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Table of contents
1.1 Introduction

1.2 Scientific publications

1.3 Brief history of 3D- and 4D-Var in ECMWF operations

1.4 Incremental formulation of variational data assimilation

1.1 INTRODUCTION

This documentation of 4D-Var serves as a scientific guide to the data assimilation code within ECMWF’s
Integrated Forecasting System (IFS). The documentation is divided into a number of chapters. This first
chapter provides an overview of ECMWF’s data assimilation system, a brief history of its evolution and
a description of the basic scientific formulation.

The second chapter describes the practical implementation of the multi-resolution incremental method for
4D-Var data assimilation (the multi-resolution version has been used operationally since January 2003,
Cy25r3), and the solution algorithm including minimization and preconditioning. The tangent linear
physics that is an important part of the variational algorithm is described in Chapter 3. Thereafter
follows a description of the background term (Chapter 4) and a chapter on observation operators and
the organisation of observation cost-function calculations for conventional and satellite data (Chapter 5).
Chapter 6 deals with the computation and cycling of background and analysis errors including the recent
use of EDA variances. Chapter 7 is on control of gravity waves in the minimization cycle. Diagnostic tools
for investigation of the performance of the assimilation system are described in Chapter 8. The modules for
observation selection, quality control and screening are described in Chapter 9 and Chapter 10. Chapter 11
describes the land surface analysis, including the screen level parameters, the soil analysis and the snow
analysis, Chapter 12 describes the sea surface temperature and sea-ice analysis. Finally Chapter 13
provides summary information about the main unix-scripts and important files, and a schematic of the
data flow between the various jobs steps that constitute a data assimilation cycle.

1.2 SCIENTIFIC PUBLICATIONS

The scientific description of 3D/4D-Var has been published in a series of papers in the Quarterly Journal of
the Royal Meteorological Society (QJRMS), in ECMWF workshop proceedings and Technical Memoranda
over the years. The incremental formulation was introduced by Courtier et al. (1994). The ECMWF
implementation of 3D-Var was published in a three-part paper by Courtier et al. (1998), Rabier et al.
(1998) and Andersson et al. (1998). The original observation operators for conventional data can be found
in Vasiljevic et al. (1992). The methods for assimilation of TOVS radiance data and ERS scatterometer
data were developed by Andersson et al. (1994) and Stoffelen and Anderson (1997), respectively. The
pre-operational experimentation with 4D-Var has been documented in three papers by Rabier et al.
(2000), Mahfouf and Rabier (2000) and Klinker et al. (2000). The background term has been published
by Derber and Bouttier (1999), with more recent developments described by Fisher (2003).

Papers of data usage and impact include a study of commercial aircraft data (Cardinali et al.,
2003), scatterometer impact (Isaksen, 1997; Isaksen and Stoffelen, 2000; Isaksen and Janssen, 2004),
conventional and satellite humidity data (Andersson et al., 2004), ozone analysis (Dethof and Holm,
2004), time series of frequent data (Andersson et al., 2001), wind profiler data (Bouttier, 2001b;
Andersson and Garcia-Mendez, 2002), TOVS radiance data (McNally et al., 1999), water-vapour
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radiances from geostationary satellites (Munro et al., 2004; Köpken et al., 2004), and the use of high-
volume satellite data in general (Thépaut and Andersson, 2003). An more complete overview of data
usage at ECMWF is included in the reanalysis review paper by Dee et al. (2011).

1.3 BRIEF HISTORY OF 3D- AND 4D-VAR IN ECMWF OPERATIONS

3D-Var was implemented in ECMWF operations on 30 January 1996, and was replaced on 25 November
1997 by 4D-Var. The two three-part series of QJRMS papers mentioned above basically describe
the two schemes as they were at the time of their implementation. However, there have been very
significant developments of the variational data assimilation system during its time in operations.
Major code-upgrades have taken place in connection with migrations to new computers. 3D-Var was
first implemented on a CRAY C90 shared-memory parallel computer system and was migrated to a
distributed-memory Fujitsu VPP700 machine in September 1996 (Dent et al., 1997). Further migrations
of the codes took place in May 2000 to a Fujitsu VPP5000, and in March 2003 to an IBM P690, and
later in 2004 to an IBM P690+. A history of the evolution of ECMWF super-computing is available
at http://www.ecmwf.int/services/computing/overview/supercomputer history.html. The current IBM
implementation of the assimilation system utilizes both shared-memory (OpenMP) and distributed-
memory (MPI) parallelism. A general list of changes to the operational forecasting system is available at
http://www.ecmwf.int/products/data/technical/model id/index.html.

The observation handling and data screening modules have also developed rapidly to keep pace with the
changing computer environment, and the arrival of new observational data sets. The codes inherited from
OI were replaced with new codes at the time of the migration to Fujitsu in 1996. The need for improved
parallelism and rapidly increasing data volumes lead to the development of the Observation DataBase
(ODB) software (see ODB documentation), facilitating in March 2003 the move to the IBM computers
and the introduction of high-spectral resolution satellite data (first AIRS and then IASI in 2009) as well
as the use of radio occultation data (GPSRO) in 2008. The quality control, data selection and screening
algorithms are described in the paper by Järvinen and Undén (1997), and variational quality control of
observations in Andersson and Järvinen (1999). Since 2009 the variational quality control of conventional
observations uses the Huber norm (Tavolato and Isaksen, 2010).

One of the most important aspects of a variational assimilation is the specification of background
errors. The original formulation of Courtier et al. (1998) was replaced in May 1997 by that
of Derber and Bouttier (1999). The latter formulation is still used as described in Chapter 4, including
more recent improvements such as non-linear balance (January 2003, Cy25r3, Fisher (2003)), wavelet-Jb
(April 2005, Cy29r1, Fisher (2006)), introduction of ozone as an analysis variable (Dethof and Holm, 2004)
in October 1999 (Cy21r4), the new humidity analysis (Hólm et al., 2002) in October 2003 (Cy26r3), and
Jb for GEMS variables (Benedetti and Fisher, 2006). The cycling algorithms for analysis and background
errors (Fisher and Courtier, 1995, and Chapter 6) were introduced in 1996. The calibration of background
error statistics is since October 1999 based on an ensemble of 3D-Var data assimilations, updated in
January 2003 to statistics based on a 4D-Var ensemble (Fisher, 2003). Since May 2011 the Ensemble
Data Assimilation (EDA) provides flow dependent background error standard deviations for vorticity on
each cycle (Bonavita et al., 2012).

On the 25th November 1997 6-hourly 4D-Var was introduced operationally, at resolution T213L31, with
two iterations of the outer loop: the first at T63L31 with 50 iterations (simplified physics) and the second
with 20 iterations (with tangent-linear physics, at same resolution). In April 1998 the resolution was
changed to TL319 and in June 1998 we revised the radiosonde/pilot usage (significant levels, temperature
instead of geopotential) and we started using time-sequences of data (Järvinen et al., 1999), so-called
4D-screening. The data assimilation scheme was extended higher into the atmosphere on 10 March 1999,
when the TL319L50 model was introduced, which in turn enabled the introduction in May 1999 of
ATOVS radiance data (McNally et al., 1999). In October 1999 the vertical resolution of the boundary
layer was enhanced taking the number of model levels to a total of L60. In summer 2000 the 4D-Var period
was extended from 6 to 12 hours (Bouttier, 2001a), whereas the ERA-40 configuration (Uppala et al.,
2005) was built as an FGAT (first guess at the appropriate time) of 3D-Var with a period of 6 hours
(Chapter 3). In November 2000, the horizontal resolution of 4D-Var was increased to TL511L60, with
inner loop resolution enhanced from T63L60 to TL159L60 using the linearized semi-Lagrangian scheme. In
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February 2006, the horizontal resolution of 4D-Var was increased to TL799L91, with inner loop resolution
enhanced to TL255L91. The horizontal resolution was increased to TL1279L91, with unchanged inner loop
resolution. The ERA-interim reanalysis also used 12 hour 4D-Var at TL255L60 resolution, with TL159L60
inner loop resolution Dee et al. (2011).

In January 2003 the 4D-Var solution algorithm was comprehensively revised (in Cy25r4, Andersson et al.,
2003) to take advantage of the efficiency of conjugate gradient minimisation (with pre-conditioning, as
introduced one year earlier) and a multi-resolution incremental technique (Veerse and Thépaut, 1998;
Trémolet, 2005). This is the 4D-Var solution algorithm that is presented here in Chapter 2. The early
delivery suite was introduced in June 2004 (in Cy28r2, Haseler, 2004).

