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Abstract 

Hybrid Variational-Ensemble data assimilation refers to a methodology through which the respective 
advantages of traditional variational and ensemble data assimilation approaches are combined to produce an 
analysis that is superior to that produced by either pure form.  Traditional four-dimensional variational (4D-Var) 
assimilation has been the workhorse of many leading operational NWP centres for over a decade, and benefits 
from full-rank, four-dimensional forecast error covariances modelled via multivariate balance constraints and a 
linear model to evolve covariances in time. However, covariance models are imperfect and typically only model 
climatological balances. The linear model can be expensive to develop and maintain, and may suffer from poor 
scalability on modern HPC platforms. Ensemble data assimilation attempts to circumvent the covariance 
modeling effort by making explicit use of flow-dependent forecast error information provided by ensemble 
prediction systems. However, ensemble-based error covariances typically suffer from significant sampling error 
due to the relatively small ensemble size (20-200) affordable in an NWP context, so covariance modelling in the 
form of covariance localization and inflation is still required. The hybrid approach merges the two sources of 
covariance information to ameliorate the low-rank, ensemble sampling issue whilst at the same time smoothly 
introducing flow-dependence covariances to the 4D-Var algorithm. The hybrid variational/ensemble approach is 
particularly attractive for those operational centres that have already developed sophisticated variational data 
assimilation systems as well as ensemble prediction systems for probabilistic NWP. With these building blocks, 
the transition to hybrid variational/ensemble data assimilation is low cost, low risk and provides a smooth 
transition to the emerging world of ensemble data assimilation for operational NWP. 

This paper provides a brief description of the so-called ‘alpha control variable’ approach to hybrid variational-
ensemble data assimilation approach, including details of the application of traditional variational covariance 
modelling approaches to model ensemble covariance localization. A hybrid 4D-Var/Ensemble Transform 
Kalman Filter (ETKF) algorithm was implemented in operational global NWP at the Met Office in July 2011.  
Selected results from final trials of this implementation are presented. Plans to further couple the data 
assimilation and ensemble prediction systems at the Met Office are briefly outlined. 

1. Introduction 
Modern data assimilation systems use short-range forecast error information to optimize the detailed 
fit of the analysis to available observations. Forecast error covariances typically used within current-
generation four-dimensional variational (4D-Var) data assimilation systems (Rabier et al. 2000, 
Rawlins et al. 2007, Huang et al. 2009) are typically based on the same climatological, modelled 
estimates used in previous generation 3D-Var systems (Lorenc et al. 2000, Wu et al. 2002, Barker et 
al. 2004). Use of the nonlinear model within 4D-Var, either directly as in “full-fields” 4D-Var (e.g. 
Sun and Crook 1998, Zou et al. 1997), or as a base state for a linear “perturbation forecast” (PF) 
model within “incremental” 4D-Var (Courtier et al. 1994), does provide a flow-dependent evolution 
of analysis increments through the time window. However, most 4D-Var systems still make use of a 
static error covariance matrix specified at the start of the time window, and so the analysis increment 
is somewhat blind to the current forecast “errors of the day” (Lorenc 2003). It is therefore reasonable 
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to assume that better use of observations within both 3D-Var and 4D-Var will result from making use 
of the flow-dependent background error covariances. 

Ensemble Kalman filter (EnKF) data assimilation techniques have received enormous attention in 
recent years as potential alternatives to variational data assimilation systems for NWP (e.g. 
Houtekamer and Mitchell 1998, Whitaker and Hamill 2002, Tippet et al. 2003, Snyder and Zhang 
2003, Zupanski 2005, Tong and Xue 2005, Hunt et al. 2007, Miyoshi and Yamane 2007, Whitaker et 
al. 2008). Ensemble filters implicitly evolve flow-dependent forecast error covariances through the 
integration of ensembles of nonlinear forecasts. The ability of the ensemble to resolve details of the 
error covariance structure is proportional to the ensemble size, which is limited by practical 
constraints; typically 20-200 members are affordable for operational NWP. Lorenc (2003) lists several 
problems resulting from the limitation of finite ensemble size. Firstly, the number of observations that 
can be successfully assimilated using ensemble-based forecast error covariance estimates scales with 
ensemble size. Assimilation of high-density observations, such as radar and hyperspectral radiometers 
can lead to spurious increments in nearby data-sparse regions. One solution is to thin the data to 
reduce the number of degrees of freedom being analysed. Secondly, sampling error in resolving the 
forecast error probability density function will also manifest as spurious analysis increments. The 
usual solution is to apply empirical “covariance localization” (e.g. via use of a Schur/Hadamard 
product – Hamill et al. 2001) to eliminate weak, (hopefully) spurious covariances. Localization also 
has the benefit of increasing the number of degrees of freedom, and hence reducing the need for 
thinning, by decoupling analysis increments situated at large distance. Unfortunately, localization also 
tends to destroy balance (e.g. geostrophic, hydrostatic, cyclostrophic) that may be present in the true 
forecast errors (Lorenc 2003). Thirdly, low-rank ensemble-based forecast error covariances tend to 
underestimate error variance (spread), especially if model error has not been adequately represented in 
the ensemble (Anderson 2001). Solutions include the use of multiplicative/additive “covariance 
inflation” of ensemble-based error-estimates, and the inclusion of perturbations (e.g. stochastic 
physics) within the forecast integrations themselves (e.g. Mitchell et al. 2002, Bowler et al. 2008). 

