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1 Introduction

The potential for improving the quality of 4D-Var analyses by extending the analysis window was
demonstrated by Fisher et al. (2005). They showed that analyses equal in quality to those of the
extended Kalman filter could be achieved, at least for perfect-model analyses for the Lorenz (1995)
system, if the analysis window was sufficiently long (of order 10 days).

Fisher et al. (op cit.) used a data-denial experiment to estimate the length of analysis window that would
be required to achieve equivalence with the extended Kalman filter in an analysis system for numerical
weather prediction (NWP). They estimated that a window of approximately seven days would be needed.

It is likely that the length of window required to achieve 4D-Var analyses equal in quality to those of the
extended Kalman filter is strongly dependent on the observing system. Arguably, Fisher et al’s estimate
of seven days applies to a system which does not assimilate satellite radiance data. In section 2, we
present results from a data reinstatement experiment that suggest that a window of just three days may
be sufficient.

The Lorenz (1995) model used by Fisher et al. (op cit.) is extremely simple. Although it provides
an interesting analogue for mid-latitude atmospheric dynamics, it lacks many of the characteristics of
a full, three-dimensional system. Moreover, the experiments conducted by Fisher et al. used a perfect
model (that is, the assimilating model was identical to the model that defined “truth”, and from which
observations were taken). In section 4, we address these shortcomings by presenting results from a more
realistic model, and by introducing model error into the analysis.

Current 4D-Var algorithms are highly sequential, making them unattractive for implementation on future
computer architectures. In section 5, we address the possibilities for parallelising 4D-Var, and introduce
a new formulation of 4D-Var that allows parallelisation in time.

2 Persistence of Past Information

All data assimilation algorithms combine information from the past with current information, in order
to form an estimate of the current state of a system. Typically, the past information takes the form
of a forecast from an earlier analysis. It may also include covariance information, as in the Kalman
filter. Given this dependence on past information, it is of interest to investigate how far into the past
information remains useful.

One way to evaluate the value of past information is to perform a data-reinstatement experiment. In
this type of experiment, two identical analysis systems are run for a period of time with one system
assimilating all available observations and the other system denied one type of observation (for example,
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Figure 1: Time series from 15–31 August 2005 of 500hPa geopotential root-mean-square difference
between 24 hour forecasts and verifying analyses averaged over the southern hemisphere. The red
curve is for forecasts from an analysis system that used all available observations. The black curve
is for forecasts from a system that was denied satellite radiances before 15 August.

satellite radiances). Once the two systems have reached consistent levels of analysis error (one would
expect the system that has been denied a subset of observations to have larger analysis errors than the
system that includes all the data), the withheld observation type is reinstated so that, for all subsequent
analysis cycles, both systems assimilate identical observations.

Since the two analysis systems are identical, the differences between their analyses after reinstating the
withdrawn observations are determined by their memory for the period during which they assimilated
different observations. Assuming that this memory fades with time, we expect the analyses to converge
over subsequent cycles. The rate at which this convergence takes place gives an estimate of the memory
of the analysis system for past information.

Figure 1 shows, for two experiments, time series of the root-mean-square difference between 24-hour
forecasts and their verifying analyses for 500hPa geopotential height averaged over the southern hemi-
sphere. Both experiments were started from identical initial conditions on 1 August 2005. The experi-
ment shown by the red curve assimilated all available observations. The experiment shown by the black
curve was denied satellite observations until 15 August, after which they were reinstated. The errors
of the 24-hour forecasts from this second experiment reduced over a period of three days, until they
reached the same level as the first experiment. After this period of convergence, the two experiments
are effectively indistinguishable. Time series for longer range forecasts (not shown) show a similar
convergence over three days.

The experiment shows that the analysis system is effectively independent of observations and back-
ground states more than three days old. Note that this estimate is shorter than the seven days suggested
by Fisher et al. (2005). The difference may be attributed to that fact that Fisher et al. estimated the
memory following the withdrawal of satellite observations, rather than after their reinstatement. It is
likely that the memory of an assimilation system for old information depends on the observing network.
Fisher et al’s result shows that a system from which satellite radiances have been withdrawn has a mem-
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Figure 2: Variance and correlation of background error at the end of 230 days of assimilation for
an extended Kalman filter applied to the Lorenz (1995) model. The left panel is for an experiment
in which the covariance matrix was replaced by a static matrix during the first 225 days. The right
panel is for an experiment in which the covariance matrix was allowed to evolve throughout the
period.

ory of around seven days, whereas our data-reinstatement experiment suggests a memory of three days
for a system that assimilates all available observations.