1.4 INCREMENTAL FORMULATION OF VARIATIONAL DATA
ASSIMILATION

In 3D/4D-Var an objective function J is minimized. The cost function consists of three terms:

J = Jb + Jo + Jq + Jc (1.1)

measuring, respectively, the discrepancy with the background (a short-range forecast started from the
previous analysis), Jb, with the observations, Jo, with the model error, Jq, and with the slow character
of the atmosphere, Jc. The Jq term is under active development and is not described further here, but
see Fisher et al. (2011). The Jc-term controls the amplitude of fast waves in the analysis and is described
in Chapter 7. It is omitted from the subsequent derivations in this section.

In its incremental formulation (Courtier et al., 1994), we write

J(δx) =
1

2
δxTB−1δx +

1

2
(Hδx − d)TR−1(Hδx − d) (1.2)

δx is the increment and at the minimum the resulting analysis increment δxa is added to the background
xb in order to provide the analysis xa given by

xa = xb + δxa (1.3)

B is the covariance matrix of background error while d is the innovation vector

d = yo −Hxb (1.4)

where yo is the observation vector. H is a suitable low-resolution linear approximation of the observation
operator H in the vicinity of xb, and R is the covariance matrix of observation errors. The incremental
formulation of 3D/4D-Var consists therefore of solving for δx the inverse problem defined by the (direct)
observation operator H, given the innovation vector d and the background constraint. The gradient of J
is obtained by differentiating (1.2) with respect to δx to give

∇J = (B−1 + HTR−1H)δx − HTR−1d (1.5)

At the minimum, the gradient of the objective function vanishes, thus from (1.5) we obtain the classical
result that minimizing the objective function defined by (1.2) is a way of computing the equivalent
matrix-vector products given by

δxa = (B−1 + HTR−1H)−1HTR−1d = BHT(HBHT + R)−1d (1.6)

where B and R are positive definite, see e.g. Lorenc (1986) for this standard result. HBHT may be
interpreted as the square matrix of the covariances of background errors in observation space while
BHT is the rectangular matrix of the covariances between the background errors in model space and
the background errors in observation space. 3D-Var uses the observation operator H explicitly and
statistical models (B and R) are required only for describing the statistics of the background errors
in model space and the observation error in observation space. Consequently, in 3D/4D-Var it is easy,
from an algorithmic point of view, to make use of observations such as TOVS radiances, which have
quite a complex dependence on the basic analysis variables. The background term and background error
covariance modelling (i.e. B) are described in Chapter 4 and observation operators H are described in
Chapter 5.
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Chapter 2

4D variational assimilation
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2.6 3D variational assimilation (with the first-guess at appropriate time)

2.6.1 Introduction

2.6.2 Solution algorithm
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2.6.4 Data selection

2.1 INTRODUCTION

This part of the documentation covers the top level controls of 4D-Var. It gives a detailed description of
the solution algorithm, and the various steps that are performed during a 4D-Var simulation (SIM4D).
The procedure consists of nested iterations, called inner and outer loops, which communicate through
files that either contain meteorological fields, observations, or parameters. The data flow is documented
in Chapter 13. The interpolation of model fields to observation points (OBSHOR) and the organization
of the data in memory (yomsp, yommvo) is described in Chapter 5. The structure of the computation
of the observation cost function and its gradient, managed by the routines OBSV and TASKOB can
also be found in Chapter 5. The background term and the ‘change-of-variable’ operators are explained in
Chapter 4.

2.2 SOLUTION ALGORITHM

2.2.1 The incremental method

The adopted solution algorithm is incremental (Courtier et al., 1994), which allows for considerable
flexibility with respect to the computer expense of the various job-steps of the 4D-Var minimisation. In the
incremental approach the highest possible resolution is used for the computation of the model trajectory,
and for calculating the departures between observations and model, whereas a lower-resolution model
(its adjoint and tangent linear) are used for the iterative and relatively costly computation of analysis
increments (Trémolet, 2004; Radnóti et al., 2005). The lower-resolution iterations (the inner-loops) can
optionally be nested within a set of outer-loop iterations at full resolution (Trémolet, 2005). Apart from
the resolution, the cost of the inner-loops will depend also upon the complexity of the inner-loop model,
e.g. the use of simpler or more complete representations of the physical processes (Janisková et al., 2002;
Tompkins and Janisková, 2004).
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Figure 2.1 Schematic of the revised 4D-Var solution algorithm implemented in January 2003 (Cy25r4).
Outer loops are performed at high resolution (currently T1279) using the full non-linear model. Inner
iterations are performed at lower resolution (first T159, then T255) using the tangent-linear forecast
model, linearised around a 12-hour succession of model states (‘the trajectory’) obtained through
interpolation from high resolution (S denotes the truncation operator, J the cost function and x the
atmospheric state vector).

In a further ‘multi-resolution’ extension to the incremental method (Veerse and Thépaut, 1998) the inner-
loop resolution is increased with each iteration of the outer-loop. A schematic is shown in Fig. 2.1. In
particular, the information about the shape of the cost-function obtained during the early low-resolution
iterations provides a very effective pre-conditioner (Chapter 6) for subsequent iterations at higher-
resolution, thus reducing the number of costly iterations. The inner-loops can be particularly efficiently
minimised using the conjugate gradient method, provided the cost-function is purely quadratic (Fisher,
1998), i.e. the operators involved in the definition of the cost function (the model and the observation
operators) are purely linear. For this reason, the inner-loops have been made entirely linear, with the
non-linear effects gathered at the outer-loop level. The convergence properties of the outer-loop iterations
have been investigated by Trémolet (2005).

2.2.2 The job-steps

In the CY37R2 operational configurations the assimilation window is 12-hours long, running from 09–
21 UTC to produce the 12 UTC analysis and forecast products, and from 21–09UTC for the 00 UTC
production (Haseler, 2004). Several different job steps are performed.

(i) Comparison of the observations with the background at high resolution to compute the innovation
vectors. These are stored in the NCMIFC1-word of the ODB (the observation database) for later
use in the minimization. This job step also performs screening (i.e. blacklisting, thinning and
quality control against the background) of observations (see Chapter 10). The screening determines
which observations will be passed for use in the main minimisation. Very large volumes of data are
present during the screening run only, for the purpose of data monitoring. The model trajectory is
interpolated to the resolution of the next job step and written out.

(ii) First minimization at low resolution to produce preliminary low-resolution analysis increments,
using simplified tangent-linear physics, and tangent-linear observation operators. The eigenvectors
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of the analysis Hessian are computed and these will be used to precondition subsequent inner-loop
iterations.

(iii) Update of the high-resolution trajectory to take non-linear effects partly into account. Observed
departures from this new atmospheric state are stored in the ODB and the analysis problem is
re-linearized around the updated model state. Variational quality control is computed, and the
resulting QC weights will be used in the subsequent minimisation. The updated model trajectory
is interpolated to the resolution of the next job step and written out.

(iv) Second main minimization at increased resolution with more complete representation of tangent-
linear physics. Step (iii) and (iv) are repeated if necessary.

(v) Formation of the high-resolution analysis (described below) and a comparison of the analysis with
all observations (including those not used by the analysis, for diagnostic purposes).

Each of the job steps is carried out by a different configuration of IFS. They are commonly named as
follows.

(i) The first trajectory run: includes a model integration, comparison to observations, and
observation screening (quality control and data selection) and is sometimes called the screening
run. NCONF = 2, LSCREEN = .TRUE.

(ii) The first minimization: uses simplified physics, typically run at low resolution. This job step
includes estimation of analysis and forecast error variances (required for cycling), and calculation of
Hessian eigenvectors for pre-conditioning of subsequent minimisation(s). NCONF = 131, LSPHLC =
.TRUE., LAVCGL = .TRUE.

(iii) The first trajectory update: applies the analysis increments obtained in the first minimisations
and performs another forecast integration with comparison to observations. This provides a new
linearisation state for the next minimisation. NCONF = 1, LOBS = .TRUE.

(iv) The second (and subsequent) minimization: uses more complete tangent-linear physics,
typically higher resolution increments. NCONF = 131, LSPHLC = .FALSE.

(v) Late 4D-start runs: the analyses (type = an) at the main synoptic hours (00, 06, 12, 18), that
fall within the assimilation window, are formed in separate quick job-steps by adding the low-
resolution increment to the penultimate high-resolution trajectory of the corresponding time (no
forecast integration). See also schematic in Chapter 13.

