
 ECMWF Seminar on Seasonal Prediction, 3-7 September 2012 | 73 

Do statistical models trade resolution 
for reliability? 
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Statistical models are widely used to calibrate and recalibrate predictions from 
dynamical model. In this paper “calibration” refers to the correction of errors in the 
mean and/or the variance of the predictions, whereas “recalibration” involves 
correction for the skill of the predictions by adjusting the signal (Mason, 2008). The 
extent to which statistical post‐processing schemes successfully improve the quality of 
dynamical model predictions is considered. Quality is defined here in terms of 
reliability, resolution and discrimination (Stephenson, 2012). Formally, a forecast 
system has resolution when the marginal distribution of the outcomes is conditioned 
on the forecast; it has discrimination when the marginal distribution of the forecasts is 
conditioned on the outcome. It can be argued that resolution and discrimination are 
the fundamental properties of good forecasts, since in their absence there is no useable 
information. Reliability is achieved when the expected value of the observations, 
conditioned upon the forecast, is equal to the forecast for all forecast values. Most 
statistical correction procedures that are implemented to calibrate or recalibrate the 
model outputs on a gridbox‐by‐gridbox basis are actually designed primarily to 
address reliability. The extent to which they do achieve reliability, and what the effects 
might be on resolution and discrimination, are the subjects of this paper. 

Let Y be a variable we wish to forecast, and let X be a forecast of Y . Let X and Y be 
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. If the parameters of the bivariate normal 

distribution describing X and Y are known, then the values of various category‐based 
verification scores can be defined as a function of Pearson’s product‐moment 
correlation, ρ (where ρ = c/ςX ςY), between the forecasts and the actual values. For 
example, consider the case where there are two equi‐probable categories, so an event 
occurs when Y > μY and a warning is issued when X > μX. Define a hit when X > μX & Y > 
μY, a correct rejection when X < μX & Y < μY, a miss when X < μX & Y > μY, and a false‐
alarm when X > μX & Y < μY. Since the bivariate normality assumption implies  
Pr (X > μX) = Pr(Y > μY) = 0.5 , the probability of a hit is the same as the probability of a 
correct‐rejection, while the probability of a miss is the same as the probability of a 
false‐alarm. In fact, each of these probabilities can be calculated from the 
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corresponding tail areas of the bivariate‐normal distribution. The probability of a hit, 
for example, is the right tail area of the distribution and is calculated as: 
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which simplifies to 
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(Kotz et al. 2000). Similarly, the false‐alarm rate simplifies to 
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Figure 1: Example of bivariate normally distributed data given ρ = 0.5. The thin blue lines are 
ellipses of equal density. 
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Given Eqs (2) and (3), the two‐category scores listed in Table 1 (and selected from 
Table 3.3 of Hogan and Mason (2012)) can be defined purely as a function of ρ (note 
that some of the scores are identical because of the constraints imposed by the 
assumptions). A corresponding version of Eq. (1) for categories that are not defined by 
the mean and are not necessarily unbounded (as is the case when three equi‐probable 
categories are used, for example) does not simplify because the integrals cannot be 
defined in closed form (Divgi, 1979). However, polynomial approximations to Eq. (1) 
allow it to be calculated with a high degree of accuracy. For example, the hit rates for 
three equi‐probable categories are shown in Figure 2 as a function of the correlation. 
The hit rates are the same for the two outer categories, but the score for the middle 
(“near‐normal”) category is lower when 0 < ρ < 1 , and remains near its minimum 
except when the correlation is very strong. The effect is that the values of scores for the 
“near‐normal” category are inevitably weak unless the correlation between the 
forecasts and the observations is very strong. This result is purely an effect of the 
shape of the bivariate normal density, and provides a mathematical reason for the low 
skill in predicting the “near‐normal” category (van den Dool and Toth, 1991). 

 

Table 1: Values of two‐category verification scores as a function of the correlation, ρ, for cases 
when the probability of a warning and the probability of an event are both 0.5, and the predictand 
and predictor are bivariate‐normal. 
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The values of the scores indicated in Table 1 all assume that the parameters μX and μY  

are known (ςX and ςY  do not affect the scores in the case of two‐category forecasts). If 
either parameter is estimated incorrectly then the assumption that Pr (X > μX) = Pr(Y > 
μY) = 0.5 is no longer valid, and the scores are affected. Errors in estimating μX and μY 

introduce a mean‐bias into the predictions, which translate into errors in the base‐rate 
and/or the forecast rate in the two‐category set‐up. The effects on the scores of varying 
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errors in the forecast rate when ρ = 0.5 are shown in Figure 3. The hit rate (dark blue 
line) and false‐alarm rate (pink line) both increase from 0.0 to 1.0 as the forecast rate 
increases, but when the base rate is 0.5 (Figure 3a) the difference between the two 
(which is measured by the Pierce Skill Score (grey line)) is maximised when the bias is 
zero. All the other scores in Figure 3a decrease as the bias increases (away from the 
vertical dotted line), except the Clayton and Odds Ratio Skill Scores (green line and 
orange lines) as discussed by Hogan and Mason (2012), and the Critical Success Index 
(yellow line), which is inequitable and can be hedged (Mason, 1989). Of greatest 
importance in the current context is the fact that the scores that measure 
discrimination, namely the Pierce Skill Score and the ROC area (grey and red lines, 
respectively), are optimised in unbiased forecasts. However, these scores are not 
optimized (in fact, none of the scores are optimized) if the base rate is not 0.5 (Figure 
3b), implying that calibrating dynamical model predictions for errors in the mean 
could actually result in a deterioration in discrimination, depending on the underlying 
correlation and how the data are categorized. 