A further demonstration of the limited memory of data assimilation systems was given by Fisher et al.
(op cit.) for an extended Kalman filter applied to the Lorenz (1995) model. They ran two experiments
over a 230-day period. In one experiment, the covariance matrix was replaced at every cycle for the first
225 days by a static covariance matrix, after which it was allowed to evolve according to the Kalman
filter equations. In the other experiment, the covariance matrix was allowed to evolve throughout the
230 days.

Figure 2 shows the background error variances and correlations at the end of the 230 days for both
experiments. The covariance matrices for the two experiments are almost indistinguishable, apart from
a small (< 20%) change in the largest variances, showing that there is little memory for differences in
background states or covariances older than five days. It is worth commenting that the model used for
these experiments was perfect. That is, it was identical to the model used to perform the “truth run” from
which the observations were taken. The covariance evolution equation of the extended Kalman filter
included a contribution to account for linearisation error, but it was very small. The main contribution
to the limited memory of the filter came from the effect of the chaotic dynamics of the system, not from
the well-known “forgetting factor” effect of the model error covariance matrix.

3 Equivalence of 4D-Var and the Kalman Smoother

For a linear system, 4D-Var is algebraically equivalent to the Kalman smoother (see, for example,
Ménard and Daley, 1996). That is, for a linear model and over a given interval during which obser-
vations are available, 4D-Var and the Kalman Smoother produce exactly the same sequence of states
x0, . . . ,xN , given the same initial state xb and covariance matrix B. At the end of the interval, both are
equivalent to the Kalman Filter.

As shown in the previous section, if the interval is sufficiently long, the Kalman filter analysis xN at
the end of an interval is insensitive to old information from the beginning of the interval: i.e. to xb and
B. In this case, the Kalman filter analysis and error covariance at the end of the window are effectively
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indistinguishable from that of a Kalman filter that has been running indefinitely. Since both the Kalman
smoother and 4D-Var give identical analyses at the end of the interval to that of the Kalman filter, it
follows that 4D-Var gives effectively the same analysis xN as a Kalman Filter that has been running
indefinitely.

Viewed in this way, it is clear that for a sufficiently long analysis interval, 4D-Var is capable of generating
the Kalman filter solution at the end of the interval, and may therefore be regarded as an algorithm for
solving the Kalman Filter equations.

Strictly, the equivalence between 4D-Var and the Kalman filter holds only for a linear system. We believe
that this is not fundamental to the argument. Both algorithms can be applied to nonlinear systems pro-
vided a suitable linearisation of the problem can be found. Although 4D-Var and the extended Kalman
filter make different linearisation assumptions, it is difficult to argue that one is inherently better than
the other in this respect. A practical demonstration of the equivalence of 4D-Var and the Kalman filter
for a nonlinear system was given by Fisher et al. (op cit.). Moreover, there are significant similarities
between the linearisation adopted by 4D-Var and the Iterated Extended Kalman Filter (Wishner et al.,
1969; Bell, 1994.)

4 Experiments with a Quasi-Geostrophic Model

Fisher et al’s (op cit.) results were for a somewhat unrealistic system. They used the Lorenz (1995)
model, which is an extremely simple analogue for mid-latitude dynamics. Moreover, their experiments
were conducted using a perfect assimilating model; the analysis cost function did not have a background
term; and the system was rather well observed compared with a typical numerical weather prediction
(NWP) system (60% of gridpoints observed).

Recent work has addressed these shortcomings, and is presented in this section. Specifically, we present
results for a weak-constraint 4D-Var analysis for a two-level quasi-geostrophic channel model. We have
verified that the model has realistic error-growth and nonlinearity characteristics. The error doubling
time for the model is approximately 30 hours, and the nonlinearity index defined by Gilmour et al.
(2001) reaches 0.7 (indicating a breakdown of linearity) after about 60 hours.