In contrast, the modelled forecast error covariances typically used with variational data assimilation 
do not suffer from such sampling problems. They do, however, suffer from a range of other practical 
problems. Background error estimates for 3/4D-Var are typically computed off-line from lagged 
forecast differences (Parrish and Derber 1992) or ensemble perturbations (Fisher 2003) averaged over 
an extended time-period ranging from a few weeks to several years. This time averaging removes any 
flow-dependent detail beyond a crude seasonal dependence. Frequently, the error covariance estimates 
are not recalculated with model upgrades. Secondly, background error covariances are typically 
specified not in physical space, but in an esoteric “control variable” space (e.g. power spectra of the 
eigenvector projection of the vertical component of unbalanced temperature forecast error, e.g. 
Ingleby 2001). This has the desired practical effect of preconditioning and diagonalizing the 
prescribed background error covariance, but makes their visualization and interpretation difficult. 
Finally, even if flow-dependent information were available, typical assumptions made within the 
definition of control variables (e.g. isotropy, homogeneity) would render the assimilation system blind 
to these details. Except for that flow-dependence that can be retrieved from the use of the nonlinear 
trajectory as base state within the linear model in 4D-Var, the error covariances have very little 
knowledge concerning the quality of the forecast against which they are attempting to fit observations. 
Clearly, both variational and ensemble estimates of forecast error are sub-optimal in practical 
applications. 
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The scientific advantages and disadvantages need to be weighted against practical considerations, for 
which all techniques have strengths/weaknesses. As ensemble prediction becomes mainstream due to 
the requirement for probabilistic forecast products, the major cost of ensemble data assimilation (the 
forecast update step) is already ‘paid for’, and could conceivably be completed prior to the start of the 
assimilation step. In contrast, the major costs of incremental 4D-Var are the tangent linear and adjoint 
models, integrated iteratively within the assimilation step, and run essentially for data assimilation 
purposes only. Thus, although the overall costs may be similar, 4D-Var places a much larger burden 
on the assimilation step, potentially delaying the completion of the analysis (and subsequent forecast) 
step: an important consideration for operational NWP. It has frequently been argued that ensemble 
data assimilation systems are easier to maintain than variational systems (e.g. Kalnay et al. 2007). 
Whilst it is true that linear/adjoint models require significant resources to develop, this is only an issue 
for those models for which adjoints do not yet exist (many operational centers maintain adjoint 
models with relatively low maintenance costs). It is also inevitable that the complexity of ensemble 
data assimilation systems will increase as they begin to include the features already contained within 
current variational schemes; e.g. outer loop treatment of nonlinearities, correlated observation errors, 
complex quality control, observation operators for high-density non-traditional observations (e.g. 
radiances, refractivities). Memory scalability and redundant recomputations of analysis increments are 
still sub-optimal features in ensemble data assimilation (Hunt et al. 2007, Anderson and Collins 
2007). The scalability of 4D-Var is dependent on the numerical scheme used within the linear forecast 
model, which is often based on the numerics of the corresponding nonlinear model. Frequently, the 
low-resolution linear application within 4D-Var has not been considering in the design of the 
nonlinear model, and hence scalability may be compromised. 

