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ABSTRACT 

The validity of the multi-model concept for medium-range weather forecasts was assessed by comparing the 
relative benefits of multi-model forecasts provided by the THORPEX Interactive Grand Global Ensemble 
(TIGGE) project with reforecast-calibrated ensemble predictions from the European Centre for Medium-Range 
Weather Forecasts (ECMWF). Considering the statistical performance of global probabilistic forecasts of 850-
hPa temperature and 2-m temperatures, a multi-model ensemble containing nine ensemble prediction systems 
(EPS) from the TIGGE archive did not improve on the performance of the best single-model, the ECMWF EPS. 
However, a reduced multi-model system, consisting of only the four best ensemble systems, provided by 
Canada, the US, the UK and ECMWF, showed an improved performance. This multi-model ensemble provided 
a new benchmark for the single-model systems contributing to the multi-model. However, reforecast-calibrated 
ECMWF EPS forecasts were of comparable or superior quality to the multi-model predictions, when verified 
against ERA-interim reanalyses. This improved performance was achieved by using the ECMWF reforecast 
dataset to correct for systematic errors and spread deficiencies. Further experimentation revealed that applying 
different weights to the individual model components of the TIGGE multi-model ensemble improved only 
marginally its performance. Therefore it does not seem worthwhile to employ computationally expensive tools 
for determining optimized weights when combining single-model ensembles of relatively similar quality.. 

 

1. Introduction 
The main motivation for investing into research activities on Numerical Weather Prediction (NWP) 
lies in the expectation that improved weather forecasts lead to enhanced socio-economic benefits. As 
such, the ultimate goal of all research related to NWP is to improve the quality and utility of weather 
forecasts. There are of course many ways to achieve this goal, ranging from work on the model 
system per se to research on the provision of user-optimized forecast products. All of these activities 
are valuable contributions to the general objective, and therefore none of the single efforts can be 
judged as more important than another. On the contrary, only through the diversity of approaches the 
overall goal can be achieved. 

Post-processing of Direct Model Output (DMO) from NWP models is one of the many ways to 
improve weather forecasts. The term “post-processing” encompasses any means of manipulating the 
DMO in order to provide improved predictions. However, here we will concentrate on two specific 
methods: (i) combining single-model forecasts into a multi-model forecast, and (ii) calibrating single-
model forecasts with the help of specific training datasets. Both of these approaches have been proven 
in the past to be successful in improving forecast quality. For example, the concept of multi-model 
forecasting has been extensively studied in the DEMETER project (Palmer et al., 2004), leading to a 
number of publications on the potential superiority of multi-model predictions on the seasonal 
timescale (see e.g. the special issue on the DEMETER project in Tellus-A 57(3)). Studying the 
rationale behind the success of multi-model ensembles, Hagedorn et al. (2005) concluded that “the 
key to the success of the multi-model concept lies in combining independent and skilful models, each 
with its own strengths and weaknesses.” In particular the fact that the performance of the single-
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model ensembles varies, and thus in an operational environment the “best” model cannot be easily 
identified, makes the multi-model ensemble overall the most reliable choice. However, based on 
systematic toy model simulations, Weigel at al. (2008) and Weigel and Bowler (2009) demonstrated 
that even under the assumption that there is a clearly identifiable best single-model system, a multi-
model ensemble can still improve the performance of this best model. 

This result is particularly relevant in the context of applying the multi-model concept to medium-
range weather forecasts, which has been at the heart of the THORPEX Interactive Grand Global 
Ensemble (TIGGE) project (Bougeault et al., 2010). First results from comparisons of the 
performance of individual TIGGE models indicated that in contrast to the seasonal timescale, where it 
can be difficult to define a “best” single-model which outperforms all other models on virtually all 
aspects, on the medium-range timescale it is much easier to identify a single-model which is clearly 
superior to all other models (Park et al., 2008). Therefore, the initial research question posed in the 
context of seasonal forecasting: “Does the combination of single-model ensembles with overall 
similar levels of skill lead to a more skilful multi-model ensemble?” changes in the context of 
medium-range forecasting to: “Does adding information from less skilful models to the best model 
lead to a more skilful multi-model ensemble?” As Weigel and Bowler (2009) pointed out in their 
theoretical study “it is possible to construct and combine reliable forecasts such that the multi-model 
has indeed higher skill than the best component forecast alone”, and early diagnosis of the TIGGE 
dataset confirms this theoretical result with real forecast data (Park et al. 2008, Johnson and 
Swinbank, 2009). 

In order to assess the validity and potential of the multi-model concept also in the broader context of 
other post-processing methods, we will also discuss the calibration of single forecast systems with the 
help of specific training datasets. A number of different calibration methods have been proposed for 
operational and research applications, and a recent comparison of several methods can be found in 
Wilks and Hamill (2007). As most calibration methods are based on the idea of correcting the current 
forecast by using past forecast errors, they require some sort of training dataset. With this set of past 
forecast-observation pairs, correction coefficients for a regression-based calibration scheme can be 
determined. It has been shown that such calibration techniques are particularly successful when a 
“reforecast” training dataset is available (Hamill et al. 2004, 2006, 2008; Hamill and Whitaker 2006, 
2007; Hagedorn et al. 2008). A reforecast dataset is a collection of forecasts from the past, usually 
going back for a considerable number of years or decades. In order to ensure consistency between 
reforecasts and actual forecasts, ideally the reforecasts are produced specifically with the same model 
and data assimilation system that is used to produce the actual forecasts. The availability of a large 
number of past forecast-observation pairs consistent with the current model system is a major factor 
of the success of the calibration technique used in this study. 

