessed data (not available atthe time of the study); however,
this is not an issue as in this paper only orbits contained in 24 h and two contrasted seasons were consid-
ered.
Based on the above considerations, data acquired during two single daysrepresenting two different sea-
sons were selected: 1 December 2010 and 1 June 2011. In particular, two ECMWF analysis cycles of
12 h (as in the operational suite) were used, so data analysed is from 21 hUTC on 30 November 2010
to 21 h UTC on 1 December 2010, and from 21 h UTC on 31 May 2011 to 21 h UTC on 1 June 2011
(16). Tests with more recent data and different orbits were also carried out,but the conclusions found
in this paper were similar. Each observation was quality checked as in (12). Ascending and descending
orbits were analysed separately, as well as XX and YY polarisations. Firstly, all the observed brightness
temperatures recorded over the same node of the SMOS DGG grid, and forthe same polarisation and
type of orbit, were fitted to polynomials of 2nd and 3rd order. The minimum number of observations per
node necessary to compute a fit was arbitrarily set to 10. This criterion excluded between 25 to 35% of
nodes (with incidence angles mostly comprised between 42 and 48 degrees). However, the population
of each incidence angle was well represented in the total average. Larger bin sizes were avoided because
there is a risk of mixing the angular natural variability of the observations, specially for large incidence
angles where the angular gradient can be very large. In order to consider only significant correlations,
the Pearsons coefficient with 5% significance level was evaluated at each time. In this case, configura-
tions where the p-value was larger than 0.05 were rejected and not accounted for in the statistics, as the
correlation value is from the statistical point of view a pure coincidence (17). Then the meanr2 and STD
per continent were analysed for all the different cases, as examined insection3.

2.3 Pre-analysis of singular grid points

Several nodes of the SMOS DGG grid representing different soil conditions (bare soil, dense forest, soil
covered by a shallow layer of snow, soil covered by a large amount of snow and a coastal node) were
chosen for a specific day. The aim was to understand the characteristic behaviour in one dimension of the
brightness temperatures as a function of the incidence angle for these soilconditions, and how averaging
the data in angular bins could affect this behaviour. This will support the interpretation of global maps.
The validation strategy described in section2.2was applied to these nodes. Fig.1 shows the geographical
location of the selected points. Fig.2 shows all the observations collected for each of these grid points
(as crosses) and overlapped on them is the 2nd-order polynomial fitted curve using all the observations
(left panel) and a 2-degree angular averaging (right panel), for theYY polarisation. This figure shows
that under bare soil (top panel), the regression curve fits the observations very well, reducing the residues
from 4.5 K when all the observations were used to 2.6 K when a 2-degree angular bin was used. It also
shows sensitivity to the incidence angle (between 70 and 60 K using all the observations or a 2-degree
angular bin, respectively). For dense canopies a weak sensitivity of brightness temperatures with the
incidence angle should be expected. Indeed, the signal is much flatter dueto the masking effect and the
emission of the vegetation canopy itself at all incidence angles (Figs.2c and d). For this type of surface,
averaging the data in angular bins does not significantly reduce the residues to the polynomial fit. The
effect of snow on the L-band emission depends on many variables, as thegranularity, density, depth or
age, but even wet and dry snow have different dielectric properties.That makes Figs.2e to Fig.2h to
present a noisier angular distribution. Note that shallow and deep snow were arbitrarily defined: less than
20 cm shallow snow, more than 20 cm deep snow. Although, in both cases, averaging the data in bins
of 2 degrees seems to be relatively effective, this type of grid point will berejected in an assimilation
context as the sensitivity to soil moisture is lost and not well known. Grid points near the coast present

4 Technical Memorandum No. 715



Noise filtering of SMOS observations

the highest noise due to the mixed area of land and ocean signal in the same observation (Figs.2i and
2j). In this case, the polynomial regression model did not fit the observations well.

1

2

5

3

4

Figure 1: Location of the single points analysed in section III-B. Their geographical coordinates are displayed
with the format [lat/lon]; (1) bare soil [-29.017,143.003], (2) dense forest [1.279,-73.565], (3) shallow snow layer
[56.319,-117.879] (based on 6 cm snow depth forecast), (4) deep snow layer [69.599,-151.914] (based on 73 cm
snow depth forecast) and (5) coastal node [56.765,-89.018](located at approximately 3 miles of the Hudson Bay).
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Figure 2: 2nd-order polynomial fitted curve (solid line) to all observations (left panel) and to observations averaged
in a bin of 2 degrees (right panel) for the YY polarisation. TB is the brightness temperatures of the observations,
and STD is the standard deviation of the residues to the fittedcurve.
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3 Noise filtering and validation results