We introduced realistic model error into the assimilating model by perturbing model parameters (specif-
ically, the depths of the two layers). This produces model error that is flow-dependent, time-correlated,
strongly anisotropic and inhomogeneous, and which contains a significant systematic component. The
error is only poorly described by the assumed covariance matrix, which represents isotropic homoge-
neous temporally-white noise with a Gaussian spatial correlation structure.

In contrast to the experiments presented by Fisher et al., the new experiments included a background
error covariance matrix (with a similar structure to that of the model error covariance matrix), and only
1.25% of gridpoints were observed every 6 hours.

The cycling scheme is key to the success of long-window 4D-Var. We illustrate the approach in figure
3. The bottom two boxes marked “Long-window analysis” represent two consecutive cycles of analysis.
At each cycle, the analysis interval is advanced by six hours, regardless of the length of the interval. For
analysis intervals longer than six hours this results in an overlap between successive analysis intervals,
which allows the starting point of the minimisation (marked “First Guess” in figure 3) for the overlapping
part of the interval to be taken from the preceding analysis cycle. (The starting point of the minimisation
for the final six hours of the analysis interval must be provided by a short forecast.) This ensures that
the starting point for the minimisation is close to the optimal solution over most of the interval. As
a consequence, the analysis makes only small adjustments to its first guess, and the linearisation is
accurate, even for windows much longer than the time-to-nonlinearity of the underlying model.
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Figure 3: Schematic diagram showing the cycling algorithm used in the long window 4D-Var exper-
iments described in this paper.

There is no statistical inconsistency in taking the starting point of the minimisation from the preceding
analysis cycle, since there is no constraint for the analysis to stay close to the starting point. However,
statistical correctness requires that the background state is taken from an earlier analysis that has not
assimilated any of the current observations. This is indicated in figure 3 by the red line labelled “back-
ground”, which shows that the background is taken from an earlier analysis that does not overlap the
current cycle.

Since the model error induced by a change of model parameters has a large systematic component, it
was found to be important to introduce a mean component of model error, q̄, to account for it. The
resulting weak-constraint 4D-Var cost function can be written as:

J(x0,x1, . . . ,xN) =
1
2

(x0− xb)
T B−1 (x0− xb) (1)

+
1
2

N

∑
k=0

(yk−Hk(xk))
T R−1

k (yk−Hk(xk))

+
1
2

N

∑
k=1

(qk− q̄)T Q−1
k (qk− q̄)

where qk = xk−Mk(xk−1), with M representing a model integration from the time of xk−1 to that of xk.

Here, the analysis interval is divided into sub-windows, and the cost function is regarded as a function
of the states x0,x1, . . . ,xN defined at the start of each sub-window. The operator Hk maps the state
xk to the observations within the sub-window. (In principle therefore, Hk may incorporate a model
integration from the start of the sub-window to the times of the observations within the sub-window.
For the experiments reported here observations were contemporaneous with the states x0,x1, . . . ,xN , and
no model integration was required.) The matrices Rk are covariance matrices of model error, B is the
covariance matrix of background error, and xb is the background (prior) state.

The final term of the cost function represents model error that is independent at each sub-window with
covariance matrix Qk and mean q̄. We estimated the mean model error and the covariance matrices of
model error and background error from large samples of forecasts. For the covariance matrices we then
chose approximately representative error variance and correlation length scales which were used in the
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Figure 4: Root-mean-square error for streamfunction for analyses with different-length assimilation
intervals. The red curves show analysis error during the assimilation interval. The blue curves show
the error in the starting point for the minimisation.

isotropic, homogeneous covariance models.

Figure 4 shows the root-mean-square streamfunction error for the analysis and for the starting point of
the minimisation, averaged over both levels of the model and over a large sample of cases. Values are
plotted for a set of experiments with different-length analysis intervals. For each experiment, values
corresponding to the states x0,x1, . . . ,xN are joined by blue and red lines.

It is clear from figure 4 that, throughout much of the assimilation interval, the starting point for the
minimisation (indicated by the blue lines, and marked “initial guess”) has errors similar in magnitude
to the analysis error. This is unsurprising, since the starting point is taken from the preceding analysis
cycle. The analysis (marked in red) improves on the starting point towards the end of the interval, where
it benefits from an additional 6 hours of observations. Similarly, the loss of observations in the 6 hours
preceding the analysis interval reduces the accuracy of the analysis near the beginning of the interval to
below that of the initial guess for all except the shortest analysis interval.