(vi) The final trajectory runs: carries out verification screening – that is comparison between
observations and final analysis. In the final trajectory job-steps with NUPTRA = 999 the final
analysis (type = 4v) is formed (Bouttier, 2001a), by adding the low-resolution increment to the
background (at initial time), and integrating to the analysis times. NCONF = 1, LOBS = .TRUE.,
NUPTRA = NRESUPD

The steps (iii) and (iv) are referred to as the second iteration of the outer loop, and these can optionally
be iterated further to incorporate additional non-linear effects. The trajectory update is not normally
done in 3D-Var. The inner loop takes place within the main minimization, job steps (ii) and (iv).

2.2.3 Interpolation of trajectory and increments

A truncation operator (shown as S in the schematic, Fig. 2.1 above) is required to take the trajectory
fields from high to low resolution. This is done using appropriate grid-point interpolations for the surface
grid-point fields, whereas upper-air fields are truncated spectrally. Humidity and ozone (and any other
grid-point fields) are interpolated in grid-point space to the resolution of the inner loops. Initial time
model cloud fields are interpolated to lower resolution using the so-called ‘full-pos’ configuration of IFS.
Trajectory cloud fields and trajectory of physical tendencies are generated in a (low resolution) model
integration in which the model state is replaced by the interpolated trajectory at each time instance for
which it is available. The trajectory handling is managed by the module TRAJECTORY.

The spectral and grid-point analysis increments produced by the minimisation are read in by the routine
RDFPINC. The spectral fields are padded with zeroes for the wave numbers not represented in the inner-
loops. The increments for the spectral model variables (vorticity, divergence and logarithm of surface
pressure) are added to the background fields. The temperature increments are added to the temperature
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of the background (after it has been converted from virtual temperature) and the resulting temperature
analysis is converted back to virtual temperature. The humidity and ozone increments are read in as
grid-point fields and interpolated to the outer-loop resolution and added to the background. Checks for
negative values are applied to humidity and ozone (and trace gasses).

For the 91-level model extension into the mesosphere, it was found that the TL model was unstable
in certain situation. This was resolved by introducing smooting of the trajectory fields, if the inner-
loop resolution is T255, or higher. This is implemented as a fourth-order diffusion filter applied to the
spectral trajectory fields, reducing the amplitude of the shortes wave by a factor five. This is done
in TRAJ MAIN just before the fields are written to files in ifstraj. The filtering is controlled by the
variables FILTERFACTOR, FILTEREXPO, FILTERRESOL in NAMVAR, available also in prepIFS. In
addition, it was found necessary to reduce the amplitude of the analysis increments near the top of the
L91 model. They are tapered to zero applying the factor REDINC, over the topmost NLEV REDINC=4
levels (NAMJG), in RDFPINC.

2.2.4 Pre-conditioning and control variable

In practice, it is necessary to pre-condition the minimization problem in order to obtain a quick
convergence. As the Hessian (the second derivative) of the objective function is not accessible, Lorenc
(1988) suggested the use of the Hessian of the background term Jb. The Hessian of Jb is the matrix B.
Such a preconditioning may be implemented either by a change of metric (i.e. a modified inner product)
in the space of the control variable, or by a change of control variable. As the minimization algorithms
have generally to evaluate several inner products, it was found more efficient to implement a change of
variable (under CHAVAR, CHAVARIN, etc.). Algebraically, this requires the introduction of a variable
χ such that

Jb = χTχ (2.1)

Comparing (1.2) and (2.1) shows that χ= B−1/2δx satisfies the requirement. χ thus becomes the control
variable of the preconditioned problem. This is indeed what has been implemented, as will be explained
in Section 4.2. A single-observation analysis with such preconditioning converges in one iteration.

The Jb-based pre-conditioning is sufficient when the B-term dominates over the observation term of
the Hessian. With increasing amounts of observational information, and in cases with locally dense
observation coverage, the observation term can be dominant over the background term in defining the
shape of the cost-function (its second derivative). The combined Lanczos/conjugate gradient method
allows computation of the leading eigenvectors and eigenvalues of the Hessian while solving for the
analysis, essentially at no extra cost. This method is fully described in Chapter 6, and it is used for
all inner-loop iterations. The Hessian eigenvector information obtained at low resolution is used as pre-
conditioner at subsequent inner-loop iterations at higher resolution. This has been shown to be a very
effective way of reducing the number of iterations required at higher inner-loop resolutions.

2.2.5 Minimization

The minimization problem involved in 3D/4D-Var can be considered as large-scale, since the number of
degrees of freedom in the control variable is of the order of 107. In the case of purely quadratic cost-
function (as in operational 4D-Var) the most efficient minimisation is provided by the conjugate gradient
algorithm (CONGRAD called from CVA2 and FORECAST ERROR). Congrad is preconditioned with
the leading Hessian eigenvectors, as described in Chapter 6. The forecast error configuration (Chapter 6,
switch LAVCGL = .TRUE. in yomvar) always uses CONGRAD, and otherwise it is activated by the
switch LCONGRAD in yomvar.

For non-quadratic problems, an efficient descent algorithm was provided by the Institut de Recherche en
Informatique et Automatique (INRIA, France). It is a variable-storage quasi-Newton algorithm (M1QN3)
described in Gilbert and Lemaréchal (1989). M1QN3 uses the available in-core memory to update an
approximation of the Hessian of the cost function. In practice, ten updates (NMUPD, namiomi) of this
Hessian matrix were used.
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Figure 2.2 Flow diagram for subroutines CVA1 and CVA2.

2.3 TOP-LEVEL CONTROLS

The routines CVA1, CVA2 and FORECAST ERROR control the variational configurations of IFS. The
flow diagram of CVA1 and CVA2 is shown in Fig. 2.2. The sepctral and grid-point first guess fields (FG)
have been read in to the SP7-arrays and GP7-arrays (in YOMSP) by SUECGES, called from SUJBSTD
within the Jb setup, see Subsection 4.3.3. At the start of CVA1 additional setups for the variational
configurations are done (SU1YOM). The SP3-arrays and GFL-arrays, i.e. the current model state, (in
YOMSP) are filled by a call to the setup routine SUINIF in the routine SUVAZX, and only for the first
minimisation job-step. For subsequent minimisations the initial state for analysed variables must come
from the previous minimisation, i.e. a warm start. This is achieved by getting the control vector YVAZX
by calling GETMINI and performing an inverse change of variables (calling CHAVARIN) to transform
the control vector to model variables (SP3/SP2-arrays and GFL-arrays). Non-analysed fields (e.g. cloud
fields) are read by a call to SUINIF earlier in SUVAZX.
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After minimisation is complete one final simulation is performed in CVA2 or FORECAST ERROR.
This simulation is diagnostic, and characterized by the simulation counter being set to 999, NSIM4D =
NSIM4DL, yomvar. The observation departure from the low-resolution analysis, yo −Hxa

LR, is computed
and stored in the NCMIOMN-word of the ODB. Finally at the end of CVA2 and FORECAST ERROR,
respectively, the updated ODB is written to disk, using the routine WRITEOBA.

2.4 A SIMULATION

2.4.1 The cost function and its gradient

A simulation consists of the computation of J and ∇J . This is the task of the routine SIM4D, see Fig. 2.3
for the flow diagram. The input is the latest value of the control variable χ in the array VAZX, computed
by M1QN3, or CONGRAD. First Jb and its gradient are computed (see Section 4.2) using

Jb = χTχ

∇χJb = 2χ
(2.2)

The gradient of Jb with respect to the control variable is stored in the array VAZG (YOMCVA).

(i) Copy χ from VAZX to SP3-arrays (YOMSP) using the routine CAIN.
(ii) Compute x, the physical model variables, using CHAVARIN so that

x = δx + xb = Lχ+ xb (2.3)

(iii) SUBFGS computes δx = x − xg, where xg is the guess (not necessarily equal to the background).
(iv) Perform the direct integration of the linear model, using the routine CNT3TL, and compare with

observations. See Section 2.5.
(v) Calculate Jo for which OBSV is the master routine.
(vi) Perform the adjoint model integration using CNT3AD, and observation operators’ adjoint.
(vii) Calculate ∇xJo, and store it in SP3.
(viii) Jc and its gradient are calculated in COSJC called from CNT3AD, if LJC is switched on (default)

in namvar.
(ix) Transform ∇xJo + ∇xJc to control variable space by applying CHAVARINAD.
(x) Copy ∇χJo + ∇χJc from SP3 and add to ∇χJb, already in the array VAZG, using CAIN.
(xi) Add the various contributions to the cost function together, in EVCOST, and print to log file using

prtjo.
(xii) Increase the simulation counter NSIM4D by one.