3.1 Qualitative analysis

The left panel of Fig.3 shows ther2 maps of SMOS brightness temperatures fitted to a 2nd-order polyno-
mial regression model, for the different angular bins used in this study, for XX polarisation and ascending
orbits over Australia, on 1 December 2010. Eachr2 value was computed individually for each node of
the SMOS DGG. The right panel of Fig.3 shows the equivalent maps of the variability of the residues
(STD) to the fitted curve. Equivalent maps (not shown) were obtained for North America and South
America, for ascending and descending passes, for both polarisationsand also for the June case. As an
example, Fig.4 shows the equivalent maps for South America and for YY polarisation and descending
orbits, and Fig.5 is for North America, XX polarisation and ascending orbits, but for the sake of sim-
plicity only the maps using all the observations and only 2-degree bins are shown. The analysis of all
these maps shows the following features:
(a) As expected, the edges of the satellite track are the most noisy areas ofthe FOV. This can be clearly
observed in Fig.3a, where all the observations were used, because there was a poor fitof the observa-
tions to the polynomial curve at the edges of the ground track and large STD. The polynomial regression
model is not a good representation of this area of the FOV, which is quite noisy. Indeed, the limits of
the (extended) alias-free zone are due to replicas of the Earth visibility zone (18), and therefore of lower
quality. This low-performance area is the extended-alias FOV (EA-FOV),and mostly contains incidence
angles greater than 45 degrees. If an insufficient number of observations were available within an angular
bin to carry out a regression fit, then this grid point was filtered out and not included in the statistics. This
explains the fact that as the size of the angular bin increases (and therefore a lower number of available
observations), the ground track gets progressively smaller, as shownin Figs.3g to3j.
(b) The behaviour near the coastline is very different for the two polarisations analysed here. Whereas
the XX polarisation shows very high correlation with the regression model near the coastlines, the op-
posite behaviour is found for YY polarisation (see for instance Fig.4 for YY polarisation in contrast
to Fig. 5 for XX polarisation). This behaviour is common for both ascending and descending orbits.
By increasing the incidence angle of the observations, larger areas contribute to the signal, and near the
coast this means, in many cases, a larger contribution of the sea surface tothe signal (which is a weaker
signal). While the XX polarisation behaves as theoretically expected, the signal of the YY polarisation
stays quite noisy and flat instead of growing with the incidence angle. This effect is a combination of
the proximity to oceans (which compensates for an increase in brightness temperature with increasing
incidence angle) and a lower sensitivity to water bodies.
(c) It was also found that the angular signature in areas covered by snow (see Fig.5) presents large noise,
as was also shown in section2.3. For these grid points the correlation of the polynomial regression
model to the observations is very poor, and worse for YY polarisation thanfor XX polarisation. Snow
characteristics present a large variation in time and space, with strong variations in terms of solid and
liquid water content, as well as in snow cover area. These strong heterogeneities contribute to increase
the noise of the angular signal. The YY polarisation presents flatter angularsignals and, therefore, the
presence of noise quickly reduces the correlation with a relatively flat curve. The same behaviour occurs
for very dense forests such as the Amazon, but in this case some areas present stronger noise at the XX
polarisation. These areas present flat angular signatures and the presence of noise also causes the coeffi-
cient of determination to be reduced quickly.
(d) In general it was found that a 2nd-order polynomial represents better the angular behaviour of the
observations in the XX polarisation than in the YY polarisation, because the latter has a lower angular
sensitivity to soil moisture. A quantitative analysis can be found in section3.2.
(e) The December and June cases showed equivalent results. Some geographical changes are mainly
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found in North America, which is due to the differences in the area coveredby snow. A 2nd-order
polynomial regression model should not be used as a reference model when snow or dense canopies
are present. In any case, for assimilation experiments these types of surface cover will be flagged and
rejected, as the sensitivity to soil moisture is masked or unknown.

0 - 0.55 0.55 - 0.6 0.6 - 0.65

0.65 - 0.7 0.7 - 0.75 0.75 - 8

0.8 - 0.85 0.85 - 0.9 0.9 - 0.95

0.95 - 1

0 - 1 1 - 2 2 - 3 3 - 4 4 - 5

5 - 6 6 - 7 7 - 8 8 - 9 9 - 20

a) All observations b) All observations

c) Bin 0.5 d) Bin 0.5

e) Bin 1 f) Bin 1

g) Bin 2 h) Bin 2

i)  Bin 3 j) Bin 3

Figure 3: Coefficient of determination (r2, left panel) and STD of the residues (in K, right panel) between the SMOS
brightness temperature angular signature and its2nd-order polynomial regression model for the XX polarisation
and ascending orbits, on 1 December 2010. In a) and b) all the observations are used (no binning), whereas
observations are averaged in a bin of 0.5 degrees (c,d), 1 degree (e,f), 2 degrees (g,h), and 3 degrees (i,j).
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a) All observations b) All observations

c) Bin 2 d) Bin 2

Figure 4: As Fig.3, but for South America, YY polarisation and descending orbits. In a) and b) all the observations
are used (no binning), whereas in c) and d) observations are averaged in a bin of 2 degrees.