The analysis error at the end of the assimilation interval decreases as the assimilation interval is ex-
tended. However, there is relatively little improvement for intervals longer than 96 hours. It is worth
noting that the most accurate estimate of the state lies towards the middle of the analysis interval. This
has interesting implications for re-analysis and for retrospective verification of analyses and forecasts.

The results presented in this section confirm those obtained by Fisher et al. (2005), while addressing
some of the shortcomings of that study. It is clear that Long-Window 4D-Var is capable of producing
good analyses even for a poorly observed system with an imperfect model and poorly described model
error statistics. This is an encouraging result that strongly suggests that the method could be applied
successfully in the NWP context. We note also that good analyses were obtained for analysis intervals
significantly longer than the time-to-nonlinearity of the underlying model.
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5 Parallel Algorithms for Weak-Constraint 4D-Var

In its usual formulation, 4D-Var is a highly sequential algorithm. Iterations of the minimisation algo-
rithm are performed sequentially. Within each iteration, tangent linear and adjoint integrations run one
after the other, and for each integration the model timesteps follow each other in sequence.

Computers are becoming ever more parallel, but processors are not getting faster, so that unless some-
thing can be done to make 4D-Var more parallel, it is likely to become un-affordable on future hardware.
Up to now parallelisation of 4D-Var has benefitted from efforts to parallelise the model. However, the
scope for further increases in the parallelism of the model is limited. The inner loops of the ECMWF
4D-Var analysis are currently run with just a few tens of grid columns per processor. This is barely
enough to mask inter-processor communication costs, so that a further reduction in the number of grid
columns per processor is unlikely to give much benefit. There is a need, therefore, to find increased
parallelism in other aspects of 4D-Var.

As described above (see equation 1), weak constraint 4D-Var splits the analysis window into a set of sub-
windows. At the beginning of each iteration of minimisation, the state at the start of each sub-window
is known. In principle, this allows the model integrations (Mk) and applications of the observation
operator (Hk), that are required to evaluate the terms in the two sums in equation 1, to be performed
in parallel. As will be seen below, exploiting this parallelism is straightforward in the case of the outer
loop of incremental 4D-Var, but is more difficult in the case of the inner loop.

5.1 Parallelising the Outer Loop

In strong-constraint 4D-Var, the inner loop calculates a single three-dimensional increment, δx0, which
is used to update the three-dimensional state x0 at the outer loop. By contrast, in weak-constraint 4D-Var
the inner loop produces a four-dimensional increment: δx0, . . . ,δxN . This increment is used to update
the four-dimensional state x0,x1, . . . ,xN at the outer loop:

x(n)
k = x(n−1)

k +δx(n−1)
k (2)

where (n) is the outer loop index.

Following this update, integrations of the outer-loop model and applications of the observation operator
are required to calculate quantities required by the next inner loop minimisation:

c(n)
k = q̄− x(n)

k +Mk(x
(n)
k−1) (3)

d(n)
k = yk−H (x(n)

k ) (4)

These calculations are independent for each sub-window, and can be performed in parallel.

5.2 Parallelising the Inner Loop

Linearising equation 1 about the trajectory x(n)
0 ,x(n)

1 , . . . ,x(n)
N gives the inner-loop cost function:

Ĵ(δx(n)
0 , . . . ,δx(n)

N ) =
1
2

(
δx0−b(n)

)T
B−1

(
δx0−b(n)

)
+

1
2

N

∑
k=0

(
H(n)

k δxk−d(n)
k

)T
R−1

k

(
H(n)

k δxk−d(n)
k

)
(5)

+
1
2

N

∑
k=1

(
δqk− c(n)

k

)T
Q−1

k

(
δqk− c(n)

k

)
ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, 6-9 September 2011 195



FISHER, M: LONG WINDOW 4D-VAR

where δqk = δxk−M(n)
k δxk−1, with M(n)

k denoting the tangent linear model; H(n)
k is the tangent liner

observation operator; and b(n), c(n)
k and d(n)

k come from the outer loop:

b(n) = xb− x(n)
0 (6)

c(n)
k = q̄−q(n)

k (7)

d(n)
k = yk−Hk(x

(n)
k ) (8)