The new J and ∇χJ are passed to the minimization algorithm to calculate the χ of the next iteration,
and so on until convergence (or the maximum number of iterations) has been reached.

2.4.2 Interface between control variable and model arrays

The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model state
that should be included in the variational control variable. This is controlled by on/off switches such as
NVA2D and NVA3D (yomcva) initialized in SUALCTV. The scalar product used is the one defined by
the array SCALP (in yomcva, set up in the routine SCALJGS called from SUSCAL), which is 1 if m= 0,
and 2 otherwise. This allows the compression of arrays of the type VAZX while using the L2 norm on the
sphere with real fields in spectral space.

The control vector currently consists of four parts, as defined in the module CONTROL VECTORS
residing in the ifsaux library. Any of the following four parts can be absent.

(i) The initial-condition control-variables that define the original 4D-Var problem.
(ii) A representation of model error (for weak-constraint 4D-Var), see Trémolet (2003).
(iii) The TOVS control vector (LTOVSCV), used to estimate surface skin temperature and simplified

cloud variables (pressure and fraction) at the radiance field-of-view locations.

12 IFS Documentation – Cy37r2



Part II: Data Assimilation

Figure 2.3 Flow diagram for the subroutine sim4d.

(iv) Components for the limited-area model ALADIN.

The organisation of elements of the control-vector is now quite flexible and allows for future planned
extensions, such as observation bias coefficients (e.g. for radiance data, and wavelet-Jb components).

2.5 THE ASSIMILATION WINDOW

In 4D-Var, observations are organized in time-slots (currently half-hourly) as described in the ODB
documentation. The cost-function measures the distance between a model trajectory and the available
information (background, observations) over an assimilation interval or window. For a 12-hour window,
it is either (09 UTC–21 UTC) or (21 UTC–09 UTC), see Haseler (2004). Equation (1.2) (see Chapter 1)
is replaced by

J(δx) =
1

2
δxTB−1δx +

1

2

n∑

i=0

(Hiδx(ti) − di)
TR−1

i (Hiδx(ti) − di) (2.4)

with subscript i the time index. Each i corresponds to a half-hour time slot. δx is as before the increment
at low resolution at initial time, and δx(ti) the increment evolved according to the tangent linear model
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from the initial time to time index i. Ri and B are the covariance matrices of observation errors at time
index i and of background errors respectively. Hi is a suitable linear approximation at time index i of the
observation operator Hi. The innovation vector is given at each time step by di = yo

i −Hix
b(ti), where

xb(ti) is the background propagated in time using the full non-linear model and yo
i is the observation

vector at time index i. If the switch LTC=.true. (default is LTC=.false.), then SYNOP and DRIBU time
sequences of surface pressure and height data are used with serial correlation of observation error, and the
observation cost-function computation for those data then spans all time slots. Equation (2.4) therefore
needs generalising, as has been done in the paper by Järvinen et al. (1999).

A way to account in the final 4D-Var analysis for some non-linearities is to define a series of minimization
problems such that

J(δxn) =
1

2
(δxn + xn−1 − xb)TB−1(δxn + xn−1 − xb)

+
1

2

n∑

i=0

(Hiδx
n(ti) − dn−1

i )TR−1
i (Hiδx

n(ti) − dn−1
i ) (2.5)

with superscript n the minimization index.

xn−1 is the current estimate of the atmospheric flow. It is equal to the background for the first
minimization. dn−1

i = yoi −Hix
n−1(ti) is the innovation vector, computed by integrating the model at

high resolution from the current estimate.

2.6 3D VARIATIONAL ASSIMILATION (WITH THE FIRST-GUESS AT
APPROPRIATE TIME)

2.6.1 Introduction

3D-Var is a temporal simplification of 4D-Var. The simplest way to implement a 3D-Var within the context
of an existing 4D-Var scheme is to replace the tangent-linear (and its adjoint) model integration within
the inner loops (as defined in the previous section) by the identity operator (LIDMODEL = .TRUE. in
yomtnewt.F90). This approach has indeed been adopted, as it saves on maintenance of scripts and codes.
It is this 3D-Var version that was used for the production of the ERA-40 re-analysis (Uppala et al., 2005)
and it was used until 14 March 2006 in ECMWF operations within the so called BC-suite to generate
timely boundary conditions for the participating member states.

In this version of 3D-Var as much as possible of the 4D-Var structure is maintained. The available
observations, typically over the period of a 6-hour assimilation window, are compared with a model
integration at high resolution. The comparison between observation and model is thus performed
at the appropriate time: therefore the abbreviation 3D-FGAT (first-guess at appropriate time). This
configuration is activated via the switch LFGAT = .TRUE. in namvar.h.

2.6.2 Solution algorithm

The tangent-linear model in 4D-Var evolves the analysis increment over time, within the assimilation
window. In 3D-FGAT no such evolution takes place: one static increment in produced. The valid time
of this increment is not at the initial time of the window as in 4D-Var, but at the central time. The
increment is added to the background field, which forms the analysis at the central time. This has the
consequence that a trajectory update from the start of the assimilation window cannot be performed.
The 3D-FGAT configuration is therefore based on one single outer-loop without iteration. There are
nevertheless two minimisation steps. The first provides analysis error and background error estimates
required for cycling, and also pre-conditioning vectors (Hessian eigenvectors) that are used in the second
minimisation job-step. The resolution of the first minimisation is typically lower (T42) than for the main
one (e.g. T159).

Scatterometer de-aliasing is active and variational quality control is activated approximately halfway into
the minimisation, rendering the problem non-linear (and the cost function non-quadratic). The use of
conjugate-gradient minimisation is thus prevented. The M1QN3 algorithm is used instead.
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2.6.3 Main differences with respect to 4D-Var

The main differences with respect to the standard operational 4D-Var configuration are as follows.

(i) Variational quality control is carried out within the inner-loop iterations (LQVARQC = .FALSE.).
(ii) The scatterometer de-aliasing is performed within the inner-loop iterations (LQSCAT = .FALSE.).
(iii) Use of M1QN3 instead of conjugate gradient minimisation, due to the cost-function being quadratic.
(iv) The Jc term relies on NMI (normal mode initialisation) rather than DFI (Digital filter initialisation)

(LJCDFI = .FALSE., LJCNMI = .TRUE.).
(v) No iteration at outer-loop level.
(vi) LTRAJHR = .FALSE., which means that the observation operators are linearized around the low-

resolution trajectory, which is generated through an integration by the full non-linear model (at the
resolution of the minimisation) at the beginning of the minimisation job-step. CVA1 calls CNT2 to
do this.

2.6.4 Data selection

The observational data are stored in time-slots within the ODB (just as in 4D-Var). The data selection
criteria are applied in identically the same way as in 4D-Var, allowing time sequences of data to be used
also in 3D-FGAT. The 3D scheme is however unable to extract temporal information from the data, and
produces an analysis of the temporal average of the FGAT departures. Optionally the screening data
selection rules can be applied once for the entire (6-hour) assimilation window, which would pick only the
data closes to the analysis centre time. This is called ‘3D-screening’ and was the practice in the original
operational 3D-Var configuration.
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Chapter 3

Tangent-linear physics

Table of contents
3.1 Introduction
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3.1 INTRODUCTION

The linearized physics describes six processes: vertical diffusion, subgrid-scale orographic effects, non-
rographyc gravity wave drag, radiation, large-scale condensation/precipitation and convection. In order
to prevent spurious unstable perturbations from growing, a number of simplifications have been defined
for these schemes with respect to the non-linear physical parametrization schemes (described in Part
IV: Physical processes) used in the forecast model. All simplified parametrizations are called in each
minimization of 4D-Var.

This text is focused on brief scientific description of the linearized physical parametrization schemes
together with some technical aspects. More detailed scientific issues can be found in the mentioned
literature references.
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3.2 SET-UP

The full linearized physics package currently in operational use is activated by setting the following
switches in namelist NAMTRAJP:

• LEVDIF2 (vertical diffusion),

• LEGWDG2 (subgrid-scale orographic gravity wave drag),

• LEGWWMS2 (non-orographic gravity wave drag),

• LERADI2, LERADS, LERADN2 and LERADSW2 (radiation),

• LENCLD2 (large-scale condensation/precipitation),

• LECUMF2 and LECUMFS2 (in namelist NAMCUMFS) (moist convection),

In addition, the following switches must be set to .TRUE.: LEPHYS and LAGPHY (also necessary to
activate the ECMWF non-linear physics) in namelist NAEPHY and LETRAJP (to activate storage of
the trajectory at t− ∆t) in namelist NAMTRAJP.