3.2 Quantitative analysis

The mean value of ther2 and the STD statistical variables were computed independently for each conti-
nent, type of orbit, polarisation, bin size and type of regression model, as explained in section2.2. Only
significant correlations were considered (p-value lower than 0.05 (17)). Table1 presents the mean statis-
tics, by fitting the observations to a 2nd and 3rd-order polynomial, on 1 December 2010 for Australia,
North America and South America, respectively. Table2 shows the same averaged values for 1 June
2011, but only using as regression model a 2nd-order polynomial function. It was found that: (a) The
STD of the residues to the fitted curve consistently decreases as the size ofthe angular bin increases. For
the winter case, without any binning the continental averaged noise of the observations varies from 5.4
K to 6.4 K using a 2nd-order polynomial regression model, and from 5.6 K to 7.1 K using a 3rd-order
polynomial. If a 3-degree maximum bin size is used, these values fluctuate from 2.3 K to 2.8 K (with
a 2nd-order polynomial) and from 2.5 K to 2.8 K (with a 3rd-order polynomial). The June case shows
very similar results, except for the ascending orbits of North America, which show larger noisy values.
According to Tables1 and 2, in a significant amount of cases a potential noise reduction larger than 3 K
could be achieved by averaging the observations in bins up to 3 degrees.However, in 86% of cases (and
all of the summer cases), averaging the observations in bins of 3 degreesdid not result in betterr2 than
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0 - 0.55 0.55 - 0.6 0.6 - 0.65 0.65 - 0.7

0.7 - 0.75 0.75 - 8 0.8 - 0.850.85 - 0.9

0.9 - 0.95 0.95 - 1
0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6

6 - 7 7 - 8 8 - 9 9 - 20

a) All observations b) All observations

c) Bin 2 d) Bin 2

Figure 5: As Fig.3, but for North America. In a) and b) all the observations are used (no binning), whereas in c)
and d) observations are averaged in a bin of 2 degrees only.

for bins of 2 degrees. Indeed, in most cases 3-degree averaging is worse. This is an indication that when
excessively large bins are applied the natural variability of the observations is included, and thus the
polynomial fit is no longer a better representation of the observations. Higher-order polynomials change
the sign of the gradient several times and they have the potential to fit better the noise, which is not the
objective of the methodology presented in this paper. Therefore, averaging the observations in bins of 2
degrees should be the maximum acceptable to reduce noise from the observations. It was checked (not
shown) that with larger angular bins (4, 5 and 6 degrees) ther2 became slightly worse. Hereafter, only a
2nd-order polynomial regression model will be used for further analysis.
(b) In most of the cases studied, the polynomial fit represents better the XXpolarisation than the YY
polarisation, except for some orbits over South America where the behaviour is found to be more alike.
Likewise, the STD is, in general, also lower for the XX mode than for the YY mode. Although the XX
polarisation is more sensitive to the soil water content and shows greater dynamics ((19)), these results
suggest that a stronger dynamical signal does not necessarily involvea larger associated noise. After
averaging the observations in angular bins of 2 degrees, the noise difference between XX and YY polari-
sations is lower than 1 K, often less than 0.5 K, except for the ascending case over North America, where
the difference is 1.16 K. Again, this is due to the higher sensitivity of the snowwater content of the XX
polarisation, which produces larger differences between the two polarisation modes used in this study.
(c) While the STD of the residues is larger in ascending than in descending orbits, the trend is that the
polynomial regression model explains better the distribution of brightness temperatures for ascending
orbits. However, these results change for continent, polarisation and period of the year. For Australia
and South America, in general,r2 is better for ascending than for descending orbits; however, descending
orbits show lower STD. The North America case seems to be more dependenton the period of the year,
which is associated with the snow covered area during the winter period. Inthis case, ther2 values are
significantly higher for the YY polarisation in the June case.
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Table 1: Mean r2 and STD (in K) between the SMOS observed brightness temperature angular signature and its2nd and 3rd-order polynomial fitted curve, for
Australia, North America and South America on 1 December 2010.

model:Ax2
+Bx+C model:Ax3

+Bx2
+Cx+D

ASCENDING DESCENDING ASCENDING DESCENDING
XX YY XX YY XX YY XX YY

bin r2 STD r2 STD r2 STD r2 STD r2 STD r2 STD r2 STD r2 STD

Australia

no-bin 0.65 5.16 0.56 6.23 0.58 4.65 0.48 5.46 0.68 5.39 0.61 6.39 0.63 4.98 0.55 5.63
0.5 0.66 4.33 0.59 5.21 0.59 3.91 0.51 4.61 0.71 4.56 0.66 5.36 0.65 4.27 0.59 4.82
1 0.70 3.80 0.63 4.45 0.63 3.38 0.55 3.91 0.75 3.95 0.70 4.54 0.70 3.61 0.63 4.02
2 0.73 3.10 0.66 3.54 0.63 2.55 0.56 2.94 0.77 3.13 0.71 3.52 0.65 2.58 0.58 2.87
3 0.73 2.73 0.66 2.98 0.61 2.14 0.53 2.40 0.73 2.65 0.68 2.87 0.60 2.06 0.55 2.26