One can expect that both these post-processing methods, the multi-model concept and the reforecast 
calibration, have their own strengths and weaknesses. Hence it is only natural to compare the potential 
benefits of both approaches, which is one of the aims of this publication. However, it is not our intent 
to come up with a final judgement on which is the better method, but instead to provide some 
indication for potential users to decide which approach might be the more appropriate choice for their 
specific circumstances. In contrast to Weigel et al. (2009) who have investigated a similar question on 
the seasonal timescale, this study concentrates on the medium-range timescale of forecasts up to 15 
days. 
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A description of the datasets used can be found in section 2. The post-processing methods are 
presented in section 3. The results are discussed in section 4 with a summary and conclusions 
following in section 5.  

2. Datasets 
2.1. Forecast datasets 

In this study forecasts from nine global Ensemble Prediction Systems archived in the TIGGE database 
at ECMWF are used. The main features of the model systems can be found in Table 1, together with a 
list of the model centres operationally running the forecast systems and providing the data for the 
TIGGE archive. Further detailed information on the model systems can be found in Park et al. (2008) 
or on the TIGGE website at ECMWF (http://tigge.ecmwf.int/models.html).  

The investigations will focus mainly on the winter season December 2008 to February 2009 (DJF-
2008/09), with some additional results also shown for the spring season March to May 2010 (MAM-
2010). Results for the upper air field of 850-hPa temperature (T850), and the near surface variable 2-
m temperature (T2m) will be discussed. The main comparisons will be done using forecasts starting at 
00 UTC, the start time for which also ECMWF reforecasts are available. The comparisons involving 
all nine single-model forecasts from the TIGGE database are done for 12 UTC forecasts since some of 
the contributing centres produce forecasts only for 12 UTC and not at 00 UTC.  

All forecasts have been interpolated to a common 2.5° x 2.5° grid using the interpolation routines 
provided by the ECMWF TIGGE data portal (http://tigge.ecmwf.int). Since the resolutions of the 
models are finer than 2.5° x 2.5° to varying degrees, the values at this lower resolution verification 
grid can be regarded as representing the average forecast over the 2.5° x 2.5° areas. One might expect 
that this sort of smoothing of the forecasts could improve the scores. However, sensitivity studies on 
the impact of the verification resolution have demonstrated that performing the verification on a 
higher 1.5° x 1.5° grid essentially did not change the result. 

Centre Horizontal resolution in 
archive 

No. of vertical 
levels 

No. of perturbed 
members 

Forecast length 
(days) 

BOM 1.5° x 1.5° 19 32 10 

CMA 0.56° x 0.56° 31 14 16 

CMC 1.0° x 1.0° 28 20 16 

CPTEC N96(~1.0° x 1.0°) 28 14 15 

ECMWF N200 (~0.5° x 0.5°) 
N128 (~0.7° x 0.7°) 

62 50 15 

JMA 1.25° x 1.25° 40 50 9 

KMA 1.25° x 1.25° 40 16 10 

NCEP 1.0° x 1.0° 28 20 16 

MetOffice 1.25° x 0.83° 38 23 15 
 
Table 1: Main features of the nine TIGGE model systems used in this study, at the time of 
producing DJF 2008/09 forecasts. BOM: Bureau of Meteorology (Australia), CMA: China 
Meteorological Administration (China), CMC: Canadian Meteorological Centre (Canada), 
CPTEC: Centro de Previsão de Tempo e Estudos Climáticos (Brazil), ECMWF: European Centre 
for Medium-Range Weather Forecasts (International), JMA: Japan Meteorological Agency 
(Japan), KMA: Korea Meteorological Administration (Korea), NCEP: National Centres for 
Environmental Prediction (USA), MetOffice: The UK Met Office (United Kingdom). 

http://tigge.ecmwf.int/
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The forecasts are mainly evaluated by calculating the Continuous Ranked Probability Score (CRPS) 
or its skill score (CRPSS), a diagnostic focussing on the entire permissible range of a certain variable 
(Hersbach, 2000). The CRPS is very suitable for systems issuing continuous probability forecasts, 
however, here we evaluate all forecasts in the classical way of probabilities retrieved from discrete 
ensemble members. 