Parallelising the minimisation of the inner loop is not trivial. It is unlikely that simultaneous calculations
of gradients of the cost function will provide significant benefit. This is because the conjugate gradient
algorithm, which is the obvious choice for minimising the inner loop cost function, relies on building
up a high order Krylov space based on the initial cost-function gradient. Building up this space requires
sequential gradient calculations with each calculation providing input to the next gradient calculation. It
seems likely, therefore, that parallelising the minimisation of the inner loop must be achieved by paral-
lelising the computations within each iteration, rather than by parallelising the iterations themselves.

From now on, for convenience of notation, we will drop the outer-loop index (n) from the terms in equa-
tion 5. We can simplify the equation further by defining some four-dimensional vectors and matrices:

δx =


δx0
δx1
...
δxN

 δp =


δx0
δq1
...
δqN


These vectors are related through δqk = δxk−Mkδxk−1, which we can write in in matrix form as:

δp = Lδx (9)

where:

L =


I
−M1 I

−M2 I
. . . . . .
−MN I

 (10)

We will also define:

R =


R0

R1
. . .

RN

 , D =


B

Q1
. . .

QN

 , (11)

H =


H0

H1
. . .

HN

 , b =


b
c1
...
cN

 d =


d0
d1
...
dN

 .

With these definitions, we can write the inner-loop cost function either as a function of δx:

J(δx) = (Lδx−b)TD−1(Lδx−b)+(Hδx−d)TR−1(Hδx−d), (12)

or as a function of δp:

J(δp) = (δp−b)TD−1(δp−b)+(HL−1
δp−d)TR−1(HL−1

δp−d). (13)

196 ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, 6-9 September 2011



FISHER, M: LONG WINDOW 4D-VAR

Let us now consider how the cost function (or its gradient) can be evaluated using equations 12 and 13.

In the case of equation 12, the initial four-dimensional increment, δx, is known at the start of the
calculation. Applying H to δx requires application of Hk to δxk for k = 0 . . .N. These applications can
be performed in parallel. Likewise, evaluation of the first term of the cost function requires application
of L to δx, which in turn requires the application of Mk to δxk−1 for k = 1 . . .N. These model integrations
can also be performed in parallel. We see, therefore, that evaluation of the cost function (or its gradient)
can be parallelised over sub-windows if the cost function is represented as a function of δx.

Equation 13, however, cannot easily be parallelised. This version of the cost function requires the appli-
cation of L−1. This is equivalent to solving the linear system Lδx = δp for δx by forward substitution,
which amounts to the following sequential algorithm:

for k = 1 . . .N
δxk = δqk +Mkδxk−1

end

Equation 13 has a strong resemblance to the familiar strong-constraint 4D-Var and 3D-Var cost func-
tions. In particular, we can precondition it using the covariance matrix that appears in its first term, to
give:

J(χ) = χ
T

χ +(HL−1
δp−d)TR−1(HL−1

δp−d) (14)

where δp = D1/2χ +b.

The first term of equation 14 contributes an identity matrix to the Hessian matrix of second derivatives,
that guarantees that no eigenvalues of the Hessian are smaller than one. Since the rate of convergence of
the minimisation is largely determined by the ratio of the largest to smallest eigenvalues of the Hessian,
preconditioning using D is effective in ensuring the convergence rate is not spoiled by the presence of
small Hessian eigenvalues.

Reducing the Hessian of the first term of equation 12 to the identity matrix requires the following
preconditioner:

δx = L−1(D1/2
χ +b). (15)

The presence of L−1 in the preconditioner requires sequential model integrations, thereby making an
otherwise parallel algorithm sequential. An obvious solution to this problem is to replace L−1 in equa-
tion 15 by a cheap approximation L̃−1. However, if we do this, we can no longer write the first term of
the cost function as χTχ . Rather, we have to calculate δx, and then explicity evaluate the term as

(Lδx−b)TD−1(Lδx−b). (16)

In this case, the Hessian of of the first term of the cost function (with respect to χ) is no longer the
identity matrix, but:

DT/2L̃−TLTD−1LL̃−1D1/2. (17)

Unfortunately, the matrix D, typically has some very small eigenvalues, corresponding (for example) to
large spatial scales have near-zero variances. This makes the preconditioning extremely sensitive to the
accuracy with which L̃ approximates L. It is difficult to choose an approximation that does not produce
a range of very small Hessian eigenvalues, which ruin the conditioning of the minimisation.