North America

no-bin 0.40 5.89 0.32 8.15 0.42 5.42 0.32 6.07 0.45 6.56 0.37 9.16 0.47 5.85 0.38 6.65
0.5 0.43 4.87 0.35 6.80 0.45 4.46 0.35 4.89 0.49 5.48 0.42 7.67 0.52 4.80 0.43 5.44
1 0.48 4.18 0.40 5.76 0.50 3.81 0.39 4.10 0.55 4.60 0.48 6.40 0.57 4.04 0.48 4.52
2 0.51 3.10 0.45 4.26 0.53 2.89 0.44 3.09 0.56 3.32 0.50 4.59 0.57 2.96 0.50 3.31
3 0.52 2.54 0.46 3.34 0.53 2.41 0.45 2.53 0.54 2.64 0.50 3.60 0.55 2.42 0.50 2.67

South America

no-bin 0.41 7.06 0.42 6.09 0.33 5.21 0.28 4.68 0.47 7.87 0.49 6.40 0.40 5.62 0.37 5.51
0.5 0.43 5.95 0.44 5.12 0.35 4.42 0.29 3.80 0.50 6.75 0.52 5.52 0.44 4.83 0.41 4.68
1 0.47 4.96 0.48 4.30 0.40 3.77 0.33 3.13 0.55 5.61 0.56 4.63 0.48 4.02 0.45 3.83
2 0.48 3.57 0.50 3.22 0.40 2.62 0.32 2.19 0.53 3.96 0.55 3.36 0.44 2.80 0.40 2.66
3 0.47 2.83 0.48 2.60 0.38 2.08 0.30 1.69 0.50 3.15 0.53 2.69 0.41 2.18 0.36 2.04
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Noise filtering of SMOS observations

Table 2: Mean r2 and STD (in K) between SMOS observed brightness temperatureangular signature and its
2nd-order polynomial fitted curve, for Australia, North America and South America, on 1 June 2011.

model:Ax2
+Bx+C

ASCENDING DESCENDING
XX YY XX YY

bin r2 STD r2 STD r2 STD r2 STD

Australia

no-bin 0.63 4.64 0.50 5.55 0.59 4.65 0.52 5.63
0.5 0.64 3.93 0.53 4.72 0.60 3.89 0.54 4.78
1 0.68 3.38 0.57 4.00 0.65 3.32 0.59 3.98
2 0.68 2.60 0.59 3.08 0.64 2.46 0.59 3.01
3 0.66 2.22 0.57 2.51 0.60 2.07 0.55 2.43

North America

no-bin 0.30 11.44 0.26 14.11 0.46 5.79 0.45 6.53
0.5 0.33 8.77 0.29 10.94 0.48 4.91 0.48 5.51
1 0.38 6.91 0.34 8.56 0.53 4.23 0.52 4.63
2 0.41 4.81 0.37 5.56 0.56 3.18 0.56 3.52
3 0.41 3.76 0.37 4.33 0.56 2.64 0.56 2.91

South America

no-bin 0.44 5.32 0.36 5.52 0.37 6.49 0.39 6.44
0.5 0.46 4.54 0.38 4.67 0.39 5.54 0.41 5.43
1 0.51 3.94 0.41 3.95 0.44 4.81 0.45 4.60
2 0.53 2.98 0.43 2.92 0.46 3.61 0.48 3.55
3 0.52 2.50 0.43 2.33 0.45 2.98 0.47 2.91

4 Sensitivity to soil texture, vegetation cover type, incidence angleand
radiometric accuracy

4.1 Sensitivity to soil texture

The potential influence of the soil texture on the angular signature of the observations was also investi-
gated. Mean statistics were computed independently, separating the observations over each type of soil
texture used in the land surface module of the IFS model, H-TESSEL (20). According to this classifica-
tion, up to seven different soil textures types are allowed (coarse, medium, medium-fine, fine, very fine,
organic and tropical organic), all of them with their own wilting point and fieldcapacity characteristic
values. The left panel of Fig.6 shows the map of the soil texture for the orbits covering Australia on
1 December 2010. The right panel shows the number of SMOS observations for each soil texture type.
This figure shows that for these orbits the soil is dominated by coarse and medium textures, but fine and
medium-fine textures also make a significant contribution. The averagedr2 and STD mean values of the
2nd-order polynomial fitted curve to the observations per soil type are shownfor the XX and YY polari-
sations in Fig.7 and Fig.8, respectively. Results are presented separately for ascending and descending
orbits and for all angular bins used in this study. These figures show similarresults for all types of soil
texture, except for the very fine soil texture type, in particular for descending orbits. Although for this
type of soil texture the statistics are significant according to the p-value test,the number of observations
collected was very low (see Fig.6 right), and therefore not representative of this texture type. There is a
good fit of the polynomial regression model to the observations, slightly better for ascending orbits and
exceedingr2