2.2. Training datasets 

Every calibration needs a set of past forecast-observation pairs, also called training dataset. Usually it 
is beneficial to have a training dataset as large as possible to achieve a robust calibration. However, 
the existence of seasonally varying systematic errors suggests that it also can be beneficial to restrict 
the use of the available training data to only that data for a similar time of year. Using the ECMWF 
reforecast dataset (Hagedorn, 2008) enables us to satisfy both of these requirements. A set of 
reforecasts are operationally produced at ECMWF once per week, with start dates from the past 18 
years. That is, on every Thursday the operational EPS is not only run for the actual date, but also for 
the same calendar day of the past 18 years. The only difference of these reforecasts to the actual EPS 
forecasts is the reduced number of perturbed members (4 instead of 50) and that ECMWF reanalyses 
instead of operational analyses are used in the initialization. Before 12 March 2009 a combination of 
ERA-40 reanalyses (Uppala et al., 2005) and operational analyses were used for the initialization, and 
from that date onwards only ERA-interim analyses (Simmons et al., 2007) have been used to provide 
a more consistent initialization dataset. The training dataset used in this study consists of the 
reforecasts produced for the five calendar days closest to the target date to be calibrated. In this way 
both the seasonally varying aspects are preserved and the number of forecast-observation pairs (18 
years x 5 start dates = 90) should be sufficient for a robust estimation of the calibration coefficients, at 
least for the quasi-Gaussian variables studied here, 850-hPa and 2-m temperature. 

At present, this type of reforecast dataset is only available for the ECMWF EPS and not for the 
remaining single-models of the TIGGE archive. That is, the reforecast based calibration can only be 
applied to ECMWF forecasts. However, a simple bias-correction procedure has been applied to all 
single-model systems and the multi-model ensemble. This calibration is based on a training dataset 
consisting of the last 30 days before the start date of the forecasts (Hagedorn et al. 2008). 

2.3. Verification datasets 

A number of considerations have to be taken into account when choosing the verification dataset to 
assess the performance of different single- and multi-models. On one hand, using model independent 
verification data like station observations ensures a fair treatment of all models. On the other hand, 
comparisons of the model performance over larger areas or for variables not directly available in 
observational datasets require the use of analyses, which commonly exhibit some of the bias of the 
forecast model used. There are a number of possibilities for the choice of analysis product in the 
context of comparing single- and multi-model predictions. The first option is to use each model’s own 
analysis as verification dataset. However, this has the disadvantage that (i) the multi-model ensemble 
has no own analysis, and (ii) it would be difficult to draw conclusions from the resulting scores and 
skill scores when their calculation is based on different reference datasets. Another possibility is to 
use the average of all analyses of the participating models or some weighted average, also called 
multi-model analysis. Such an average analysis would fulfil the condition of being as fair as possible 
to all models participating in the comparison. On the other hand, averaging all analyses, including less 
accurate ones, might not necessarily lead to an analysis closest to reality. Additionally, such a multi-
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model analysis cannot be used as verification dataset in this reforecast-comparison study because it is 
only available for the TIGGE forecast period, i.e. from 2007 onwards. This is not sufficient because 
the calibration of ECMWF forecasts based on the reforecast training dataset requires a consistent 
verification dataset for the entire training and test period, i.e. the verification dataset has to be 
available from 1991 onwards. 

There are several candidate reanalysis data sets available, including the ECMWF ERA-interim 
(Simmons et al. 2007), ERA-40 (Uppala et al. 2005), and the NCEP-NCAR reanalysis (Kanamitsu et 
al. 2002, Kalnay et al. 1996). Considering the competing requirements of being as fair as possible to 
all models involved and being as accurate as possible, it was decided to place greater emphasis on the 
accuracy of the results and therefore to choose the ECMWF ERA-interim re-analysis (Simmons et al. 
2007) as main verification dataset. The two important advantages of this choice are the acknowledged 
high quality of this analysis product (it used 4D-Var, a recent version of the ECMWF forecast model 
and a T255L40 resolution) and the availability of this dataset for the entire training and test period 
(1991 up to near realtime). The obvious drawback of this option is that the ERA-interim re-analyses 
are certainly not entirely independent of one of the models in the comparison, the ECMWF model. 
However, before discussing the relative performance of the forecasts itself, the sensitivity using 
different analyses as the verification is demonstrated. This will enable the reader to evaluate the 
potential impact of the choice of verification data set on the subsequent results. 

The relative impact of using ERA-interim as verification instead of the multi-model analysis can be 
estimated by calculating the Continuous Ranked Probability Skill Score (CRPSS) from the CRPS that 
uses ERA-interim as verification (CRPSERAI) and the CRPS that uses the multi-model analysis as 
verification (CRPSMMA).  

 1 ERAI

MMA

CRPSCRPSS
CRPS

=  

If the results were insensitive to the choice of verification dataset, CRPSERAI and CRPSMMA would be 
equal, and consequently the CRPSS would be zero. However, the negative values of the CRPSS in 
Figure 1a and 1b indicate a higher CRPSERAI, i.e. a worse performance of the models when they are 
verified against ERA-interim instead of the multi-model analysis.  