 
Figure 2: Hit rates for equi‐probable three‐category forecasts and observations as a function of the 
correlation for bivariate normally distributed data. 

 

Instead of converting the forecasts to deterministic categorical predictions, 
probabilistic estimates of Y > t, where t is a threshold of interest, can be obtained from 
least‐squares estimates of Y. Forecast probabilities can be calculated using 
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where Ŷ  is a least squares estimate of Y : 
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Figure 3: Values of two‐category verification scores as a function of the forecast bias or forecast 
rate when the correlation is 0.5, and the base rate is (a) 0.5 and (b) 0.1, assuming the predictand 
and predictor are bivariate‐normal. The dashed vertical line indicates unbiased forecasts (forecast 
bias is calculated as the forecast rate divided by the base rate). The score abbreviations are 
indicated in Table 1. Note that the curve for the ROC Area in (a) is the same as that for Percentage 
Correct (red line), and the curve for the Pierce Skill Score is the same as that for the Heidke Skill 
Score (grey line). 

 
 
If ˆ0, YYρ µ= regardless of the value of X, and p is the climatological probability for all X, 
so the centred forecasts have no resolution, but do have perfect reliability. If |ρ|=1, Eq. 
(4) is not strictly defined, but Ŷ Y= regardless of the value of X, and p = 0.0 when Ŷ t<  
and p = 1.0 when Ŷ t> , so the forecasts have maximum resolution and perfect 
reliability. 

In practice, 0 < |ρ| < 1, and the distribution of p approximates a beta distribution 
(Richardson 2001). For t = μY , p has a symmetric distribution. Some examples of the 
distribution of p given different values of ρ are shown in Figure 4. In the special case of 
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ρ = 1/√2 (orange line), p has a uniform distribution. If ρ > 1/√2 then the distribution of 
the probabilities is U‐shaped, but is unimodal (with mode 0.5) otherwise. 

Because the distribution is symmetric, the mean forecast probability is 0.5, and the 
sharpness of the forecasts can be measured by the variance or standard deviation 
(Figure 5). The variance is 
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Figure 4: Distributions of forecast probabilities given least squares predictions, where the 
predictions and observations are bivariate normally distributed, with correlation ρ. 

 
Figure 5: Standard deviation of forecast probabilities derived from least squares predictands, 
given different values of the correlation. 

Let Yp   be the forecast probability for an event given least squares forecast Ŷ . The 

(half‐) Brier score (Broecker 2012), s, is then defined as 
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where d is the density of the forecasts at Ŷ . In the case of t = μY, Eq. (7) simplifies to 
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This relationship between the Brier score and the correlation is shown in Figure 6. 

As with the deterministic scores, if the parameters μX and μY are not known exactly then 
errors in calibration or recalibration will affect the probabilistic scores. Errors in 
estimating μX and μY introduce a mean‐bias into the predictions, which translate into a 
systematic increase or decrease in forecast probabilities leading to over‐ or under‐ 
forecasting (Wilks 2011. The distribution of the forecast probabilities is no longer 
symmetrical (Fig. 7). The effects on the Brier skill score are shown in Figure 8, which 
indicates a rapidly increasing loss of skill with increasing correlation. The loss of skill is 
entirely because of poor reliability in the forecasts (the resolution is unchanged). 

 

 

 
Figure 6: Brier scores given forecast probabilities for a positive anomaly where the predictor and 
predictand are bivariate normal. The forecast probabilities are derived from least squares 
predictions given different values of the correlation. 
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Figure 7: Distributions of forecast probabilities given least squares predictions, where the 
predictions and observations are bivariate normally distributed, with correlation ρ, and where the 
mean forecast is biased by one standard error assuming a sample size of 30. 

 

 
Figure 8: Brier skill scores given forecast probabilities for a positive anomaly where the predictor 
and predictand are bivariate normal, with correlation ρ, and where the mean forecast is biased by 
one standard error assuming a sample size of 30. The forecast probabilities are derived from least 
squares predictions. 
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If the parameters ςX and ςY and/or the covariance, c , are not known exactly then 
probabilistic scores will again be affected. Consequent errors in estimating ρ introduce 
a conditional‐bias into the predictions, which translate into a systematic increase or 
decrease in the sharpness of the forecasts leading to over‐ or under‐confidence (Wilks 
2011), but the distribution of the forecast probabilities remains symmetrical. The 
effects on the Brier score are shown in Figure 9, which again is a reflection of a loss of 
reliability since the resolution of the forecasts is unchanged. The reliability 
deteriorates given strong correlations because of the artificially high sharpness of the 
forecasts; and, for the same reason, the deterioration is most marked for cases where 
the strength of the correlation is over‐estimated (blue line). 

In summary, sampling errors in estimating the parameters of a model for calibrating or 
recalibrating forecasts result in a deterioration of forecast quality for most binary 
deterministic verification scores when the categories are equiprobable, but can have 
complicated effects on forecasts of relatively rare events. Similarly, sampling errors 
introduce reliability and resolution errors into probabilistic forecasts that are 
reflections of over‐ or under‐confidence and over‐ or under‐forecasting. All these 
effects can be quantified if the forecasts and observations are bivariate normal. 

 

 
Figure 9: Brier skill scores given forecast probabilities for a positive anomaly where the predictor 
and predictand are bivariate normal, with correlation ρ, and where the strength of the association 
is positively (blue) and negatively (red) biased by one standard error assuming a sample size of 30. 
The forecast probabilities are derived from least squares predictions. 
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