= 0.7 when the observations are averaged in angular bins. The best scores were obtained
when angular bins of 2 degrees were applied to the observations. The STD values were in agreement
with the statistics presented in Table1. This figure also shows the advantages of averaging the data in
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bins of up to 2 degrees, reducing the noise level by between 2.1 K and 3 K,depending on the continent,
and similarly for ascending and descending orbits, as well as for both polarisations. Similar figures were
obtained for North America and South America. For North America, the correlation of the observations
with the polynomial regression model were lower for all soil types, which was also due to larger soil
heterogeneities of North America compared to Australia. However, after binning up to 2 degrees the
levels of noise were quite close to those of the Australia case, being slightly lower for descending orbits
(not shown). While for North America these results showed a slight trend todecrease the noise of the
observations with decreasing the size of the soil particles, the opposite trend was observed for South
America. Therefore, these results do not provide any particular evidence of any type of soil texture over
which observations are noisier than over the others, and all of them exhibit the same characteristics in
terms ofr2 and STD statistical values.
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Figure 6: Soil type map (left) and number of observations persoil type (right) for ascending and descending orbits
on 1 December 2010, in Australia.

4.2 Sensitivity to vegetation cover type

The vegetation cover type was also investigated as a possible factor influencing the amount of noise in the
angular signature of the observations. As in section4.1, statistics were computed independently for each
type of vegetation cover used in H-TESSEL. It uses the classification of the Global Land Cover Charac-
terization (GLCC) database which has been derived using one year of Advanced Very High Resolution
Radiometer (AVHRR) data and ancillary information ((21); http://edcdaac.usgs.gov/glcc/glcc.html), the
nominal resolution being 1 km. The vegetation cover types are split in high andlow vegetation types.
High vegetation types are evergreen needle-leaf trees, deciduous needle-leaf trees, deciduous broad-
leaf trees, evergreen broad-leaf trees, mixed forest/woodland and interrupted forests. Low vegetation
types include crops/mixed farming, short grass, tall grass, tundra, irrigated crops, semi-desert, bogs and
marshes, evergreen shrubs and deciduous shrubs.
The semi-desert and tall grass types are the most representative of Australia. However, a significant
amount of grid pixels over short grass, crops, ever-shrubs and inter-tropical forest types were also present
in the satellite overpasses the dates used in this study. Australia obtained the best scores in terms ofr2 as
a significant fraction of bare soil was commonly present in a pixel, as showed in section2.3. Indeed, the
angular signature of the observations was explained quite well by a 2nd-order polynomial model, with
the ascending orbits of the XX polarisation obtaining the best results (not shown). In terms of noise level,
the results were very close for both types of orbit and slightly better for theXX polarisation. Both North
and South America have a wider range of vegetation types over which significant correlation values are
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Figure 7: Mean coefficient of determination (r2, top panel) and STD (in K, bottom panel) per type of soil texture
for Australia, between SMOS brightness temperature and its2nd-order polynomial fit, for the XX polarisation and
for ascending (left panel) and descending (right panel) orbits, on 1 December 2010.

available compared with Australia (see Fig.9). For South America quite similar levels of noise were
observed for each type of vegetation cover, as observed in Fig.10 for XX polarisation and Fig.11 for
YY polarisation. No evidence of different behaviour between high or lowvegetation types was found.
Correlation values were a bit lower for the high vegetation type as the angular signature in this case was
flatter and small deviations from the flat behaviour had a significant impact on ther2 values. Noise levels
were higher for the XX polarisation and slightly larger for ascending orbits. If very few number of sig-
nificant observations were found for a vegetation cover type, then an anomalous behaviour was obtained.
In this case, from the statistical point of view, the statistics are not representative of the whole class. See,
for example, the abnormal highr2 values for the evergreen needle-leaf trees class of South America in
Figs.10and11, or the very large noise found for irrigated crops of XX polarisation andascending orbits.
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Figure 8: As in Fig.7 but for the YY polarisation.

For North America a larger representation of evergreen forests was present. In this case slightly larger
noise was found for ascending orbits than for South America (not shown), however the YY polarisation
was noisier than the XX polarisation. The results obtained for the June casewere similar for Australia
and South America, with small differences reflecting the different state of development of the vegetation
canopy and the changes on the soil cover during the two dates studied in thispaper. The North America
case exhibited a larger complexity, mainly due to the contrasted portion of land covered by snow between
December and June. In the North America case, the ascending orbits presented larger noise when all the
observations were used.
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Figure 9: Number of SMOS observed brightness temperatures per vegetation biome type on 1 December 2010 in
South America.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

C
rops/Farm

ing

Short G
rass

EvN
eedTr

D
eN

eedTr

D
eBroadTr

EvBroadTr

Tall G
rass

Tundra

Irrigat C
rops

Sem
idesert

Bog/M
arshes

EvShrubs

D
eShrubs

Forest/W
oodland

Interr Forest

R
2

Asc

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
rops/Farm

ing

Short G
rass

EvN
eedTr

D
eN

eedTr

D
eBroadTr

EvBroadTr

Tall G
rass

Tundra

Irrigat C
rops

Sem
idesert

Bog/M
arshes

EvShrubs

D
eShrubs

Forest/W
oodland

Interr Forest

 S
T

D
 (

K
)