Hybrid (variational/ensemble) data assimilation approaches have been investigated in recent years that 
attempt to combine the best of both variational and ensemble frameworks. Barker (1999) performed 
initial studies of a hybrid variational/ensemble system using the Met Office’s operational 3D-Var 
system (Lorenc et al. 2000), and an ensemble prediction system based on the Error Breeding 
technique (Toth and Kalnay 1997). Results indicated that a flow-dependent response to observations 
could be achieved at very low cost through the introduction of additional control variables within the 
variational cost function. As the Met Office did not at the time have a strategic requirement for an 
ensemble prediction system, only a very crude ensemble – low-resolution and only two members – 
was possible. Perhaps unsurprisingly, preliminary pre-operational trials indicated only a neutral 
impact overall, but recommended further studies using a larger ensemble size. Hamill and Snyder 
(2000) presented positive results from an alternative 3D-Var-ensemble hybrid requiring perturbed 
observations and multiple analyses. Etherton and Bishop (2004) found a similar result in a barotropic 
vorticity, perfect model context, and also showed that in the presence of model error, the optimal 
hybrid possessed a much smaller component of ensemble-based error. This they attributed to the 
climatological 3D-Var component of forecast error being a more accurate representation of model 
error than the ensemble-based covariances. However, the small amount (~10%) of flow-dependent 
covariance information retained was still sufficient to significantly reduce analysis/forecast error 
compared to the pure 3D-Var results. Buehner (2005) tested a hybrid approach in a quasi-operational 
3D-Var setting. Impacts were rather small – the impact of model error and sampling error in a real-
world situation may dominate improvements due to the ability of the hybrid to model flow-
dependence. The equivalence of the original Met Office approach (Barker 1999, Lorenc 2003) to the 
Hamill and Snyder (2000) and Buehner (2005) hybrid has been demonstrated in Wang et al. (2007). 
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The representation of flow-dependent errors via additional control variables has been revisited by 
Wang et al. (2008a, b) using the Weather Research and Forecasting (WRF) model’s “WRFDA” 
system (Barker et al. 2012). Major differences from the original Met Office study include a) 
Application in a regional model, and b) Ensemble perturbations source changing from an error 
breeding system to an Ensemble Transform Kalman Filter (ETKF – Bishop et al. 2001, Wang and 
Bishop 2003). Wang et al. (2008a) assessed the impact of the WRF-based hybrid in a very low-
resolution (200km), reduced observation network (radiosondes only), non-cycling Observation 
System Simulation Experiment (OSSE) framework. Results indicated that the hybrid produced better 
forecasts than both the deterministic 3D-Var control and the ensemble mean analysis, especially in 
data-sparse areas. A second paper (Wang et al. 2008b) relaxed the OSSE assumptions (perfect model 
and known observation errors) by retesting with real radiosonde observations. The impact of the flow-
dependent analysis increments was reduced, but still positive. Hamill et al. (2011) illustrate the 
positive impact of a similar hybrid 3D-Var algorithm versus both traditional 3D-Var as well as a 60 
member EnKF on tropical cyclone track forecasts for the 2010 hurricane season. 

In section 2, the specification of flow-dependent, ensemble-based error covariances in a variational 
assimilation system via the ‘alpha control variable’ method is described, including the use of existing 
variational data assimilation techniques to represent spatial ensemble covariance localization. In 
section 3, results from the initial implementation of a hybrid 4D-Var/ETKF algorithm within the Met 
Office’s global NWP system are briefly described. Further details can be found in Clayton et al. 
(2012). The hybrid is only a first stage in developing a full, two-way coupling between data 
assimilation and an ensemble prediction system (EPS) – the current hybrid still relies on deterministic 
4D-Var and a separate ensemble perturbation update mechanism (e.g. the ETKF). Plans for an 
extension to the hybrid concept, which attempts to address the issues of linear model scalability and 
maintenance, is briefly described in Section 4. 

2. Background 

2.1. The Alpha Control Variable (ACV) Method 

The implementation of the hybrid approach in a variational framework proceeds as described in 
Lorenc (2003), and is briefly reviewed here.  In the following, it is assumed that a set δX f  of N 

short-range ensemble forecast perturbation states δx fn  (member minus mean, 1 ≤ n ≤ N ) is available 

from a previous cycle of the EPS: 

 ( )1 2, ,...,X x x xf f f fNδ δ δ δ=  (1) 

The standard climatological increment within 3/4D-Var is given by δxclim = B1/2v = Uv , where 

