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Abstract

Satellite retrievals and other 1-dimensional variatiateth assimilation (1D-VAR) applications do
need background error statistics of the atmospheric V@salsed, in particular temperature, water
vapour and ozone. These error statistics are often prowédeihgle global climatological profiles.
In this report we describe a self-contained program packasfegives more accurate error statistics
that closely follow the errors used in the ECMWF analysigesys It has been possible to make the
1D-VAR errors simpler than those used by the 3D ECMWF anslyscause horizontal correlations
and wind errors are not needed.

The error statistics consist of vertical error correlatioatrices and three-dimensional error vari-
ances. In addition, a variable transform converts the meai&hbles (temperature and mixing ratios
of water vapour and ozone) to variables with more Gaussiditess correlated error statistics. Gaus-
sian error statistics make the background errors more talngsemoving cross-variable correlations
simplifies the vertical correlation matrices.

The error correlation matrices are derived from ECMWF eriderdata assimilation statistics, and
are an average over a couple of seasons. Each variable hparateeset of vertical error correla-
tion matrices at approximately 625 km by 625 km resolutia@uadly distributed all over the globe.
Investigation of the geographic, diurnal, and seasonahbiity of the correlation matrices indicate
that for averages over several days it is only the geogragriation that matters, with very little
variation between seasons or between different times of @y error correlations are provided as a
constant file which is only updated infrequently, followimgjor changes in the ECMWF system.

The background error standard deviations are also deriead the ECMWF ensemble data assim-
ilation system, and are the same as those used by the ECMW{sianarhey are retrieved from
ECMWEF as 3-dimensional GRIB fields for the day and time regplijcurrently available at 09 and
21 UTZ). The resolution is a T159/N80 reduced Gaussian gitd approximately 125 km equal
resolution globally.

The variable transform, which in particular removes thealde inter-correlation between water
vapour and temperature, requires the full fields of tempeeatvater vapour, and logarithm of surface
pressure, and these are also retrieved from ECMWF for theddyime required.

The interface with the 1D-VAR satellite retrieval applicet interpolates the background errors bi-
linearly to the retrieval location, which includes the imtelation of model fields and error standard
deviations as well as correlation matrices.

The program package that calculates the background es@alficontained, including documen-
tation. It is maintained and regularly updated by ECMWF tfbert major model and resolution
upgrades. Following major upgrades, new correlation edrare needed, and these will be avail-
able from ECMWF as part of the latest version of the software.

1 Introduction

At ECMWEF the background error formulation used in the datanaiation is wavelet based and varies in
space and time to take account of geographical differenudthe flow of the day (Fisher and Andersson,
2001). The size of a full background error matrix is severdecs of magnitude larger than a full model
state, which makes it impractical to store the matrix in mgmdecause of this the full background
error is only available as a sequence of simpler operatarsemtly consisting of: standard deviations,
which change for each assimilation cycle based on the latedable ensemble standard deviations or by
other methods; horizontal and vertical correlation masjavhich show geographical variation reflecting
climatological averages; and balance operators to acéouinter-variable correlations, which are global
climatological averages. For satellite retrievals whiombine observations and background information
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for a single atmospheric column or line of sight, horizorgairelations are not needed, and a simpler
vertical covariance matrix can be used which still captunest of the flow and geographical dependency
of the operationally used background errors. This repdtdascribe this simplified vertical background
error covariance framework and outline its implementatisra set of stand-alone FORTRAN programs
and scripts.

2 The background error covariance model

2.1 Why not use 3D background errors directly in 1D-VAR?

The background errors used in 3D analyses consist of a segj@éoperations, including variable trans-
forms, division by standard deviations and applying hartaband vertical correlations:

e Transform model variables to a set of uncorrelated var&attsampledT — 6T, =0T — f(u,v),
wheref (u,v) includes geostrophic balance.

e Divide by standard deviations, of the uncorrelated variables.
e Apply horizontal correlations.

e Apply vertical correlations.

For use in 1D-VAR satellite radiance retrievals, the 3D er@re not the right errors to use because the
1D-VAR problem differs in several respects from a 3D datanaitation,

e When no wind is involved, total temperatudd is used instead of the unbalanced temperature
dTy. The absence of wind correlations simplifies the backgramats.