Asc

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

C
rops/Farm

ing

Short G
rass

EvN
eedTr

D
eN

eedTr

D
eBroadTr

EvBroadTr

Tall G
rass

Tundra

Irrigat C
rops

Sem
idesert

Bog/M
arshes

EvShrubs

D
eShrubs

Forest/W
oodland

Interr Forest

Des

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
rops/Farm

ing

Short G
rass

EvN
eedTr

D
eN

eedTr

D
eBroadTr

EvBroadTr

Tall G
rass

Tundra

Irrigat C
rops

Sem
idesert

Bog/M
arshes

EvShrubs

D
eShrubs

Forest/W
oodland

Interr Forest

Des

nobin
bin 2

Figure 10: Mean coefficient of determination (r2, top panel) and STD (in K, bottom panel) per type of vegetation
in South America, between SMOS brightness temperature and its2nd-order polynomial fit, for the XX polarisation
and for ascending (left panel) and descending (right panel)orbits, on 1 June 2011.

4.3 Sensitivity to the incidence angle

Data assimilation benefits most from those observations of higher quality and therefore it is important to
understand whether some incidence angles are more affected by noise than others. In this context, the
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Figure 11: As in Fig.10but for the YY polarisation.

averaged standard deviation of the observations grouped in bins of 2 degrees was computed as a function
of the incidence angle. Fig.12 shows the results separately per continent and per type of orbit. The left
panels corresponds to the XX polarisation and the right panel to the YY polarisation. Overlapped on the
XX polarisation plots, the number of observations collected for each angular bin of 2 degrees is shown.
It is observed that the bin [42-44] degrees has in all cases the maximum number of observations, as 42.5
degrees is the incidence angle with the maximum number of views. In all cases,the smallest incidence
angles were those affected with larger noise, as should be expected because for low incidence angles the
signal to noise ratio is lower than for larger ones. A gradually increase in noise was also observed for
the largest incidence angles, many of which were within the EA-FOV, an area of lower quality. Also,
Australia showed the lowest level of noise, something which is consistent withprevious findings, as
Australia has a large portion of bare soil or lower vegetation density, and itis not affected by snow. The
case of North America also exhibited larger noise than the others, which is a consequence of the snow
cover during December.

4.4 Correlations with Radiometric accuracy

The radiometric accuracy of the observed brightness temperatures is related to the antenna, receiver and
baseline errors (6). To some extent, the averaged radiometric accuracy of all the observations in a pixel
should be related to the STD of the polynomial fitted curve of the observationsin that pixel. Partly, the
STD value should be explained by the averaged radiometric accuracy (which accounts for systematic
errors), while the rest of the STD of the polynomial fit (under the hypothesis of the observations being
explained by a 2nd-order polynomial model) is associated with other noise contributions, as the angular
noise or the noise associated to RFI signal contamination. Fig.13 shows the STD of the fitted curve
to the observations (after a 2-degree binning) as a function of the pixel averaged (over all observing
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Figure 12: Averaged standard deviation of the observationsin bins of 2 degrees as a function of the incidence angle
of the observations, on 1 December 2010. Left panel is for theXX polarisation, right panel for the YY polarisation.
Top figures are for Australia, middle figures for North America and bottom figures for South America. The number
of observations as a function of the incidence angle is also overlapped on the left-panel figures, for ascending
(empty vertical bars) and descending orbits (black vertical bars).

angles for that pixel) radiometric accuracy for 1 December 2010. As expected, in most cases pixels
with the worse averaged radiometric accuracy are correlated with larger STD, reflecting the fact that the
STD contains information of the observations radiometric accuracy. Also, as it has been discussed in
previous sections, the STD for ascending and descending orbits are more similar over the Australian
continent, compared with North and South America. Due to the instrument characteristics, ascending
and descending views of a same surface pixel are not reconstructed from identical fields of view of the
interferometric antenna. These differences are less significant if the viewed scene is more homogeneous.
This could explain the more similar STD values for both ascending and descending orbits over Australia,
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given the larger number of homogeneous views. It can also be observed that ascending orbits are clearly
noisier than descending orbits in North and South America. In most cases, even after a 2-degree binning,
the STD of the polynomial fit is greater than the averaged radiometric accuracy for ascending orbits.
These differences between ascending and descending orbits are partially explained because the noise
contributions to the signal (e.g. RFI contamination, open water bodies) are not necessarily the same for
both type of orbits. Although not shown in this paper, when all the observations were used without any
binning, the STD of the polynomial fit (containing information of the systematic errors and the angular
noise) was always greater than the averaged radiometric accuracy.
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Figure 13: Mean STD of the observations fitted to a2nd-order polynomial (with an angular binning of 2 degrees)
as function of the pixel averaged observations radiometricaccuracy (Ra), on 1 December 2010. Left panel is for
the XX polarisation, right panel for the YY polarisation. Top figures are for Australia, middle figures for North
America, bottom figures for South America. Results for the ascending orbits are plotted as filled circles, for the
descending orbits as empty triangles.