Generally, the skill scores worsen for all models, though the level of changes depends strongly on the 
lead time, variables or areas under investigation. For example, in tropical areas the analyses of the 
single-models vary extremely between different model systems (Park et al., 2008), and consequently 
using ERA-interim as verifying analysis would have a strong impact on the results. Therefore results 
are not discussed for the tropics in this study. The choice of verification dataset has least impact for 
longer lead times and extra-tropical upper air fields, with noticeable differences occurring mainly 
during the first three to four days (Fig. 1a). Assuming that we would like the impact of changing the 
verification to ERA-interim to be similar for each individual model, the CRPSS curves in Fig. 1a and 
1b should be as close as possible. As such, it is important to note that all models follow the same 
general pattern of greater sensitivity to the choice of analysis for early lead times and less sensitivity 
at longer lead time. However, the performance of the CMC model worsens the most in the given 
examples, and one should keep in mind this fact when interpreting later results on the relative 
performance of the forecasts. There are larger differences between the models when looking at near 
surface variables like 2-m temperature, where each analysis may have its own systematic bias, and 
therefore the overall sensitivity to the choice of analysis is much more pronounced than for upper-air 
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fields (Fig. 1b, note the different scale to Fig. 1a).  Additionally, it can be seen that up to a lead time 
of three days, the ECMWF T2m forecasts likely benefit from the fact that their initializing analyses 
are closer to the ERA-interim verification than the initialization of the other models. 

 

(a)                       (b) 

     
(c)                (d) 

     
Figure 1: Illustration of the impact of the verification dataset and bias-correction on the relative 
skill of the predictions. The CRPSS is defined as CRPSS = 1 - CRPS(exp) / CRPS(ref). Scores are 
calculated for forecast from the TIGGE multi-model (solid line) and the single-models (dotted 
lines with symbols; CMC: crosses, ECMWF: diamonds, Met Office: triangles, NCEP: squares) 
starting in DJF 2008/09 and averaged over the Northern Hemisphere (20°N - 90°N). (a): 850-
hPa temperature DMO forecast using ERA-interim as verification (exp) and the multi-model 
analysis as verification (ref); (b): 2-m temperature DMO forecast using ERA-interim as 
verification (exp) and the multi-model analysis as verification (ref); (c): 2-m temperature BC 
forecast using ERA-interim as verification (exp) and DMO forecast using ERA-interim as 
verification (ref); d: 2-m temperature BC forecast using ERA-interim as verification (exp) and 
DMO forecast using the multi-model analysis as verification (ref).   

In order to reduce this stronger impact close to the surface, a bias correction (BC) is applied to all 
forecasts using the last 30 days of forecasts and ERA-interim analyses (for details see section 3.2). 
The positive values of the CRPSS shown in Fig. 1c indicate the improvements achieved by applying 
this bias correction. The calibration corrects the forecasts of all models most effectively at short lead 
times, with the MetOffice and NCEP achieving the largest skill improvement at a lead time of one 
day. For the remaining lead times, the MetOffice forecasts continue to gain the most from the bias 
correction, followed by ECMWF, NCEP, CMC and the multi-model forecast. The multi-model 
system generally gains the least from this explicit bias correction, because it has overall a bias of 
smaller magnitude than the contributing models. This implicit bias correction in the multi-model 
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concept arises as different models may have different biases that can compensate each other leading to 
a lower net bias (Pavan and Doblas-Reyes, 2000).  

The final comparison between the bias-corrected forecasts verified against ERA-interim and the 
uncorrected forecasts verified against the multi-model analysis demonstrates that the bias correction 
reduces the strong lead-time dependence of the impact of using ERA-interim (Fig. 1d compared to 
Fig. 1b). Apart from the very early lead times of up to three days, the impact is now relatively similar 
for all models. All these results, together with the fact that a consistent dataset is indispensable for the 
reforecast calibration, justify the choice of using ERA-interim as verification dataset.  However, for 
the time being we ask the reader to keep in mind these initial findings on the impact of using ERA-
interim as verification dataset, and to relate all further conclusions to this initial discussion. 

3. Post-processing methods 
3.1. Multi-model combination 

The most basic way of constructing a multi-model ensemble is to simply combine the individual 
ensemble members from the contributing models with the same weight. This approach is not only an 
easy and robust way of combining different models, it also has been proven to be quite successful in 
improving on single-model predictions (Park et al 2008; Hagedorn et al., 2005; Shin et al., 2003). 
Since the main goal of this study is to assess the general validity of the multi-model concept for 
medium-range weather forecasts, we will first and foremost investigate the standard multi-model 
ensemble constructed by giving equal weights to all contributing members, noting that through the 
different number of members in the individual EPSs an implicit weighting will be applied. That is, 
model systems with a higher number of ensemble members will have a greater impact in the final 
multi-model prediction than model systems with fewer members. The performance of two equally 
weighted TIGGE multi-model ensembles will be compared with single-model forecasts. The first 
includes all ensemble members from the nine model systems listed in Table 1 (i.e. 248 members, 239 
perturbed plus 9 control runs), and the second, called TIGGE-4, consists of only the 117 (113 plus 4) 
members of the CMC, ECMWF, MetOffice and NCEP ensembles. 