B = UUT  is the standard background error covariance, modelled by spatial and variable transforms 
through the operator U. The vector of standard control variables v contains, for example, normalized, 
spectral modes of meteorological fields known to have relatively uncorrelated cross-covariances – see 

e.g. Lorenc et al. (2000). In the hybrid, flow-dependent ensemble perturbations δx fn are introduced 

via their element-wise (Schur) products  with three-dimensional scalar weighting fields αn: 
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The covariances of the weighting fields αn are modelling in a similar way to their climatological 
counterparts through an ‘alpha control variable transform’ Uα , with control variables vα constrained 
by an additional term Je in an expanded variational cost function 
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where Jb/Jo are the standard background/observation cost functions, δx0 = δxclim + δx flow−dep is the 

total analysis increment, B/R the usual background/observation error covariance matrices, H the 
linearized observation operator acting on the increment δxt = M 0→tδx0 , and di = yoi − H (xi )  is 

the innovation vector difference between observation yoi  and full model state represented in 

observation space through the potentially nonlinear operator H. The weights Wb and Wα  fix the 
relative contributions of climatological and flow-dependent increments, and can be related through the 
conservation of total error variance (Wang et al. 2008a). It is important to reiterate that with the 
exception of the Je term, all other operators in Eq. (3) are part of the standard 3/4D-Var algorithm. 
The code changes required to implement the hybrid are therefore relatively minor, and independent of 
technique (3/4D-Var), and observation network.  

The alpha covariance matrix A = UαUα
T  in Eq. (3) performs the role of covariance localization by 

limiting the influence of the flow-dependent covariances to within a specified distance of the 
observation (Wang et al. 2007). Within the variational system, it is convenient (but not essential) to 
make use of components of the pre-existing control variable transform U in the covariance 
localization model Uα. Two examples of this technique are given below which lead to a highly 
computationally-efficient three-dimensional spatial covariance localization through the use of spectral 
transforms and empirical orthogonal function decomposition. 

2.2. Horizontal Covariance Localization Via Spectral Transform 

Fig. (1a) shows example empirical covariance localization functions typical of those used within 
EnKF algorithms. Assuming isotropy and homogeneity, these correlation functions can be efficiently 
represented in spectral space by low wavenumber (~T21) power spectra (Fig. 1b). 

The impact of spectral horizontal covariance localization within a 3D-Var context is demonstrated in 
Fig. (2) for a single temperature observation and an artificially small ensemble size of two (similar to 
the initial Met Office experimentation with one perturbation in Barker 1999). For clarity, full-weight 
is given to the ensemble component of the hybrid covariance (We=1, Wb=∞) in Figs. (2b, 2c, 2e, 2f). 
For comparison the standard 3D-Var response (We=∞, Wb=1) is shown in Figs. (2a, 2d). The impact of 
spectral covariance localization can be seen by comparing Figs. (2b, 2c) and (2e, 2f). Without 
localization (Figs. 2b, 2e) the multivariate increment is completely dominated by sampling noise. 
With localization applied (Figs. 2c, 2f), the increment response is confined to the vicinity of the 
observation, but still retains an element of anisotropy (the localization is isotropic, but the single 

ensemble perturbation δx f is not). 
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a)  b) 

 
Figure 1a) Example empirical covariance localization: Gaussian, SOAR, and exponential 
functions with 1500km localization radius, and b) Corresponding power spectra. 

 

 
Figure 2. Temperature (above) and u-wind component (below) analysis increment response due 
to a single temperature observation minus background forcing of 1degK at 50N, 150E, 500hPa: 
standard, climatological 3D-Var response (left), raw ensemble covariance (centre), and localized 
ensemble covariance (right). 
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2.3. Vertical Covariance Localization 

A second example of empirical covariance localization modelling within the variational hybrid is 
demonstrated through the use of empirical orthogonal function (EOF) decomposition to represent 
vertical covariance localization. As an example, a vertically-dependent covariance localization 
function is defined as  

 ( )2 2( , ) exp /c c ck k k k Lρ  = − −   (4) 

for model levels k and kc. The width of the correlation function is made to vary by making the vertical 
correlation lengthscale Lc a function of kc; e.g. Lc = 20kc / 41, taken from tuning of a 41-level 
version of the WRFDA AFWA application of the hybrid (Barker et al. 2012). The vertical correlation 
functions are shown for representative levels in Fig. (3a). As in the horizontal covariance localization 
case above, it is possible to make use of EOF routines within the existing U transform to efficiently 
represent vertical localization. Individual and cumulative eigenvalues corresponding to the 
localization function (Eq. (4)) are shown in Fig. (3b) – note the 41-level grid-space correlations can be 
represented accurately by only 9 EOF modes, indicating a significant data compression. The 
combination of single, low wavenumber (T21) spectral and truncated (T9) EOF decompositions 
represents a very significant reduction (compare with a 300x300 grid and 41 model levels) in the 
number of additional control variables vα  required for the additional term in the hybrid cost function 

(Eq. 3). 