Tunable parameters of the improved physics (which should not in principle be modified) are defined
in SUPHLI. The logical LPHYLIN (namelist NAMTLEVOL)is used to activate the simplifications
and/or modifications associated with the linear package in the non-linear physics. This variable is set
to .FALSE. by default, but is forced to .TRUE. before starting tangent-linear (TL) and adjoint (AD)
computations in CNT3TL and CNT3AD. Thus this switch remains .TRUE. for the linearized physics
called in EC PHYS TL and EC PHYS AD.

3.3 MIXED-PHASE THERMODYNAMICS

The thermodynamical properties of the water mixed phase are represented by a differentiable weighting
function between T0 = 0◦C and Tice = −23◦C given by

α(T ) =
1

2
[1 + tanh{µ(T − Tcrit)}] (3.1)

with µ= 0.15 (RLPALP1) and Tcrit = Tice + T0−Tice√
2

(RLPTRC).

The tuning parameter µ controls the intensity of the smoothing, and the temperature Tcrit has been
chosen to give α= 0.5 for the same temperature as in the operational quadratic formulation (see function
FCTTRE).

This weighting function is used by the large-scale condensation and moist-convection routines.

3.4 VERTICAL DIFFUSION

Vertical diffusion applies to wind components, dry static energy and specific humidity. The exchange
coefficients in the planetary boundary layer and the drag coefficients in the surface layer are expressed as
functions of the local Richardson number (Louis et al., 1982). They differ from the operational formulation
which uses the Monin–Obukhov length as a stability parameter in stable conditions and a K-profile
approach for convective boundary layers (see the documentation of the ECMWF physics). Analytical
expressions are generalized to the situation of different roughness lengths for heat and momentum transfer.
The mixing length profile l(z) uses the formulation of Blackadar (1962) with a reduction in the free
atmosphere.

For any conservative variable ψ (wind components u, v; dry static energy s; specific humidity q), the
tendency of its perturbation ψ′ produced by vertical diffusion is

∂ψ′

∂t
=

1

ρ

∂

∂z

(
K(Ri)

∂ψ′

∂z

)
(3.2)

where ρ is the air density.
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In the planetary boundary layer, the exchange coefficient K is given by

K = l2
∥∥∥∥
∂V

∂z

∥∥∥∥f(Ri) (3.3)

where f(Ri) represents the coefficient of the vertical turbulent diffusion which is a function of the
Richardson number. The mixing length vertical profile is defined as

lMH =
κ(z + z0)

1 + k (z+z0)
λ

[
γ +

1 − γ

1 + (z+z0)2

L2

]
(3.4)

The asymptotic mixing length λM for momentum is set to 150 m, whereas λH = λM

√
1.5d. The pseudo-

depth of the boundary layer is defined by L= 4 km (RLPMIXL), and the reduction factor applied to the
mixing length in the free atmosphere is γ = 0.2 (RLPBETA) [1 → γλ when z≫ L]. κ is von Kármán’s
constant and z0 is the roughness length.

The coefficients of the vertical turbulent diffusion for momentum are given by

f(Ri) =





1

1 + 2bRi√
1+dRi

if Ri > 0, the stable case

1 − 2bRi

1 + 3bc
(

1√
27

)(
lM

z+z0M

)2√
|Ri |

if Ri < 0, the unstable case
(3.5)

The vertical diffusion coefficients for dry static energy and specific humidity are defined as

f(Ri) =





1

1 + 3bRi
√

1 + dRi
if Ri > 0

1 − 3bRi

1 + 3bc
(

1√
27

)(
lH

z+z0H

)2√
|Ri |

if Ri < 0
(3.6)

where b, c, d are constants controlling the dependency of vertical exchange on the stability.

To parametrize the turbulent fluxes at the surface, the drag coefficients (i.e. the exchange coefficients
between the surface and the lowest model level) are computed. The neutral coefficients CMN and CHN

are written as

CMN =
κ2

[
ln

(
z+z0M
z0M

)]2 and CHN =
κ2

[
ln

(
z+z0M
z0M

)
ln

(
z+z0M
z0H

)] (3.7)

The drag coefficients for momentum are computed as

CM =






1

1 + 2bRi√
1+dRi

CMN if Ri > 0

(
1 − 2bRi

1 + 3bcCMN

√
z+z0M
z0M

|Ri |

)
CMN if Ri < 0

(3.8)

The surface exchange coefficients for dry static energy and specific humidity are

CH =






1

1 + 3bRi
√

1 + dRi
CHN if Ri > 0

(
1 − 3bRi

1 + 3bcCHN

√
z+z0M
z0M

|Ri |

)
CHN if Ri < 0

(3.9)

The empirical coefficients b (RLPBB), c (RLPCC) and d (RLPDD) are set to 5 in SUPHLI.

The computation of the vertical diffusion coefficientsK in the simplified physics has been further modified
to make it more consistent with the full non-linear parametrization. The originally used Louis K is kept
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near the surface to leave the stable boundary layer untouched. Above 300 m, K tends asymptotically to
the Monin–Obukov formulation. The mixed layer parametrization has also been added (for details, see
Part IV: Physical processes - 3.3 The exchange coefficients above the surface and mixed layer).

Until cycle CY33R1, perturbations of the exchange coefficients were neglected (K ′ = 0), in order to
prevent spurious unstable perturbations from growing in the linearized version of the scheme (Mahfouf,
1999). From CY33R1 onwards, regularization was introduced for exchange coefficients between upper
model levels to include partial perturbations of these coefficients.

The simplified diffusion scheme VDFMAINS can be called from CALLPAR when the logical switch for
linearized physics LPHYLIN is set to .TRUE..

The linear versions of the vertical diffusion scheme are called from the drivers VDFMAINSTL and
VDFMAINSAD. The ensemble of routines that prepare the surface exchange coefficients and associated
surface quantities needed for the solution of the vertical diffusion equations are part of the routine
SURFEXCDRIVERSTL and SURFEXCDRIVERSTL. At this moment the surface arrays are not
evolved in time, though the routines are coded for computing perturbations of: the roughness length
(VDFUPDZ0TL, VDFUPDZ0AD), the surface boundary conditions for T and q (VDFSURFTL,
VDFSURFAD), the surface exchange coefficients (VDFEXCSTL, VDFEXCSAD) and the equivalent
evapotranspiration efficiency (VDFEVAPTL, VDFEVAPAD). This can be activated in the future by
setting the logical switch LENOPERT set to .FALSE. in NAMTRAJP. The current default version is
.TRUE. (i.e. no perturbation is required for the surface arrays).

Other computations performed in VDFMAINSTL and VDFMAINSAD involve the calculation of
exchange coefficients above the surface layer (VDFEXCUSTL , VDFEXCUSAD), the solving of the
diffusion equations for momentum (VDFDIFMSTL, VDFDIFMSAD) and dry static energy and moisture
(VDFDIFHSTL, VDFDIFHSAD, as well as the incrementation of tendencies for wind, temperature and
specific humidity (VDFINCRSTL, VDFINCRSTL.

The logical LEKPERT in NAMTRAJP controls the perturbations of the exchange and drag coefficients.
When set to .FALSE. (default), the perturbations would be set to 0. In the current 4D-Var computation,
LEKPERT is set to .TRUE., which means that the regularized exchanged coefficients (as described above)
are used.

3.5 SUBGRID SCALE OROGRAPHIC EFFECTS

Only the low-level blocking part of the operational non-linear scheme developed by Lott and Miller (1997)
(see documentation on ECMWF non-linear physics) is taken into account in the tangent-linear and adjoint
calculations. The deflection of the low-level flow around orographic obstacles is supposed to occur below
an altitude Zblk such that ∫ 2µ

Zblk

N

|U| dz ≥Hncrit
(3.10)

where Hncrit
is a critical non-dimensional mountain height (GFRCRIT = 0.5), µ is the standard deviation

of subgrid-scale orography, N is the vertical stability and U is the wind vector.