There have been also many attempts to improve on the equal-weight method, with some of these 
studies claiming to be able to improve on this method (e.g. Krishnamurti et al., 1999; Robertson et al., 
2004), others concluding that it is very difficult to achieve significant improvements (Peng et al., 
2002, Doblas-Reyes et al., 2005;  Johnson and Swinbank, 2009). As a contribution to this discussion, 
four different weighting schemes have been tested for the TIGGE-4 multi-model. The schemes range 
from more sophisticated minimization procedures to simple “intuitively” fixed weights: 

• WGT-1: weights for single models determined proportional to their respective inverse mean 
square error in the training dataset 

• WGT-2: weights for single models determined by “downhill simplex method” (Nelder and 
Mead, 1965), minimizing the CRPS in the training dataset 

• WGT-3: weights determined from a random distribution 

• WGT-4: weights fixed to:  

 WCMC = 0.1, WECMWF = 0.6, WMetOffice = 0.2, WNCEP = 0.1 

For all four schemes it was ensured that the individual single-model weights summed up to one. 
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3.2. Bias correction 

A bias-correction procedure is applied to near-surface fields. As mentioned in section 2.3, this 
procedure aims to reduce the impact of using ERA-interim as verification dataset (see also Fig. 1c and 
1d) and makes the comparison with the reforecast-calibrated ECMWF forecasts fairer. In fact, since 
the reforecasts are only available for the ECMWF EPS, the calibration procedure applied to the 
remaining models can only be based on a training dataset consisting of a limited number of previous 
forecasts. Taking into account this restriction, we apply a bias-correction procedure based on the past 
30 days of forecasts (BC-30). The procedure itself calculates at every grid point x and for every lead 
time t a correction c(x,t) 

 
1

1( , ) ( , ) ( , )
N

i i
i

c x t e x t v x t
N =

= −∑  

as the average difference between the ensemble mean e(x,t) and the verification v(x,t) for all N cases 
in the training dataset. This correction is applied to all ensemble members of the forecast to be 
corrected, i.e. the ensemble distribution itself is not altered in itself but is shifted as a whole. 
However, because this type of 30-day bias correction has proven to have a significant impact only on 
near-surface variables like 2-m temperature, the results shown for the upper-air variable 850-hPa 
temperature are not based on BC-30 forecasts but compare DMO forecasts with the reforecast-
calibrated ECMWF EPS described in the next section. 

3.3. ECMWF reforecast calibration 

The availability of the ECMWF reforecast dataset enables the application of more sophisticated 
calibration techniques than the simple bias-correction described above. Here we use a combination 
technique “EC-CAL” based on the Non-homogeneous Gaussian Regression (NGR) and results from 
the pure bias-correction (BC). The NGR technique itself is described in detail in Gneiting et al. (2005) 
and has been already previously applied to ECMWF EPS forecasts (Hagedorn et al., 2008). 
Essentially, NGR is an extension to conventional linear regression by taking into account information 
contained in the existing spread-skill relationship of the raw forecast. Using the ensemble mean and 
the spread as predictors, it fits a Gaussian distribution around the bias-corrected ensemble mean. The 
spread of this Gaussian is on the one hand linearly adjusted according to the errors of the regression 
model using the training data, and on the other hand depends on the actual spread according to the 
diagnosed spread-error relationship in the training dataset. Thus, one important feature of this 
methodology is being able to not only correct the first moment of the ensemble distribution but also 
correct spread deficiencies.  

After applying the NGR calibration, the forecast Probability Density Function (PDF) consists of a 
continuous Gaussian distribution, not an ensemble of realizations. However, in order to be able to 
compare the performance of the calibrated probabilities with the frequentist probabilities based on 
individual ensemble members, a synthetic ensemble is created from the calibrated Gaussian by 
drawing 51 equally likely ensemble members from the calibrated PDF. That is, the synthetic ensemble 
is realized by sampling the members at the 51 equally spaced quantiles of the regressed Cumulative 
Distribution Function (CDF). 

Experimenting with the choice of training dataset and calibration method revealed that combining the 
simple bias-correction based on the 30-day training data (BC-30) and the NGR calibration based on 
reforecasts (NGR-RF) is superior to the pure NGR-RF calibration, in particular for early lead times. 
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As already seen in Fig. 1c, the 30-day bias correction can improve the CRPS of the DMO by about 
20% for early lead times. The reforecast based NGR calibration is even more effective, with 
improvements of more than 25% (Fig. 2).  

 
Figure 2: Illustration of gain in skill depending on the calibration method applied to ECMWF 
direct model output. The CRPSS is defined as CRPSS = 1 - CRPS(exp) / CRPS(ref), with 
CRPS(exp) being the CRPS of the bias corrected forecasts (solid), the NGR calibrated forecast 
(dashed), and the NGR/BC model combination (dotted). CRPS(ref) is in all cases the CRPS of the 
DMO forecasts. All scores are calculated for 2-m temperature forecasts starting in DJF 2008/09 
and averaged over the Northern Hemisphere (20°N - 90°N). 

However, combining the NGR-RF and BC-30 ensembles can lead to further slight improvements. The 
two ensembles are not combined by taking all members from both ensembles to form a new ensemble 
with twice the number of members, but by first ordering both the bias-corrected and NGR-calibrated 
ensembles and then averaging the corresponding members. In this way the final combined calibrated 
system still contains only 51 members. Some experimentation with different weights for the NGR-RF 
and BC-30 ensembles revealed that applying equal weights at all lead times leads to overall best 
results. For the current version, the slightly improved performance might be caused by the fact that 
the BC-30 calibration contains information on the bias more relevant to the current weather regime 
than the overall bias diagnosed from the reforecast dataset. However, using a refined version of the 
NGR-RF calibration by, for example, including soil moisture as an additional predictor might 
diminish the positive impact the BC-30 contribution can have. A further advantage of adding the BC-
30 calibrated ensemble to the Gaussian NGR-RF ensemble is the fact that through this procedure any 
non-Gaussian characteristics of the original ensemble may be retained to some degree.  