In this section, the basic formulism of the hybrid has been laid out, and the relative flexibility and 
efficiency of the particular form of covariance localization demonstrated. In the following section, the 
hybrid is demonstrated in a full operational NWP context at the Met Office. 

 

a)  b) 

 
Figure 3 a) Vertical covariance localization functions as a function of selected model levels of the 
41-level WRFDA application of the hybrid (Barker et al. 2012), and b) Corresponding 
eigenvalues calculated via standard EOF decomposition. 
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3. Met Office Hybrid 4D-Var/ETKF Operational Implementation 
Current Met Office atmospheric data assimilation capabilities are based on an incremental four-
dimensional variational data assimilation scheme operational in a global domain since 2004 and a 
regional North Atlantic and Europe (NAE) domain since 2006. The system is capable of assimilating 
a wide range of conventional and satellite-remotely sensed observations, and has contributed 
significantly to improvements to global and UK performance metrics in recent years (Lorenc and 
Rawlins 2005). More recently, the “Met Office Global and Regional Ensemble Prediction System” 
(MOGREPS) was implemented operationally in 2008, following several years of development. 
MOGREPS provides short-range (0-72hr) probabilistic estimates of forecast uncertainty for a variety 
of Met Office customers. An extended 15-day version (MOGREPS-15) runs at ECMWF, providing 
medium-range ensemble forecasts as part of the Met Office’s contribution to THORPEX. Initial 
condition perturbations are created via an Ensemble Transform Kalman Filter (ETKF) algorithm, with 
additional spread being introduced through dynamically and physically based perturbations within the 
forecast model step itself (Bowler et al. 2008, Bowler et al. 2009). 

In the Met Office system, 4D-Var and MOGREPS are coupled through the use of 4D-Var’s 
deterministic analysis as the control to which ETKF perturbations are added to provide the ensemble 
of analyses for the next cycle (see Fig. 4). A world-first hybrid variational/ensemble data assimilation 
algorithm was implemented on 20 July 2011, introducing two-way coupling between global 4D-Var 
and MOGREPS. This is represented by the red ‘Ensemble Covariances’ connection in Fig. 4, which  
 

 
Figure 4. Sketch of the interactions between MOGREPS (upper box) and high-resolution 
deterministic NWP (lower box) systems. UM=Unified model, OPS=Observation 
Preprocessing System, ETKF=Ensemble Transform Kalman Filter. The red arrow 
denotes the coupling supplying ensemble perturbations as estimates of flow-dependent 
forecast error to the data assimilation, and 4D-Var analysis to which ETKF-updated 
ensemble perturbations are added for the next cycle of ensemble forecasts. 
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indicates the provision of flow-dependent ensemble perturbations to 4D-Var. These are incorporated 
into VAR using the alpha control variable technique described in section 2a above, using a Gaussian 
horizontal localization function, but a different vertical localization scheme to that presented in 
section 3c. 

In high-resolution pre-operational trials, the hybrid system gave significant performance 
improvements relative to non-hybrid controls. Fig. 5 shows the changes to RMS error for the fields 
used in the Met Office’s “NWP Index”; i.e., the fields considered most important to customers of 
global NWP products. For both trial periods, errors versus radiosonde and surface observations were 
consistently improved. Tropical wind errors against Met Office analyses were significantly increased, 
but we believe this is an artifact of the verification measure, and not a true reflection of forecast skill. 
When verifying against independent (ECMWF) analyses, this signal disappears, and the results 
become more consistent with the scores against observations. For verification against observations 
and ECMWF analyses, the average RMS error reduction across the two trial periods was 0.9%. 
Further details of the Met Office global NWP 4D-Var/ETKF hybrid implementation can be found in 
Clayton et al. (2012). 

        
Figure 5. Changes to RMS error relative to non-hybrid controls for the fields used within the Met 
Office’s NWP index. 