So far, we have failed to find a preconditioner that is both effective and cheap to evaluate. This has
prompted us to devise a new formulation of 4D-Var which we describe in the next section.
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6 The Saddle Point Formulation of 4D-Var

Let us consider equation 12. At the minimum of the cost function, we have:

∇J = LTD−1(Lδx−b)+HTR−1(Hδx−d) = 0 (18)

Let us define:

λ = D−1(b−Lδx) (19)

µ = R−1(d−Hδx) (20)

Then equations 19, 20 and 18 can be written as

Dλ +Lδx = b
Rµ +Hδx = d

LTλ +HTµ = 0

=⇒

 D 0 L
0 R H

LT HT 0

 λ

µ

δx

=

 b
d
0

 (21)

This is called the saddle point formulation of 4D-Var. The matrix in equation 21 is a saddle point matrix
and is conventionally denoted A . The matrix is real, symmetric, but indefinite. Note that the matrix
contains no inverse matrices, and in particular does not contain L−1. This shows that we can apply A
without requiring a sequential model integration (i.e. we can parallelise over sub-windows). The lack
of inverses of covariance matrices in the saddle point matrix is also also an advantage, since it is often
easier to construct the covariance matrices than their inverses.

Although the above derivation of the saddle-point formulation of 4D-Var is particularly simple, it does
not give much insight into the formulation. An alternative derivation, which gives more insight, is pos-
sible if we write the minimisation of the original cost function (equation 12) as a constrained problem:

min
δp,δw

J(δp,δw) = (δp−b)TD−1(δp−b)+(δw−d)TR−1(δw−d) (22)

subject to δp = Lδx and δw = Hδx.

To solve this constrained problem, we introduce the Lagrangian L , together with vectors of Lagrange
multipliers λ and µ for the constraints δp = Lδx and δw = Hδx:

L (δx,δp,δw,λ ,µ) = (δp−b)TD−1(δp−b)+(δw−d)TR−1(δw−d) (23)

+λ
T(δp−Lδx)+ µ

T(δw−Hδx)

The solution of the constrained minimisation problem corresponds to the stationary point of the La-
grangian, which may be found by setting all of its first derivatives to zero:

∂L

∂λ
= 0 ⇒ δp = Lδx (24)

∂L

∂ µ
= 0 ⇒ δw = Hδx (25)

∂L

∂δp
= 0 ⇒ D−1(δp−b)+λ = 0 (26)

∂L

∂δw
= 0 ⇒ R−1(δw−d)+ µ = 0 (27)

∂L

∂δx
= 0 ⇒ LT

λ +HT
µ = 0 (28)
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Eliminating δp and δw using the first two equations, we are left with a set of three equations that may
easily be rearranged to give the saddle-point system.

This derivation highlights the fact that the saddle-point system is different from both 4D-Var and 4D-
PSAS. Both the latter can be derived from the Lagrangian by combining equations 24–28 to produce
functions of δx or δp with positive definite Hessians. Effectively, 4D-Var and 4D-PSAS convert the
constrained minimisation problem into unconstrained problems, with 4D-PSAS being the Lagrangian
dual of 4D-Var. By contrast, the saddle-point formulation directly determines the stationary point of the
Lagrangian — a function that has both positive and negative curvature.

7 Preconditioning the Saddle Point System

To solve the saddle point system, we have to precondition it. Preconditioning saddle point systems is the
subject of much current research (see, for example, Benzi and Wathen, 2008; Benzi, Golub and Liesen,
2005). One possible preconditioner is (c.f. Bergamaschi, et al., 2011):

P̃ =

 D 0 L̃
0 R 0

L̃T 0 0

 (29)

in which L̃ approximates L.