Different standard deviations are needed because thesiadriables are different, e. gy, not
O-Tu.

No horizontal correlations are needed.

Different vertical correlation matrices are needed beedls analysis variables are different, e. g.
for T, notdT,,.

It can be seen that the background errors suitable for 1D-8feRrelated to the 3D errors used in data
assimilation, but they are simpler. In particular horizdrttorrelations and balances between wind and
temperature do not need to be included, which is a major #ficgilon. What remains to be used by
the 1D-VAR analysis can be illustrated by writing down the ttostfunction for backgroundy) and
observationsJ,) that is minimized by the analysis:

J(0X) = Jp+ Jo = OX' B~ 18X + Jo(Ox) (1)

The background error costfunction now contains the follmpéequence of steps:

1. Transform model variables to a set of uncorrelated vhsabvithK —* a variable transform oper-
ator which approximately removes error correlations betweariablesdx, = K ~18x
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2. Divide by standard deviations of the uncorrelated véembwith ~ a diagonal matrix of back-
ground error standard deviatior®{' = > 15x,

3. Apply vertical correlations, witN a vertical correlation matrixdx = V—1/25x’/

Inserting this in the background error costfunction givésmequivalent expressions of the costfunction,

Jb = Ox'ox

OXTV—1ox @
oxf = Tv—1z-15x,

= XK Tz Tv-1z-1k-15x

We now describe in more detail how the different operatothetbackground errors are estimated.

2.2 Transforming from model to analysis variables: 3K

The vertical correlation matrix used by the analysis is egped in terms of a transformed analysis
variable
ox' = I K 1ox (3)

which for ozone and temperature is just normalization wWithdrror standard deviation, but for humidity
another variable is used, which is close to linearized ikgdtumidity (H6Im et al., 2002).

2.2.1 Humidity transform

The transformed humidity variable is designed to reducectreslation between temperature and hu-
midity errors and normalizing the humidity to make the esrorore Gaussian. We show in some detail
how it is derived to make the current description self-cinretd.

One main contributor to the correlation between tempegatind water vapour errors is condensa-
tion/evaporation following temperature changes in cloutisa cloud, the water vapour mixing ratio
is by definition at its saturation valug = gs, whereq’ is the in-cloud value of;. For a given back-
ground temperatur®, the Clausius-Clapeyron equation (see e. g. Rogers and &f) §&es how the
mixing ratio changes in response to a temperature chdiige

des  es(Th)L s(Th)L

— = =dd =dgg~ ——5-dT 4
dar  RT? ¢ = da RT? )

wheree; is the saturation vapour pressule,is the latent heat for mixed phasB, is the gas con-
stant for water vapour angs is the saturation water vapour missing ratio. Here we haes gs=
(Ra/Rv)es/(p—es) ~ (Ry/Ry)es/ p because the pressupes es in the troposphere and the stratosphere
(Ryq is the gas constant for dry air). Only a certain fraction of@ded gridbox is saturated however, and
the total gridbox increment in water vapour mixing ratio suan of the in-cloud changes correlated with
temperature errors, and all other changdggthat are uncorrelated with temperature errors,

0s(Tp)L
RT?

69 = 80y + Qqrrhpda°® = &gy + Qqrrhy oT (5)
Here Qqrrhy takes into account that the correlation between humiditytemperature errors is mainly

confined to cloudsQqr is determined as a correlation coefficient betwéeyigs(T,) and %GT and
Vv 1p

Technical Memorandum No. 680 3
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provided as a climatological polynomial function of redathumidity and model level. The value Qfr
ranges from 0 at ca 80% relative humidity to 1 at saturatiosarRanging this expression we get finally

oqu oq
= ————Qqgrrh
qs(Tb) qs(Tb) QqT b
It is useful to divide bygs(Tp) because it makes the background error statistics more @austolm et
al., 2002). The above expression is very close to linearnietdive humidity, except for the presence of

Qqr,

5T (6)

RT?

e q 3q 0s(To)L
orh=90(—)~0d ~ —rh oT 7
(es) (qS(T) ) qS(Tb) b RvaZ ( )

Because of this relationship, it can be shown that the emdances for% are nearly the same as
those ofdrh (because close tdy, = 1 the relationships are very similar and fbg < 1 the temperature

contribution to the variances is order of magnitude sméfilee Holm et al., 2002).