The deceleration of the wind due to the low-level blocking is given by

(
∂U

∂t

)

blk

= −Cd max

(
2 − 1

r
, 0

)
σ

2µ

(
Zblk − z

z + µ

)0.5

(B cos2 ψ + C sin2 ψ)
U|U|

2

=A(U|U|) (3.11)

where

Cd is the low-level drag coefficient (GWAKE = 1)
σ is the mean slope of the subgrid-scale orography
γ is the anisotropy of the subgrid-scale orograph
ψ is the angle between the low-level wind and the principal axis of topography
B = 1 − 0.18γ − 0.04γ2

20 IFS Documentation – Cy37r2



Part II: Data Assimilation

C = 0.48γ + 0.3γ2

r = (cos2 ψ + γ sin2 ψ)/(γ cos2 ψ + sin2 ψ)

Since the final wind tendency produced by the low-level drag parametrization is obtained from the
following partially implicit discretization of (3.11)

(
∂U

∂t

)

blk

= − β

β + 1

Un−1

2∆t
(3.12)

where β =A|Un−1|2∆t, the corresponding perturbation is

(
∂U

∂t

)

blk

= − β′

(β + 1)2
Un−1

2∆t
− β

β + 1

U′n−1

2∆t
(3.13)

Finally, the local dissipation heating is computed in the same way as in the non-linear scheme, together
with the associated perturbation.

The main tangent-linear and adjoint routines, GWDRAGTL and GWDRAGAD, are called from
CALLPARTL and CALLPARAD respectively. The depth of the low-level blocking layer is determined in
GWSETUPTL and GWSETUPAD, while the low-level blocking effect described by (3.12) is computed at
the end of GWDRAGTL and GWDRAGAD. As mentioned above, the representation of wave breaking
is currently not activated in the linearized code by setting the constant RLPDRAG to zero in SUPHLI.
Note that RLPDRAG is only used when logical LPHYLIN is .., otherwise GKDRAG is used (set to 0.3
in SUGWD).

3.6 NON-OROGRAPHIC GRAVITY WAVE DRAG

The non-linear scheme for non-orographic gravity wave (nonorog-gw) (Orr et al. (2010)) has been used
operationally in the forecast model since September 2009 (cycle 35R3). Tangent-linear and adjoint versions
were developed in order to reduce discrepancies between the full non-linear and linearized versions of the
model. In order to eliminate the artificial noise in TL computations caused by the introduction of this
scheme, it was necessary to implement some regularizations. These include rewriting buoyancy frequency
computations in the non-linear scheme in height coordinates instead of pressure coordinates and setting
increments for momentum flux in the last three spectral elements (high phase speed) of the launch
spectrum to zero.

TL and AD versions of the non-orographic gravity wave drag scheme are activated by setting
LEGWWMS2 to .TRUE. (namelist NAMTRAJP). The schemes would then be used with the prescribed
time frequency GTPHYGWWMS. The necessary regularizations are activated by logical switch
LREGWWMS in NAMTRAJP.

3.7 RADIATION

The radiation scheme solves the radiative transfer equation in two distinct spectral regions. The
computations for the longwave (LW) radiation are performed over the spectrum from 0 to 2820 cm−1.
The shortwave (SW) part of the scheme integrates the fluxes over the whole shortwave spectrum between
0.2 and 4.0 µm. The scheme used for data assimilation purposes must be computationally efficient to be
called at each time step and at the full spatial resolution for an improved description of the cloud-radiation
interactions during the assimilation period (Janisková et al., 2002).

3.7.1 The short-wave radiation scheme

The linearized code for the shortwave radiation scheme has been derived from the ECMWF original
non-linear scheme developed by Fouquart and Bonnel (1980) and revised by Morcrette (1991), and which
was previously used in the operational forecast model. In this scheme, the photon-path-distribution
method is used to separate the parametrization of the scattering processes from that of molecular
absorption. Upward F ↑

sw and downward F ↓
sw fluxes at a given level j are obtained from the reflectance
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and transmittance of the atmospheric layers as

F ↓
sw(j) = F0

N∏

k=j

Tbot(k) (3.14)

F ↑
sw(j) = F ↓

sw(j)Rtop(j − 1) (3.15)

Computations of the transmittance at the bottom of a layer Tbot start at the top of atmosphere and
work downward. Those of the reflectance at the top of the same layer Rtop start at the surface and work
upward. In the presence of cloud in the layer, the final fluxes are computed as a weighted average of the
fluxes in the clear sky and in the cloudy fractions of the column as

Rtop = CcloudRcloud + (1 − Ccloud)Rclear (3.16)

Ttop = CcloudTcloud + (1 − Ccloud)Tclear (3.17)

In the previous equations, Ccloud is the cloud fractional coverage of the layer within the cloudy fraction
of the column (depending on the cloud-overlap assumption).

The non-linear version of the shortwave radiation scheme (described in details in section IV: Physical
processes - 2.2. The pre-CY32R2 shortwave radiation scheme) used six spectral intervals with transmission
functions derived from a line-by-line code (Dubuisson et al., 1996).

The non-linear scheme is reasonably fast for application in 4D-Var and has, therefore, been linearized
without a priori modifications. The only modification with respect to the non-linear model is using two
spectral intervals with transmission functions (instead of six intervals used in the former operational
non-linear model) in order to reduce the computational cost.

3.7.2 The longwave radiation scheme

The longwave radiation scheme, operational in the ECMWF forecast model until June 2000, was a
band emissivity type scheme (Morcrette, 1989). This scheme has been replaced by the Rapid Radiation
Transfer Model (RRTM: (Mlawer et al., 1997) in June 2000. The complexity of the RRTM scheme for the
longwave part of the spectrum makes accurate computations expensive. In the variational assimilation
framework, the former operational scheme (Morcrette, 1989) has been linearized. In this scheme, the
longwave spectrum from 0 to 2820 cm−1 is divided into six spectral regions. The transmission functions
for water vapour and carbon dioxide over those spectral intervals are fitted using Padé approximations
on narrow-band transmissions obtained with statistical band models (Morcrette et al., 1986). Integration
of the radiation transfer equation over wavenumber ν within the particular spectral regions gives the
upward and downward fluxes.

The incorporation of the effects of clouds on the longwave fluxes follows the treatment discussed by
(Washington and Williamson, 1977). The scheme calculates first upward and downward fluxes (F ↑

0 (i)

and F ↓
0 (i)) corresponding to a clear-sky atmosphere. In any cloudy layer, the scheme evaluates the fluxes

assuming a unique overcast cloud of emissivity unity, i.e. F ↑
n(i) and F ↓

n(i) for a cloud present in the nth
layer of the atmosphere. The fluxes for the actual atmosphere are derived from a linear combination
of the fluxes calculated in the previous steps with some cloud overlap assumption in the case of clouds
present in several layers. Let N be the number of model layers starting from the top of atmosphere to
the bottom, Ci the fractional cloud cover in layer i, the cloudy upward F ↑

lw and downward F ↓
lw fluxes are

expressed as:

F ↑
lw(i) = (1 − CCN,i)F

↑
0 (i) +

N∑

k=i

(CCi,k+1 − CCi,k)F
↑
k (i) (3.18)

F ↓
lw(i) = (1 − CCi−1,0)F

↓
0 (i) +

i−1∑

k=1

(CCi,k+1 − CCi,k)F
↓
k (i) (3.19)

where CCi,j is the cloudiness encountered between any two levels i and j in the atmosphere computed
using a certain overlap assumption.
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In the case of semi-transparent clouds, the fractional cloudiness entering the calculations is an effective
cloud cover equal to the product of the emissivity (εcld) due to condensed water and gases in the layer
by the horizontal coverage of the cloud cover. This is the so called effective emissivity approach. The
detailed description of this longwave radiation scheme can be found in Section IV - Physical processes
(2.2. The pre-CY22R3 longwave radiation scheme).

To reduce a computational cost of the linearized longwave radiation for data assimilation, the transmission
functions are only computed for H2O and CO2 absorbers (though the version taking into account the
whole spectrum of absorbers is also coded). The cloud effects on LW radiation are only computed to the
level defined by the current cloud top height.

3.7.3 Cloud overlap assumptions

Cloud overlap assumptions must be made in atmospheric models in order to organize the cloud
distribution used for radiation and precipitation/evaporation computations. A cloud overlap assumption
of some sort is necessary to account for the fact that clouds often do not fill the whole grid box. The
maximum-random overlap assumption (originally introduced in Geleyn and Hollingsworth, 1997) is used
operationally in the ECMWF model (Morcrette, 2000). Adjacent layers containing cloud are combined
by using maximum overlap to form a contiguous cloud and discrete layers separated by clear-sky are
combined randomly as

CC i,j = 1 − (1 − Ci)

j−1∏

k=i+1

[
1 − max(Ck, Ck−1)

1 − Ck−1

]
(3.20)

where CC i,j is cloudiness encountered between any levels i and j in the atmosphere and Ck is the cloud
fraction of the layer k located between levels k and k + 1.