4. Results 
4.1. TIGGE multi-model ensembles versus single-model systems 

A first impression on the level of skill of the single-model systems is given by comparing the CRPSS 
of the 850-hPa temperature over the Northern Hemisphere for forecasts of the winter season DJF 
2008/09 (Fig. 3a). The scores are based on uncalibrated DMO ensembles since (i) applying the bias-
correction has no significant impact for upper-air variables like T850 and (ii) we do not need to 
account for the choice of verification dataset in the case of T850, as demonstrated in section 2.3. The 
performance of the T850 forecasts varies significantly for the different models, with the CRPSS 
dropping to zero for the worst models at a lead time of five days and for the best models around day 
15. That is, the time range up to which the model predictions are more useful than the reference 
forecast, which is in this case the climatological distribution, changes considerably from one model to 
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another. The climatological distribution is estimated from ERA-40 reanalyses in the period 1979–
2001 (Uppala et al., 2005; Jung and Leutbecher, 2008). Since not all forecasting centres integrate their 
models to 15 days lead time, the performance of the multi-model ensemble combining all nine single-
model systems can only be assessed up to the maximum forecast range covered by all individual 
models, which is nine days. Except for the first two forecast days, this multi-model prediction does 
not significantly improve over the best single-model, i.e. the ECMWF EPS. Note that the significance 
levels of the difference between the single-model systems and the multi-model ensemble have been 
assessed using a paired block bootstrap algorithm following Hamill (1999). Similar results can be 
observed for other variables like e.g. the bias-corrected 2-m temperature (Fig. 3b). Again, the best 
model is only for the first two to three days significantly worse than the multi-model ensemble, and 
their performance cannot be distinguished later on. 

(a)             (b) 

      
(c)             (d) 

     
Figure 3: Continuous Ranked Probability Skill Score versus lead time for 850-hPa temperature 
DMO forecasts (left column, subpanel a and c) and 2-m temperature BC-30 forecasts (right 
column, subpanel b and d) in DJF 2008/09, averaged over the Northern Hemisphere (20°N - 
90°N). Figures (a) and (b) in the upper row show results for the TIGGE-9 multi-model (solid line) 
composed of nine single-models and the scores of all nine contributing single-models (dashed and 
dotted lines with symbols). Figures (c) and (d) in the lower row show results for the TIGGE-4 
multi-model (solid line) composed of the four best single-models with lead time up to 15 days and 
the scores of the four contributing single-models (dotted lines with symbols). Symbols are only 
plotted for cases in which the single-model score significantly differs from the multi-model score 
on a 1% significance level. 
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The inability of the multi-model ensemble to significantly improve over the best single-model system 
might be caused by the fact that it consists of all nine single-models, i.e. it includes also the models 
with rather poor performance. In order to eliminate these possibly detrimental contributions, a new 
multi-model (TIGGE-4) containing only the four best single-model systems with lead time up to 15 
days was constructed and compared to the four contributing single-models: CMC, ECMWF, 
MetOffice, and NCEP (Fig 3c and 3d). In fact, this reduced version of the full multi-model ensemble 
gives now significantly improved scores over the whole forecast period and for both upper-air and 
surface variables. This result indicates that a careful selection of the contributing models seems to be 
important for medium-range multi-model predictions. 

4.2. TIGGE multi-model ensemble versus reforecast-calibrated ECMWF 

After having established a new benchmark for the best single-model, the ECMWF EPS, the question 
is now whether it might be possible to achieve similar improvements by calibrating the ECMWF EPS 
based on its reforecast dataset. Comparing the CRPSS of the reforecast-calibrated ECMWF EPS (EC-
CAL) with the TIGGE-4 multi-model scores previously shown in Figure 3 reveals that indeed the 
calibration procedure significantly improves ECMWF’s scores (Fig. 4).  

(a)            (b) 

   
Figure 4: Continuous Ranked Probability Skill Score versus lead time for the TIGGE-4 multi-
model (solid line), for the contributing single-models itself (dotted lines with symbols, CMC: 
cross, ECMWF: diamond, MetOffice: triangle, NCEP: square), and for the reforecast calibrated 
ECMWF forecasts (dotted lines with bullets). Symbols are only plotted for cases in which the 
single-model score significantly differs from the multi-model score on a 1% significance level. (a) 
850-hPa temperature DMO and EC-CAL forecast scores averaged over the Northern Hemisphere 
(20°N - 90°N) for DJF 2008/09, (b) as in (a) but for 2-m temperature BC-30 and EC-CAL 
forecast scores.  