It is readily verified that P̃−1 can be expressed as

P̃−1 =

 0 0 L̃−T

0 R−1 0
L̃−1 0 −L̃−1DL̃−T

 (30)

Note that application of P̃−1 requires an approximate inverse of L. As an initial approach, we have
generated approximate inverses using the following, easily proved, identity:

L−1 = I+(I−L)+(I−L)2 + . . .+(I−L)N−1 (31)

Since this is a (finite) power series expansion, it suggests truncating the series at some order < N−1.

Figure 5 shows the convergence of the saddle-point formulation of 4D-Var as a function of iteration
for a weak constraint 4D-Var analysis using the quasi-geostrophic system described in an earlier sec-
tion. For this experiment, the analysis interval was 24 hours, and was divided into eight sub-windows.
The saddle-point system was solved using GMRES. For comparison, the convergence of the “forcing”
formulation of 4D-Var is also shown. This corresponds to solution of equation 14 using a conjugate-
gradient algorithm.

It is clear from figure 5 that the rate of convergence per iteration of the saddle-point algorithm tends to
increase as the accuracy of the approximation to L−1 increases. However, even when the exact inverse of
L is used (corresponding to the curve labelled “7”), the saddle-point algorithm requires more iterations
to achieve a comparable accuracy to that of the forcing formulation.

The chief advantage of the saddle-point algorithm is its parallel nature. The forcing formulation of
4D-Var requires, at each iteration, a sequential integration of the tangent linear model over the entire
assimilation interval, followed by a sequential integration of the adjoint model. By contrast, the sub-
window integrations required to apply A can be run in parallel. Moreover, application of L̃−1 can
also be parallelised over sub-windows. For a given truncation order, m, application of L̃−1 requires m
applications of L, and therefore m sequential integrations for each sub-window. A further application
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Figure 5: Convergence of the saddle-point algorithm as a function of iteration for different trunca-
tions of the series expansion for L. The numbers on the curves indicate the truncation order. The
curve marked “F” shows the convergence of the “forcing formulation” of 4D-Var.
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grations for different truncations of the series expansion for L
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of L is required to apply A , making a total sequential cost for the saddle-point algorithm of m + 1
sub-window integrations per iteration.

To give an indication of the possibility for parallel speed-up offered by the saddle-point formulation,
we have re-plotted figure 5 with the horizontal axis showing necessarily-sequential sub-window integra-
tions, assuming that tangent-linear and adjoint integrations are performed sequentially. (That is, we have
multiplied the number of iterations by m+1, where m is the truncation order for L̃−1, or by eight in the
case of the forcing formulation.) The result is shown in figure 6. For small M, the saddle-point formula-
tion requires significantly fewer sequential integrations than the forcing formulation, and is particularly
efficient if a zero-order (i.e. identity matrix) approximation to L−1 is used.

After producing this figure 6, we realised that a further increase in the parallel efficiency of the saddle
point algorithm is possible if the tangent linear and adjoint integrations are performed simultaneously.
(This possibility was also noted by Lagarde (2000), in the context of strong-constraint 4D-Var.) This
would lead to an even greater parallel speed-up than is suggested by figure 6.

The results presented in this section are preliminary. We have investigated one possible preconditioner
and one method of approximating L−1. It is possible that better preconditioners and better approxima-
tions can be found that would further reduce the computational cost of 4D-Var. In this context, we note
that the matrix L plays an important role in the “Parareal” time-parallel integration algorithm (Lions et
al., 2001. See also Gander and Vandewalle, 2007). It is possible that exploiting this connection could
lead to efficient and highly parallel preconditioners for weak constraint 4D-Var. It is also likely that, by
taking the structure of the problem into account, more efficient solution algorithms than GMRES can be
found.

8 Conclusions

The results presented above lend weight to the suggestion that long window 4D-Var is a viable data
assimilation method for NWP. The data reinstatement experiment reported in section 2 hints that most of
the benefits of extending the analysis window can be achieved by increasing the window from its current
12 hours to something less than three days. Experiments with a quasi-geostrophic model and with
realistic model error are encouraging steps towards implementing long window 4D-Var in more complex
models. Finally, we have presented an algorithm that allows a significant increase in the parallelism of
4D-Var. We expect this algorithm to allow 4D-Var to remain viable on next-generation supercomputers.
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