2.2.2 Direct and inverse transforms and their adjoints

There are four variable transform operations that coulddagired within the analysis. First, direct
transform from analysis to model variables and inversesttam from model to analysis variables are
required. Second, for some 1D-VAR applications the adgaifithe direct and the inverse transforms are
also required.

We start with the inverse transformation from the modelaklgs as above,

OT =0T /oy (8)
hpL

oq = <5q/qs(Tb) - QqT%(ST) /0rh = (60/0s(Th) — QqradT) /On 9
Vb

503 = 503/003 (10)

Here the primed variables are those for which the verticaletation matrices are valid, see second line
of Eq. 2, thus for exampl®q = (39,/0s(Tp))/0rh. This can be expressed in matrix form as follows:

5T’ 1/o7 0 0 ST
X = o |=| —Qqra/om 1/(gsom) O 5q | =2k 1ox (1)
003 0 0 1/0g3 oo3

So given profiles of background variables, background etaordard deviations and increments, a trans-
formed increment is calculated which can be used togetharthé correlation matrices within 1D-VAR.

The direct transform to the model variables can be derivenh fihe above inverse transform equations
as

5T = o1 8T (12)
59 = 0s(Th) (0rh O +QqradT) (13)
003 = 03003 (14)
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or in matrix form:

oT oT 0 0 oT’
ox=| 8q | = aQqraor 0som O oq | =KZox (15)
003 0 0 o0 003

The adjoint of the inverse transform is given by (with supept * for adjoint operators and variables,
and noting that the adjoint of a linear operator is just ésm$gpose)

oT* 1/or —Qgra/om O oT*
5X*l _ 6q*/ _ 0 1/(QSarh) 0 5q* — z—l*K —1x OX* (16)
503" 0 0 1/003 503"

Finally the adjoint of the direct transform is

oT* or 0sQqraor O 5T
oxX=| ogx | = 0 0sOrh 0 5q° = K*z"ox" (17)
503" 0 0 Oo3 503"

2.3 What aboutlogqg?

If the 1D-VAR variables are log or logo3, then an additional step is needed to transform fgdmlogq
etc. Increments of log can be approximated by linearizing around the backgrouhdeeg, so

dlogq~ % (18)

The way to go frong increments to increments of lods thus to dividedq by q,. This is easiest achieved
by adding another step to the transform, aftgrhas been calculated. This would be done outside the
current program package, on the 1D-VAR code side.

Alternatively, the control variable transform could be riiedl to give dq/q, directly, which would
require a code change inside the program package. In théstbasequations for humidity and ozone
direct and inverse transforms above need to be modified lasviol

% ~ u(To) (om%q; ; QqTﬁ)zéT) (19)
g_gf _ aog%f (20)

oq = <rhb% - QqT%5T> /Oeh (21)
503 = <03bi—gj> /03 (22)

Technical Memorandum No. 680 5
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2.4 Background error standard deviationsZ

The background error standard deviatianare obtained from the ECMWF ensemble data assimilation
system, and are operational products that can be retrieved tlaily (valid at 09UTZ and 21UTZ) from
the ECMWF MARS archive (Bonavita et al., 2011). For humidihe standard deviation of the relative
humidity errors is used, because the analysis variable fosédimidity (see above) is close to linearized
relative humidity. Figurel shows examples of the standard deviations for a given day.

2.5 \Vertical correlation matrices V

The vertical correlation matrices for temperature, hutgidind ozone are provided as global files with
a correlation matrix every 625 km (Fisher and Andersson,1200he correlation matrices are clima-

tological averages over a month to a season, and mainly regi@graphical variations, such as land,
sea, and orography. It is also of interest to understand hevedrrelation matrices vary by season and
during the diurnal cycle. Currently ECMWF uses a single $eborelation matrices for all seasons, and
only updates them following upgrades to the forecastingesyssuch as changes in vertical resolution
or major model and observation system changes. In futusdatéseen that the correlation matrices will
be updated more frequently to eventually capture the @iiogls of the day.