3.7.4 Cloud optical properties

Considering the cloud-radiation interactions, it is not only the cloud fraction or cloud volume, but also
cloud optical properties that matter. In the case of shortwave radiation, the cloud radiative properties
depend on three different parameters: the optical thickness δc, the asymmetry factor gc and the single
scattering albedo ωc. They are derived from Fouquart (1987) for the water clouds, and Ebert and Curry
(1992) for the ice clouds. The optical thickness δc is related to the cloud liquid/ice water amount uLWP

by :

δc = uLWP

(
ai +

bi
re

)
(3.21)

where ai and bi are defined from Ebert and Curry (1992) for ice particles and are set to respectively 0
and 3/2 for water particles. The mean effective radius of the size distribution of the cloud water droplets
is defined by re. For water clouds, re is set to 13 µm over oceans and to 10 µm over continents. When
ice cloud optical properties were initially introduced in the radiation code, the effective radius was set to
40 µm. However, observations indicate that the effective radius of ice crystals increases with temperature,
usually attributed to accretion from falling crystals. In the current scheme, account is taken of this by
using the diagnostic formulation of Ou and Liou (1995):

re = 326.3 + 12.42× Ti + 0.197× T 2
i + 0.0012× T 3

i (3.22)

where Ti = min(T,−23oC). The effective radius is then limited within the interval 30–60 µm.

In the two spectral intervals of the shortwave scheme, the asymmetry factor gc is fixed to 0.865 and 0.910,
respectively and ωc is given as a function of δc following Fouquart (1987):

ωc1 = 0.9999− 5 × 10−4 exp(−0.5δc) (3.23)

ωc2 = 0.9988− 2.5 × 10−3 exp(−0.05δc) (3.24)

These cloud shortwave radiative parameters have been fitted to in-situ measurements of stratocumulus
clouds (Bonnel et al., 1983).
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The optical properties of ice clouds are expressed as:

ωi = ci − dire (3.25)

gi = ei + fire (3.26)

where the coefficients are derived from Ebert and Curry (1992).

Cloud longwave optical properties are represented by the emissivity εcld related to the condensed water
amount and by the condensed water mass absorption coefficient kabs. The emissivity εcld is related to the
condensed water amount by:

εcld = 1 − exp(−kabsuLWP ) (3.27)

where kabs is the condensed water mass absorption coefficient obtained following Smith and Shi (1992)
for the water clouds and Ebert and Curry (1992) for the ice clouds. uLWP is the condensed water path.
kabs depends upon the water phase (ice or water) and upon temperature. A spectral dependency can also
be included.

Linearized shortwave and longwave radiation schemes are activated using the logical switch
LERADSN2=.TRUE. in the namelist NAMTRAJP.

To use the tangent-linear (TL) and adjoint (AD) versions of the shortwave radiation scheme, LERADSW2
should be set to .TRUE. in NAMTRAJP. The default value is set to .FALSE.. To decrease a computational
cost of the shortwave radiation in data assimilation, the number of spectral intervals is reduced to two
(six intervals are used in the forecast model) during minimization. The number of spectral intervals NSW
is changed in CVA1. This change also requires to read several parameters for two spectral intervals. This
is done in set-up routines SUSWN, SUCLOPN and SUAERSN.

The TL/AD longwave radiation scheme can be activated by setting LERADLW2=.TRUE. in
the namelist NAMTRAJP (the default value is .FALSE.). To use a time/memory optimized
version of the code, additional set-up (requirement for the shorter loops inside of NPROMA by
setting LOPTLWPR=.TRUE. and definition of the number of loops inside of NPROMA, currently
NLOOPLW=3) should also be included in NAMTRAJP. For further optimization, cloud effects on the
longwave radiation are only computed to the certain level determined from the cloud top height. This
is activated by LWLCLHR=.TRUE. in NAMTRAJP. Using this optimization, computational cost is
decreased, but TL and AD results are not bit reproducible. If reproducibility is required in 4D-Var
(LREPRO4DVAR=.TRUE.) the switch LWLCLHR is automatically set to .FALSE.. The same can be
achieved by using default value for LWLCLHR, which is .FALSE..

The linearized radiation schemes are called from RADINATL and RADINAAD, where the computation
of radiation fluxes is performed. Tendencies produced by the linearized longwave and shortwave radiation
are computed in RADHEATTL and RADHEATAD. All those routines are called from CALLPARTL and
CALLPARAD, respectively.

RADLSWTL and RADLSWAD are the drivers for the computation of the solar and thermal fluxes
by calling specialized routines for shortwave radiation (SWTL and SWAD) and for longwave radiation
(LWTL and LWAD).

3.8 LARGE-SCALE CONDENSATION AND PRECIPITATION

The original version of the simplified diagnostic large-scale cloud and precipitation scheme currently used
in the minimization of 4D-Var is described in Tompkins and Janisková (2004). This scheme replaced the
much simpler large-scale precipitation parametrization of Mahfouf (1999), which was used in operations
until Cy33r1.

The physical tendencies of temperature and specific humidity produced by moist processes on the large-
scale can be written as

∂q

∂t
= −C + Eprec + Dconv (3.28)

∂T

∂t
= L(C −Eprec −Dconv) + Lf(F −M) (3.29)
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where C denotes large-scale condensation (negative if evaporation), Eprec is the moistening due to the
evaporation of precipitation and Dconv is the detrainment of cloud water from convective clouds. F and
M correspond to the freezing of rain and melting of snow, respectively. L and Lf are the latent heats of
vaporisation/sublimation and fusion, respectively.

3.8.1 Stratiform condensation

The subgrid-scale variability of humidity is assumed to be represented by a uniform distribution with
half width W . Condensation inside the model gridbox occurs whenever gridbox mean relative humidity,
RH , exceeds a critical threshold, RHcrit. The half width of the distribution is given by

W = qsat
{
1 −RHcrit − κ(RH −RHcrit)

}
(3.30)

The critical relative humidity threshold, RHcrit, is assumed to be dependent on reduced pressure
σ = p/psurf , through

RHcrit = 0.7σ(1 − σ)(1.85 + 0.95(σ − 0.5)) (3.31)

κ is a coefficient that reduces the width of the uniform distribution when RH increases and it also depends
on σ as

κ= max(0, 0.9(σ − 0.2)0.2) (3.32)

Equation (3.30) together with the assumption of a uniform distribution yields the following relationships
for stratiform cloud cover, Cstrat, and cloud condensate specific ratio, qstratc :

Cstrat = 1 −
√

1 −RH

1 −RHcrit − κ(RH −RHcrit)
(3.33)

qstratc = qsatC
2
strat

{
κ(1 −RH) + (1 − κ)(1 −RHcrit)

}
(3.34)

where qsat is the saturation specific humidity.

Figure Fig. 3.1 displays the variations of stratiform cloud cover, Cstrat, as a function of relative humidity
for various settings of parameter κ.
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Figure 3.1 Stratiform cloud cover, Cstrat, as a function of grid-box mean relative humidity for various
values of parameter κ (see top left legend). Relative humidity ranges between RHcrit and unity (i.e. grid
box is entirely saturated).
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3.8.2 Convective contribution

The impact of convective activity on large-scale clouds, which is particularly important in the tropics
and mid-latitude summers, is accounted for through the detrainment term coming out of the convection
scheme (see Section 3.9). The additional cloud cover, Cconv, and cloud condensate, qconv

c , resulting from
convection are computed as

Cconv = (1 − Cstrat)
{

1 − exp
(−δuMu∆t

ρ∆z

)}
(3.35)

qconv
c = δuMuq

u
l

∆t

ρ∆z
(3.36)

where δu (unitless), Mu (in kg m−2 s−1) and qul (in kg kg−1) are the detrainment rate, mass flux and
cloud liquid water content in the convective updraught, respectively. ∆t and ∆z denote the model time
step and model layer depth, while ρ is the air density.