4. Conclusions and Future Work 
The implementation of a hybrid variational/ensemble algorithm in operational global NWP in July 
2011 represents a significant milestone in the development of ensemble data assimilation capabilities 
at the Met Office, since efforts to develop the ‘alpha control variable’ approach began in 1997 (Barker 
1999). However, the hybrid represents only an initial stage in the coupling between data assimilation 
and ensemble prediction systems. Short-term development plans for the global hybrid include 
increasing the ensemble size from the current (relatively small) 24 members, and more sophisticated 
(e.g. variable-dependent, adaptive) covariance localization (e.g. Bishop et al. 2011). In 2012, a new, 
2.2km component of the ensemble (MOGREPS-UK) will be implemented, thus permitting the testing 
of hybrid variational/ensemble data assimilation for convective-scale UK data assimilation system in 
the future. 
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Looking further ahead, more radical changes to the basic data assimilation algorithm are envisaged. 
As discussed above, apart from the use of hybrid covariances, the global 4D-Var algorithm is 
essentially unchanged. Thus, although the hybrid permits a smooth transition to ensemble-based flow-
dependent covariances, the long-term challenges for 4D-Var scalability, maintainability and flexibility 
remain. A review of alternative ensemble-based data assimilation algorithms was undertaken in 
2010/2011 to assess potential alternatives to 4D-Var. In summary, the Met Office ensemble data 
assimilation strategy going forward involves a) Continuing efforts to further improve the efficiency of 
4D-Var in the short/medium-term, and b) The development of a ‘4D-Ensemble-Var’ algorithm for the 
medium/long-term that removes the need for the expensive linear PF-model and its adjoint 
completely. The new algorithm – similar to the “En4DVar” algorithm of Liu et al. (2008), and the 
“En-4D-Var” algorithm of Buehner et al. (2010)1 - is a natural successor to the current hybrid, by 
extending the use of ensemble perturbations to model the evolution of forecast error throughout the 
4D-Var time window (Fig. 6). 

 

 
Figure 6. Schematic relationship between a) Traditional 4D-Var (making no use of the 
ensemble, and modelling covariance evolution via the linear PF model, using static 
initial covariance), b) Hybrid 4D-Var (using a combination of static and ensemble 
covariances at the start of the time window in combination with the PF model), and c) 
4D-Ensemble-Var (using the ensemble throughout the time-window instead of the PF 
model). 

As in all ensemble data assimilation algorithms, the bulk of the computational cost of 4D-Ensemble-
Var is in the integration of the ensemble forecasts. The analysis step (assimilation) is relatively cheap 
- a similar number of operations to 3D-Var, although with significantly increased memory and I/O 
costs. The computational cost savings from removing the PF/adjoint model can be reinvested in a 

                                                      
1 We prefer the name “4D-Ensemble-Var” because the key feature is the 4-dimensional use of the ensemble; it 
also is more consistent with the 4DEnKF terminology of Hunt et al. (2007). 
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larger ensemble to reduce ensemble sampling error. Results from a similar technique in Buehner et al. 
(2010) indicate an ensemble size of 100-200 members may be sufficient to match 4D-Var 
performance. 

Ensemble data assimilation algorithms are typically less tied to particular models than their variational 
counterparts. Increased flexibility will be strategically important during the development of the next-
generation dynamical cores. Reduced model/application-dependence also opens up the possibility of 
truly coupled data assimilation between earth system model components (i.e. cross-covariances 
between atmosphere, land, ocean, etc). Over the next two years, the 4D-Ensemble-Var algorithm will 
be developed and tested within the current VAR software framework. This permits both a clean 
intercomparison between alternative techniques, as well as ensuring that general developments benefit 
all flavours of 4D-Var under consideration within a single software system. 

It should be noted that the 4D-Ensemble-Var algorithm still requires a separate mechanism to update 
the ensemble perturbations, separately from the data assimilation. In the current hybrid, this role is 
performed by the ETKF. This separation is suboptimal because the ensemble mean (data assimilation) 
and perturbations (ETKF) are updated using different covariance models. In the 4D-Ensemble-Var 
project, an ‘Ensemble of 4D-Ensemble-Vars’ will be developed to address this inconsistency, in a 
similar way to the ECMWF’s strategy to develop an ‘Ensemble of traditional 4D-Vars’. The 4D-
Ensemble-Var approach promotes increased flexibility, relying on covariance localization techniques 
and larger ensemble sizes to make maximum use of the raw ensemble covariances. The ECMWF 
approach requires fewer ensemble members, instead relying on the continued use of sophisticated (but 
more core-specific) linear/adjoint/covariance models to treat sampling error, allowing the ensemble to 
define only a subset of flow-dependent forecast error parameters (e.g. variances, lengthscales, etc).  
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