The vertical correlation matrices in Fig@s10 are shown for the 91 model levels, where level 1 is at the
top of the model atmosphere while model level 91 is at surface

2.5.1 Geographical variation of the vertical correlations

The importance of the geographical variation of the coti@lamatrices can be seen in the change of the
boundary layer correlations in the three examples of 50N @ihglish Channel), 20N (Sahara), and 20S
(South Atlantic subsidence area), all at OE. Even adjacamélation matrices can vary significantly, if
for example one is over sea and the other over land. The vafussch correlation matrix are averages
over a 625 km box.

2.5.2 Seasonal variation of the vertical correlations

To investigate the seasonal variation, available samptesa the current ECMWF operational system
were split into three periods: JFM 2011, MAM 2011, and SO 2@4ch sample contains 19 days by 9
ensemble analysis forecast differences, spaced evena$sin the JFM and MAM samples and every
1.5 days in the SO sample. This particular sampling was chbseause these fields were available as
part of calculating new operational ECMWF background eramrrelations. It can be seen in Figs7
that the seasonal variation is small compared with the ggtigcal variation seen in Fig8-4. However,
there may be other locations where the seasonal variatiangisr.

2.5.3 Diurnal variation of the vertical correlations

The diurnal variation can only be captured twice daily, a2 and 21UTZ, from the current ECMWF
analysis system. Two samples of 19 days by 9 differences eveeted from the JFMAM 2011 sample
above, one sample every seven days for 09UTZ and 21UTZ. Athéoseasonal variation, the diurnal
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Figure 1: Background error standard deviations at 200hPa for tertyrerfK] (top), relative humidity [0-1] (mid-
dle) and ozone mass mixing ratio [kg/kgle8] (bottom.
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Figure 2: Temperature vertical correlation matrices at OE and 50f) (2ON (middle), and 20S (right).
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Figure 3: Humidity vertical correlation matrices at OE and 50N (Ie2)N (middle), and 20S (right).
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Figure 4: Ozone vertical correlation matrices at OE and 50N (left\ Z@iddle), and 20S (right).

variation in Figs.8-10is small compared with the geographical variation seen gs.2-4. This does
not exclude that the diurnal variation is important at otbeations though.
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Figure 5: Temperature vertical correlation matrices at (OE,50N)fev (left), MAM (middle), SO (right).
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Figure 6: Relative humidity vertical correlation matrices at (0B\§@or JFM (left), MAM (middle), SO (right).
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Figure 7: Ozone vertical correlation matrices at (OE,50N) for JFMtYJeMAM (middle), SO (right).
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Figure 8: Temperature vertical correlation matrices at (OE,50NPRWUTZ (left) and 21UTZ (right).
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Figure 9: Relative humidity vertical correlation matri
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Figure 10: Ozone vertical correlation matrices at (OE,50N) for 09UTeft] and 21UTZ (right).

3 Programs

3.1 Requirements on retrieval algorithms using the progranpackage

The program package assumes that the retrieval

and ozone increments together with their location, i.

applicptandes profiles of temperature, humidity,
eir tlatitude and longitude in radiances, and

10
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the number of observation locations. These profiles must baen interpolated to the pressure of the
ECMWF model levels at each observation location, using BMB/F surface pressure for that location
and time and the ECMWEF vertical coordinate parameters. Mtexgolation of the input profiles is
not part of the program package supplied by ECMWEF, becaussitires knowledge of the retrieval
algorithm'’s vertical grid, which is internal to each retaé algorithm. Nevertheless, retrieval of surface
pressure and its interpolation is part of the program pazkagvided by ECMWF, and this can optionally
be used by a retrieval algorithm to obtain the surface presmod vertical coordinate parameters needed
for the vertical interpolation. Another point to note isttbaly the correlation matrix is provided, and any
operations on the matrix, like taking its square root oriseewill be handled by the retrieval algorithms
as needed.