Overall the performance of the EC-CAL predictions is as good as the TIGGE-4 multi-model 
ensemble, and for longer lead times it can be even better. For 850-hPa temperature predictions the 
EC-CAL’s CRPSS lies above the multi-model CRPSS for early lead times, and for longer lead times 
the skill scores are slightly lower than for the multi-model ensemble, though not statistically 
significant (Fig 4.a). Considering the slight advantage in the early lead times for ECMWF forecasts 
when using ERA-interim as verification and the lack of statistical significance of the difference in the 
CRPSS for longer lead times, it can be concluded that for T850 the reforecast-calibrated ECMWF 
forecasts are of comparable quality as the TIGGE-4 multi-model forecasts. 
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This result is confirmed also for 2-m temperature forecasts, for which the calibration is even more 
effective for longer lead times (Fig. 4b). This indicates that the systematic component of the error is 
more dominant in the case of 2-m temperature, and thus the calibration procedure is able to further 
reduce the Root Mean Square Error (RMSE) of the ensemble mean. However, the general level of 
skill at those long lead times is very low. Therefore, these improvements - as relevant as they might 
look in terms of overall scores - might not add very much in terms of improving the usefulness of the 
predictions in a real forecast situation.  

In order to indeed further investigate the mechanisms behind the improvements, Figure 5 shows the 
RMSE of the ensemble mean and the spread of the different ensembles.  

(a)                (b) 

   
Figure 5: Root Mean Square Error of the ensemble mean (solid lines) and ensemble standard 
deviation (“spread”, dotted lines) versus lead time. a: results for the single-model BC-30 
forecasts depicted using lines with symbols (CMC: cross, ECMWF: diamond, MetOffice: triangle, 
NCEP: square). b: as in (a) but without the CMC, MetOffice and NCEP results, including instead 
the results for the reforecast calibrated ECMWF (lines with bullets as symbol) and TIGGE-4 
multi-model results (curves without symbols). All scores are calculated for 2-m temperature 
forecasts starting in DJF 2008/09 and averaged over the Northern Hemisphere (20°N - 90°N). 

Ensemble forecasting aims to construct uncertainty information so that the observations can be 
considered as indistinguishable from the ensemble members of the forecast. Since both the ensemble 
mean and the analysis have an error, a necessary (but not sufficient) condition for a reliable ensemble 
is for the sum of the squared spread of the ensemble and the variance of the analysis error to be close 
to the squared difference of the ensemble mean and the analysis (Saetra et al., 2004, Candille et al., 
2007). It is difficult to quantitatively estimate the true analysis error variance, however, it is planned 
to extend the current diagnostic to incorporate this aspect in future work (e.g., multi-model estimates 
of Langland et al. 2008, or direct estimates via the ensemble Kalman filter, e.g., Houtekamer and 
Mitchell 1998). Until this more quantitative assessment, we just qualitatively state that the spread of 
the ensemble should be somewhat smaller than the standard deviation of the ensemble mean, 
especially at short forecast leads when analysis error is of similar magnitude to spread and error. 
However, for 2-m temperature all single-model systems are seriously under-dispersive (Fig. 5a), i.e. 
much more than could be explained by the analysis error variance currently not accounted for. CMC 
starts with the smallest spread deficiency at the beginning of the forecast, but due to a serious 
mismatch in the growth of spread and error it has the worst spread-error relation for longer lead times. 
The remaining three models have a similar level of spread, however, the significantly lower RMSE of 
the ECMWF EPS implies not only a slightly better spread error relationship compared to the 
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MetOffice and NCEP ensembles, it is also one of the main reasons for its significantly better 
probabilistic scores discussed before. The effect of combining the single-model systems or calibrating 
the ECMWF EPS can be seen in Figure 5b. The RMSE of the multi-model ensemble is slightly 
reduced for early lead times, but the most noticeable change is the very much improved spread-error 
relation in particular up to a forecast range of day-6. In contrast to that, the reforecast-calibrated 
ECMWF EPS has not such a perfect spread-error relation, though it is improved compared to the 
original EPS spread. The reason for this is the above discussed methodology of combining the BC-30 
and NGR-RF calibration. Applying the pure NGR calibration should lead to a near perfect spread-
error relation, but as discussed above, the advantages of possible reductions in the systematic error 
provided by the 30-day bias-corrected ensemble may outweigh the slight disadvantage of a 
supposedly poorer 2nd-moment calibration. Since the under-dispersion is not fully corrected in the 
reforecast-calibrated ensemble, the main improvement of its probabilistic scores comes from the 
reduction in the RMSE, in particular for longer lead times.  