5 Experimental case

The binning approach was tested in a real analysis case: SMOS brightness temperatures, at incidence
angles of 30, 40 ad 50 degrees and pure XX and YY polarisations, wereput through the ECMWF
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Simplified Extended Kalman Filter (SEKF, (22; 23)) along with 2 m temperature and relative humidity
observations, using a simple framework as detailed in (24). The resolution of the analysis was set to
T159 spectral resolution (approximately 120 km). The period of the analysis spanned from 01 July to
31 August 2012. Two experiments were run: In exp-A, SMOS data wereingested in the SEKF, without
binning the data. In exp-B, the data were binned and put through the analysis system using exactly the
same conditions as in exp-A. The size of the angular bin was set to 2-degrees. The differences between
both experiments can be attributed to the binning effect. In both experiments more than 25 million
observations over land surfaces were available for use in the SEKF, after filtering and basic quality
controls, as explained in (12). The left panel of Table 3 shows the percentage of rejected observations
in exp-A and exp-B for XX polarization (Table 4 for YY polarization). In exp-A, more than 73% of
the initial number of available observations were rejected for all regions and incidence angles, mainly
due to the required criteria of one observation per model grid point, per incidence angle and polarization
(12), as imposed by time and computational constraints. A maximum of 81.9% of the initialnumber
of available observations were rejected in exp-A for use in the SEKF overAustralia. However, in exp-
B, the data were binned prior to the analysis, and in most cases less than 5% of observations were only
rejected, frequently below 3% of the initial number. So on the contrary to exp-A, in exp-B very few useful
observations are wasted and instead, indirectly through binning, the signal of a much larger amount of
observations is used to analyse soil moisture (and ocean salinity). In average, more than 300.000 extra
observations per day, at global scale, with averaged reduced noisedare used to correct the water state
of the soil. The right panel of Table 3 shows the mean standard deviation ofthe remaining observations
of brightness temperatures at XX polarization (Table 4 for YY polarisation)used for the analysis, for
the two months period, per incidence angle, polarisation and continent, with and without binning. For
almost all cases, it can be observed a moderate but consistent decrease in the value of the mean standard
deviation after binning. This decrease is below 1 K for 30 and 40 degrees, whereas is larger than 1 K for
most cases at 50 degrees, where angular noise is stronger. The bestcase is Australia at 50 degrees and
YY polarization, with a decrease of 1.78 K. This means a reduction close to 10% of the mean variability
of the observations, which in an area free from RFI can be attributed to a reduction of the angular noise.
Although not shown in this paper, it was checked that over certain ground stations, time series of soil
moisture analysis in exp-B during the two-month period presented more dynamical stable behavior and
lower increments of soil moisture, when compared to exp-A, which are also signs of better behavior of
the retrievals. Longer experiments will be needed to confirm this improvementunder all meteorological
conditions.