3.2 What the ECMWF background error program package provides

The program and script package supplied by ECMWF (contacatithors for the latest version of the
software) provides what is needed to use ECMWF derived vackgl errors for 1D-VAR and similar
retrieval applications, given a set of increment profiled ltations (see above). A full documentation
is included in the program package itself, in particulartftam reading

e README.txt Instructions on how to install, compile, test, and use thekage on ibm and linux
platforms.

The available operations can be summarized as follows:

e A vertical correlation matrixfile is provided with the program package, which has a global s
of matrices for temperature, relative humidity and ozonasmaixing ratio. The matrices are ap-
proximately equally distributed on the globe, as an avemags ca 625 km by 625 km area (32
in latitude byNINT[64coqlatitude)] in longitude). A global mean vertical correlation matrix is
also provided. For any observation location an index isteckpointing to the nearest neighbour
correlation matrix for use in retrieval applications. Tlogrelation matrix file can be updated pe-
riodically by ECMWF reflecting changes in vertical resabutj horizontal density of the matrices
or other major upgrades. There is also an option for seaswnalore frequent updates to the
correlation matrices, in line with ECMWF developments iis threa.

e A retrieval scriptscripts/retrieve.ksi{see Appendix) contains all that is needed to retrieve the
background model fields and the errors of the day from the EGMWARS archive (see available
dates in next section). The fields retrieved are all globalehtevel fields of temperature, specific
humidity, ozone mass mixing ratio, and logarithm of surfaoessure. These are the background
fields. In addition, all global model levels of backgrountbestandard deviations estimated by the
ECMWF ensemble data assimilation system are retrievethéosame time, including temperature,
relative humidity, and ozone mass mixing ratio. The erreescrrently available at T159/N80
(ca. 125 km) reduced Gaussian grids, whereas the model éisdd®/ailable at up to T1279/N640
(16 km) reduced Gaussian grid. The error fields should beevett in their native grid, but the
model fields can be retrieved at a higher resolution.

e Interpolation subroutines interpolate all correlationtricas (etrieve correlationg, model and
error fields (etrieve profileg bi-linearly to a set of observation locations, providingfies of
background fields and errors matching the input incremeofilps (see codsources/bgerr.F90
for these subroutines with full documentation of input antbat variables) .

Technical Memorandum No. 680 11
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e A variable transformation subroutimaod2anvartransforms the input increment profiles to the
variables used in the analysis (see cedarces/vartransform.f9@r mod2anvarwith full docu-
mentation of input and output variables). For temperatateazone this is simply a normalization
by the background error standard deviations, but for husnttlie transform takes into account the
correlation between humidity and temperature errors byifiog what is close to linearized rela-
tive humidity. This is the reason why relative humidity bgakund error standard deviations are
used in the normalization of the humidity control variabldne variable transform program does
an ‘inverse’ transform, ‘direct’ transform, and the adjoiri both. Each of these operations may
be required by different retrieval algorithm versions.

e Asimple test progrartests/bgerrtest.fo0and test files containing complete model states and errors
are provided for testing the installation of the programkaae in different environments. A
README file gives instructions on compilation and use of thegram package.

3.3 Available dates forscripts/retrieve.ksh

Because the background errors here rely on the ensemblaskitailation system (EDA) to provide
background error standard deviations, the retrieval sedppts/retrieve.kst{see Appendix) for the er-

rors is not compatible with dates before the current formhef EDA was implemented. Here is a
summary of the relevant dates, and options for previousdate

e After 2010110909 the ECMWEF archive contains all that is rekid the script. We only have the
background error fields available at 09UTZ and 21UTZ as 3 fan@icasts, and the time and step
in the retrieval of the errors and the forecast used in trrgghould always be:

— step=3
— time=06 or 18

The background errors will be most accurate for times clos@% or 21, but they can also be
assumed to be the best available estimate for a time winddsvhafurs on either side of these
times, or a time window of 12 hours after the valid time of thees. The errors will of course

be less accurate the further away one is from their valid.tidikhough the degree of accuracy
has not been quantified as a function of time differenceseitteers should still be an improvement
on climatological errors for up to 12 hour time differencdhese errors can then be combined
with retrievals using forecasts at different ranges in tdé@ur window. Note the errors are more
accurate after 2011051800 when they began to be used meresidly in the operational system.