4.3. TIGGE weighted multi-model ensemble 

After having established that overall the performance of the TIGGE multi-model and the reforecast-
calibrated ECMWF EPS are at a comparable level, the question remains whether the multi-model 
performance can be further improved by applying different weights to its individual components. 
Generally, only very moderate improvements are achieved by the two tested weighting methods 
which determine the weights based on a training dataset of forecast-observation pairs from the 
previous 30 days, WGT-1 and WGT-2 (Fig. 6). The weighting method based on the inverse mean 
square error (WGT-1) starts with improvements of about 3% for early lead times, dropping to near 
zero for longer lead times. The slightly more sophisticated method of finding optimal weights by 
minimizing the CRPS in the training dataset (WGT-2) achieves slightly higher improvements in the  

 
Figure 6: Illustration of impact on skill depending on the weighting method applied to the 
TIGGE-4 multi-model ensemble. The CRPSS is defined as CRPSS = 1 - CRPS(exp) / CRPS(ref), 
with CRPS(ref) being in all cases the CRPS of the equally weighted TIGGE-4 multi-model 
ensemble, and CRPS(exp) being the CRPS of the different weighting methods. The four lines with 
different symbols represent the percentage increase/decrease of the skill for the weighting method 
based on the inverse MSE (WGT-1, open circles), the CRPS minimization method (WGT-2, 
squares), random weights (WGT-3, solid circles) and fixed weights (WGT-4, open triangles).All 
scores are calculated for 2-m temperature forecasts starting in MAM 2010 and averaged over the 
Northern Hemisphere (20°N - 90°N).  
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early forecast range, but falls back to even negative values for longer forecast ranges. These results 
indicate that applying different weights to the individual single-model ensembles does not necessarily 
lead to significant improvements compared to the equally weighted multi-model ensemble. 

In order to investigate more generally what level of impact any weighting scheme could have on the 
performance of the multi-model, a deliberately “bad” weighting scheme, i.e. giving random weights 
(WGT-3), was applied. As expected, applying random weights leads to a worse performance of the 
multi-model. More interestingly, the level of deterioration is in the same order of magnitude as could 
be achieved with the first two weighting schemes. This confirms that generally any weighting of the 
four individual model components has only a limited effect on the overall performance of the 
predictions. The reason for this is the overall similarity of the four single-model ensembles, resulting 
in only minor changes of the multi-model ensemble when giving different weights to the single-model 
components. Finally, we tested the impact of applying a combination of weights based on more 
intuitive reasoning (WGT-4). Interestingly, the results are in the same order as the improvements from 
the more objectively derived weights. This demonstrates that employing more sophisticated weighting 
schemes, which can be computationally expensive, might not be worthwhile in this context. 

5. Summary and conclusions 
The main aim of this study was to investigate whether the multi-model concept is similarly successful 
for medium-range forecasting as it has been proven in the seasonal forecast range. This has been done 
by comparing the relative benefits of TIGGE multi-model forecasts versus the reforecast-calibrated 
ECMWF EPS. A major issue in such a verification study was the choice of verification dataset.  ERA-
Interim was chosen here because: (i) one intent of this study was to evaluate reforecast-calibrated 
ECMWF products (requiring forecasts and observations or analyses from many years past); (ii) use of 
analyses rather than observations facilitated a verification over a larger region, including oceans, and 
(iii) the highest-quality analyses were deemed preferable.  Since the choice of ERA-Interim as 
verification data set may favour ECWMF forecasts, we demonstrated the relative impact of using 
different reanalyses as verification.  It was shown that the level of advantage the ECMWF EPS gained 
when using ERA-interim as verification for surface variables was reduced by applying a simple bias-
correction to all models using the past 30 days of forecasts and analyses.  

The performance of nine single-model systems from the TIGGE archive was compared with the 
performance of the full TIGGE multi-model, consisting of all these nine models.  This full multi-
model version did not improve on the best single-model, the ECMWF EPS. However, when 
combining only the four best single-model ensembles (CMC, ECMWF, MetOffice, and NCEP), the 
multi-model ensemble outperformed the ECMWF-only EPS forecasts, though we note that this result 
did not apply to all model variables and all lead times. However, by taking advantage of the reforecast 
dataset which was available for the ECMWF EPS and using it as training dataset to produce 
reforecast-calibrated forecasts, the ECMWF EPS scores were improved to such an extent that its 
overall performance was as good as the TIGGE multi-model system, and often better.  

The reforecast calibration procedure was particularly helpful at locations with clearly detectable 
systematic errors like areas with complex orography or coastal grid points. In such areas the 
calibration procedure essentially applied a statistical downscaling to the forecasts. The multi-model 
approach, in contrast, might be advantageous in situations where it is able to suggest alternative 
solutions not predicted by the single-model of choice. Further investigations on the mechanisms 
behind the improvements achieved by the post-processing methods led to the conclusion that both 
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approaches tend to correct similar deficiencies. That is, systematic error and spread deficiencies were 
improved to a similar extent by both approaches. Experiments assessing the impact of giving different 
weights to the individual single-model ensembles demonstrated that only minor improvements could 
be achieved. This limited potential of applying sophisticated weighting schemes to the multi-model 
ensemble is caused by (i) the relative similarity of the single-model ensembles and (ii) the fact that the 
relative errors are not very stable in time and thus it is difficult to determine robust and stable weights.  

Finally, considering the performance improvements made possible by the availability of the ECMWF 
reforecast dataset, other modelling centres might start providing reforecasts for their model systems in 
the not so distant future. In that case it would be interesting to study the relative benefits achievable 
for reforecast-calibrated multi-model or single-model systems, respectively. Furthermore, we suggest 
exploring the relative merits of multi-model versus reforecast-calibrated predictions for other user-
relevant variables like precipitation and wind speed, in particular in the context of extreme events. 
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