6 Summary and conclusions

In this paper, the ability of the angular binning as a simple but effective methodto reduce noise from the
SMOS observed brightness temperatures, while retaining the signal, was quantified and demonstrated.
The accuracy of soil moisture retrievals or numerical estimations of near-surface variables benefit from a
dataset with reduced noise. Firstly, the angular noise of the observationswas characterized by fitting all
the observations to a polynomial regression model. The key statistical variables to be analysed are the
coefficient of determination of the polynomial fit and the standard deviation of the residues to the fitted
curve. They provide information about the representativity of the model used to explain the angular be-
haviour of the observations, and the associated noise. In order to obtainstatistical representative values
and to filter out local outliers (e.g. caused by local sources of RFI), mean values over continental areas
were computed. A 2nd-order polynomial regression model was chosen as reference model tocharacterize
the angular behaviour of the observations. Higher-order polynomials should be avoided, as they better fit
the noise to the regression model. Although a 2nd-order polynomial is not perfect at characterizing the
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angular distribution of SMOS brightness temperatures, it showed to be a reasonable good approximation
in a wide variety of conditions. Secondly, the observations were averaged in bins of different size to
reduce the angular noise of the observations. Finally, the effectiveness of the angular binning as a simple
method to filter noise from the observations was validated, by using the same polynomial fit used to
characterize the angular distribution of the observations.
It was found that averaging observed brightness temperatures in angular bins of different size effectively
reduced the noise of the observations. The optimal bin size is 2 degrees, as for this bin the polyno-
mial regression model characterizes better the angular signature of the observations while decreasing the
noise. From a general perspective, this method has the potential to decrease noise from SMOS observed
brightness temperatures by between 2 and 3 K. Other benefits are that the angular binning is computa-
tionally affordable and simple to implement in an operational system. It also complements data thinning
approaches by contributing to reduce the volume of data in the original dataset. The latter makes it pos-
sible to investigate the influence of a single or several incidence angles in ananalysis context, as more
observations can be used at early stages of the analysis. In general, results were better for the XX polar-
isation, but some differences were found in North America, which were mainly due to the differences in
the portion of soil covered by snow between the winter and summer cases. Although the XX polarisation
is more sensitive to soil moisture variations, its larger dynamical range of brightness temperatures as a
function of the incidence angle is not caused by a larger noise. It has greater skill to capture soil moisture
variations than the YY polarisation. The difference in noise levels affectingthe observations between
both polarisations is reduced after binning the observations and, in most cases, varies from more than
1 K to a few tenths of kelvin when a 2 degree bin is applied. Near the coastlinesspurious signals were
observed, as the contribution from open water surfaces is embedded in the SMOS observations. The
results presented in this study also indicate that, in general, ascending orbitsare noisier than descending,
but this conclusion may change if snow covered areas are included in the computations.
This study did not show any particular evidence of soil texture or vegetationcover type over which ob-
servations presented a noisier behaviour with the incidence angle. Slightly better representation of the
low vegetation types by a 2nd-order polynomial was shown, as over these pixels a greater sensitivity to
the soil water content is present in the angular L-band signal. It was alsofound that incidence angles
below 20 degrees are the noisiest ones, as they are affected by a lowersignal to noise ratio, but in the
other extreme, the largest incidence angles can present larger noise too. This information is important
for data assimilation studies, as only the best observations should be assimilated. Also, the flat angular
signature obtained for snow-covered areas and densely vegetated forests (therefore losing the sensitivity
to soil moisture) produced lower correlation with the regression model and inmany cases large noise val-
ues. For the soil moisture analysis these areas will also be masked out priorto assimilation, and a snow
and dense forest mask will be applied to the observations. A good correlation between the observations
radiometric accuracy and the STD of the polynomial fit to the observations was also found, reflecting the
strong link between both variables. In this respect, the differences between ascending and descending
orbits responds largely to the different areas observed by both types of orbits, and they are particularly
strenghtned over very heterogeneous pixels. If a 2-degree binning isapplied to the observations, the total
estimated noise of a pixel can be reduced below the initial radiometric accuracy, at least for descending
orbits. In the ECMWF SEKF, binning the data has also very significant consequences over the number
of observations used to monitor the data and correct the state of the soil. Without binning, the signal
of many useful observations is lost. A real case study showed moderate decrease in the observations
standard deviation for a 2-month period, but is especially significant overlarge incidence angles, which
are more affected with angular noise, as it would happen at very low incidence angles.
Finally, the introduction of RFI and quality flags in the SMOS NRT product will help to further enhance
the efficiency of the binning approach, by rejecting contaminated or low-quality data before binning the
observations, especially important in areas strongly affected by RFI as Europe or Asia.
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Table 3: Global and regional statistics of SMOS data usage performance at XX polarisation, for exp-A (without
binning, NB) and for exp-B (with binning, B). Left panel shows the percentage of observations rejected for use in
the analysis system, per incidence angle. Right panel showsthe mean standard deviation of the remaining SMOS
brightness temperatures (in K).

% of rejection STD observations
30 40 50 30 40 50

NB B NB B NB B NB B NB B NB B
Global 75.3 2.5 78.6 2.4 77.7 2.4 30.09 29.45 30.58 28.89 31.50 30.60
N.Amer 74.5 1.9 77.9 1.9 77.2 1.9 29.12 28.66 30.04 29.42 31.76 31.06
S.Amer 78.2 5.1 81.1 4.7 80.4 4.8 23.90 23.49 24.97 24.25 26.81 26.18
Africa 73.8 1.5 77.3 1.5 76.5 1.5 23.11 22.65 23.40 22.73 23.06 21.61
Europe 74.0 1.5 77.5 1.6 76.7 1.6 33.87 33.12 34.77 33.76 36.13 35.06

Australia 79.9 7.2 82.5 0.1 81.9 6.7 21.22 20.73 21.72 20.92 21.88 20.92

Table 4: As Table3, but for YY polarisation.
% of rejection STD observations

30 40 50 30 40 50
NB B NB B NB B NB B NB B NB B

Global 75.3 2.5 78.5 2.4 77.7 2.4 30.99 30.29 30.88 30.17 29.45 28.37
N.Amer 74.5 1.9 77.9 1.9 77.2 1.9 28.15 27.82 27.37 27.39 24.76 23.98
S.Amer 78.2 5.2 81.0 4.7 80.3 4.8 22.52 21.90 21.52 21.15 18.15 17.06
Africa 73.7 1.5 77.2 1.5 76.5 1.5 24.28 23.56 24.51 23.97 24.33 22.88
Europe 74.1 1.5 77.4 1.6 76.6 1.6 35.33 35.04 34.92 34.58 33.55 32.44

Australia 79.8 7.1 82.5 6.4 81.8 6.6 21.20 20.94 20.68 20.69 19.97 18.19
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