e Between 2006020109-2010110821 one can replace the esratast! deviations (type=ses) by a
less accurate estimate (type=ef). The retrieval sséppts/retrieve.kshvill need modification in
this case and we recommend this only for expert users.

e Between 2004062909- 2006013121 there are 60-level "efitstal deviations available. However,
another correlation matrix is needed (for 60 levels, whi€MBVF would need to produce), and
we recommend staying within the 91 level period.

e Before 2004062909 there are no "ef” fields for the standawibtiens.

e Forintercomparison, we do also still produce the "ef” fidhi$ay (end 2012, but may not in future)
- 50 a date post 2010110909 can be used to understand thremtiffebetween "ef” and "ses”. The
"ses” have more geographic variability and gives a bettémege (calibrated against analysis) of
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the background error standard deviation, whereas "ef” fiteer fields, less reflecting day-to-day
variations.

4 Conclusions

The program package provided gives flow and geographicallyizvg background error covariance ma-
trices for temperature, humidity and ozone, together wWithrequired variable transforms needed to be
close to the ECMWF implemented humidity analysis formolati The use of flow dependent back-
ground error standard deviation of the day from the opeamati€ CMWF ensemble data assimilation
system and geographically varying correlation matrices @®nsiderable improvement compared with
earlier global average version of background errors uselDiVAR applications. A first look at the
vertical correlation matrices seasonal and diurnal Jvariatshowed these to be small compared with
the geographical variation, but further studies are ne¢alegiantify the variation globally. This initial
look does however give confidence that correlation matawesaged over one season are valid for other
seasons and at all times of day. Further developments optbiram package are foreseen after ex-
perience has been gained in using the package in 1D-VARcaiolns, and it is possible to extend the
framework with further variables, in particular cloud tteld variables and trace gasses. For cloud and
trace gas variables, the background error estimation issobature as for humidity, temperature, and
ozone, which all are part of the ECMWF operational framewarid attention needs to be given to the
scientific validity of these additional background erraraddition to their technical implementation.
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Appendix: Script retrieval.ksh

#!'/ bi n/ ksh

nl ev=91

truncati on=159

target _errors="errors.grib"
target fields="fields.grib"

usage="Usage: ${0/*\//} [options] -d <date> -t <tine_in_hours> -s <step>\n
\nRetrieve errors and first guess fields from MARS. \n

\nOptions:\n

\t-1 NLEWt\t nunber of nodel |evels (default $nlev)\n

\t-T TRUNC\t spectral truncation (default $truncation)\n

\t-e TARGET\t target file for errors (default \"$target _errors\")\n

\t-f TARGET\t target file for nodel fields (default \"$target fields\")

"

[[ $# == 0 ]] && { echo $usage; exit 1; }

while getopts "hd:t:s:1:T:e:f:" option
do
case $option in
h) echo $usage; exit 0;;
d) dat e=$OPTARG ;
t) ti me=$OPTARG ;
S) step=$0PTARG ;
[) nl ev=$0PTARG ;
T) truncati on=$0PTARG ;
e) target _errors=$0OPTARG ;
f) target fiel ds=$OPTARG ;
*) echo "Error: Unknown option: -$%option"; echo $usage; exit 1;;
esac
done
shift $((OPTIND - 1))

dat e=${date: ?"Error: m ssing date"}
time=${tinme:?"Error: mssing tine"}
step=${step: ?"Error: m ssing step"}
grid=$(((S$truncation + 1) / 2))

mar s <<MARS_REQUEST
retrieve,
expver =0001,
cl ass=od,
dat e=$dat e,
time=$ti ne,
st ep=$st ep,
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CECMWF

| evel =1/t o/ $nl ev,
| evtype=m ,
type=ses,

st r eanFenda,
repres=gg,

par am=130/ 157/ 203,

target="$target _errors"

retrieve,
type=fc,
st reanrdcda,
r epr es=sh,
par am=130/ 152,
resol =av,
grid=$grid,
gaussi an=r educed,

target="S$target fields"

retrieve,
repr es=gg,
par am=133/ 203. 128,

target="S$target fields"

MARS REQUEST
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