3.8.3 Precipitation formation

The formation of precipitation from cloud condensate, qc, is parameterized according to Sundqvist et al.
(1989). The corresponding tendency writes

(∂qc
∂t

)

prec
= −C0 qc

{
1 − exp

[
−

(
qc

Cqcritc

)2]}
(3.37)

where C = Cstrat + Cconv is used to obtain in-cloud condensate amounts. The critical cloud water
threshold, qcritc is set to 3×10−4 kg kg−1 if precipitation evaporation is activated, 6×10−4 kg kg−1

otherwise. The conversion factor C0 is set to 3.33×10−4 s−1. Note that the Bergeron-Findeisen mechanism
and collection processes are disregarded in the current version of the simplified scheme.

In the code, the new cloud water content after precipitation formation is calculated as

qnew
c = qc exp(−D) (3.38)

where the quantity D is computed as

D = C0 ∆t

{
1 − exp

[
−

(
qc

Cqcritc

)2]}
(3.39)

It is worth noting that precipitation formed from cloud liquid water at temperatures below the freezing
point is assumed to freeze instantly, which corresponds to term F in (3.29).

3.8.4 Precipitation evaporation

The scheme partially accounts for the overlap of precipitation with the subgrid clear-sky distribution
of humidity fluctuations (uniformly distributed). Precipitation evaporation computations are based on

the mean specific humidity, qclrprec, in the clear-sky portion through which precipitation is falling, denoted

f clr
prec. Consistent with the maximum overlap assumption made in the calculations of total cloud cover

and precipitation fraction, it is hypothesized that f clr
prec corresponds to the moistest part of the uniform

distribution, as illustrated in Fig. 3.2.

From this, one can show that

qclrprec = qsat −
f clr
prec(qsat − q)

(1 − C)2
(3.40)

where q denotes the gridbox mean specific humidity.

Precipitation evaporation is parameterized following Kessler (1969):

(∂q
∂t

)

evap
= f clr

precβ(qsat − qclrprec) (3.41)
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Figure 3.2 Illustration of the uniform distribution of specific humidity over the model grid box with
various quantities referred to in the text.

where β is given by

β = 5.44 × 10−4

{(
p

psurf

) 1
2 Pclr

5.9 × 10−3f clr
prec

}0.577

(3.42)

where Pclr denotes precipitation in the clear-sky fraction of the grid box. Equation (3.41) is solved
implicitly to take into account the reduction of qsat due to evaporative cooling, which yields the moistening
associated to precipitation evaporation:

Eprec =
f clr
precβ∆t(qsat − qclrprec)

1 + β∆t
[
1 + Lv

cp

∂qsat
∂T

] (3.43)

Finally, the loss of precipitation through evaporation (in kg m−2 s−1) is simply expressed as ∆Pevap =
−Eprec∆p/(g∆t).

3.8.5 Phase partitioning

A simple diagnostic partitioning based on temperature is used to separate cloud condensate into liquid
and ice. The liquid water fraction, αl, is calculated as

αl =






0.545 × tanh
[
0.17(T − 266.41) + 1

]
if T < 273.15 K

1 if T ≥ 273.15 K
(3.44)

3.8.6 Code

The computations performed in the simplified large-scale cloud and precipitation scheme are performed
in subroutine CLOUDST, which is called from the main physics routine CALLPAR. LENCLD2 (namelist
NAMTRAJP) is the main switch that activates this simplified scheme in non-linear and linearized
(tangent-linear and adjoint) integrations. The switch LEVAPLS2 (namelist NAMTRAJP) controls the
activation of the precipitation evaporation computations (default setting is .FALSE.). The tangent-linear
and adjoint versions of the scheme are CLOUDSTTL and CLOUDSTAD, respectively.

SET-UP OF PARAMETERS

Defined in subroutines SUCLDP and SU0PHY.

3.8.7 Regularization

Special care had to be taken to avoid the spurious growth of some perturbations in the tangent-linear
and adjoint versions of the simplified large-scale cloud and precipitation code. Problematic perturbations
are artificially reduced, as described below. Switch LREGCL should be set to .TRUE. in namelist
NAMTRAJP to activate these regularizations in the linearized code. In the following, the prime symbol
is employed to denote perturbations.

CLOUDSTTL/CLOUDSTAD:
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• After (3.33): C′
strat = C′

strat ×





−1.2 Cstrat + 0.94 if 0.2<Cstrat < 0.7
0.1 if 0.7 ≤ Cstrat < 0.95

0.1
√

(1 − Cstrat)/(1 − 0.95) if Cstrat ≥ 0.95

• D′ is scaled by 0.01 in autoconversion of cloud water to precipitation (3.39).

3.9 MOIST CONVECTION

The original version of the simplified mass-flux convection scheme currently used in the minimization of
4D-Var is described in Lopez and Moreau (2005). It replaced the much simpler convective parametrization
of Mahfouf (1999), which was used in operations until Cy33r1. Through time, the original scheme from
Lopez and Moreau (2005) has been updated so as to gradually converge towards the full convection
scheme used in high-resolution 10-day forecasts (see Chapter 6 of Part IV). The transport of tracers by
convection has also been added.

The physical tendencies produced by convection on any conservative variable ψ (dry static energy, wind
components, specific humidity, cloud liquid water) can be written in a mass-flux formulation as Betts
(1997)

∂ψ

∂t
=

1

ρ

[
(Mu +Md)

∂ψ

∂z
+Du(ψu − ψ) +Dd(ψd − ψ)

]
(3.45)

The first term on the right hand side represents the compensating subsidence induced by cumulus
convection on the environment through the mass flux, M . The other terms accounts for the detrainment
of cloud properties in the environment with a detrainment rate, D. Subscripts u and d refer to the
updraughts and downdraughts properties, respectively. Evaporation of cloud water and precipitation
should also be added in (3.45) for dry static energy, s= cpT + gz, and specific humidity, q.

3.9.1 Equations for updraught and downdraught

The equations describing the evolution with height of the convective updraught and downdraught mass
fluxes, Mu and Md (units kg m2 s−1), respectively, are

∂Mu

∂z
= (ǫu − δu)Mu (3.46)

∂Md

∂z
= −(ǫd − δd)Md (3.47)

where ǫ and δ respectively denote the entrainment and detrainment rates (in m−1). A second set of
equations is used to describe the evolution with height of any other characteristic, ψ, of the updraught
or downdraught, namely

∂ψu

∂z
= −ǫu(ψu − ψ) (3.48)

∂ψd

∂z
= ǫd(ψd − ψ) (3.49)

where ψ is the value of ψ in the large-scale environment.

In practice, (3.46) and (3.47) are solved in terms of µ=M/Mbase
u , where Mbase

u is the mass flux at cloud
base (determined from the closure assumptions as described further down). µ is equal to 1 at cloud base
for the updraught and is set to −0.3 at the Level of Free Sinking (LFS) in the case of the downdraught.
The LFS is assumed to be the highest model level (below the level of minimum moist static energy) where
a mixture of equal parts of cloud and saturated environmental air at the wet-bulb temperature becomes
negative buoyant with respect to the environmental air. In other words, LFS corresponds to the starting
level of the downdraught. The solution profiles of µ values are eventually multiplied by Mbase

u to obtain
the final mass-flux profiles.

3.9.2 Triggering of moist convection

The determination of the occurrence of moist convection in the model is based on whether a positively
buoyant test parcel starting at each model level (iteratively from the surface and upwards) can rise high
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enough to produce a convective cloud and possibly precipitation. Shallow convection is first tested for
by considering a parcel rising from the lowest model level. New test parcels starting from model levels of
increasing altitude are then considered to identify deep convection, this time. This procedure is repeated
until deep convection is found or until the departure altitude of the parcel reaches about 15 km.

The initial characteristics of the test parcel originating from the lowest model level (to test for shallow
convection) are derived from surface sensible and latent turbulent heat fluxes (Js and Jq, respectively).
The initial vertical velocity of the test parcel is assumed to be equal to the convective-scale vertical
velocity, w∗, defined as

w∗ = 1.2

(
u3
∗ − 1.5

gzκ

ρT

[Js
cp

+ 0.608T
Jq
Lv

])
(3.50)

where κ=0.4 is the von Karman constant and the friction velocity u∗ is set to a constant value of 0.1 m s−1.

Following Jakob and Siebesma (2003), the temperature excess, ∆Tu, and moisture excess, ∆qu, of the
test parcel with respect to the environment are prescribed as

∆Tu = −1.5
Js

ρcpw∗
and ∆qu = −1.5

Jq
ρLvw∗

(3.51)

For a test parcel initiated higher than the lowest model level (i.e. deep convection test), its initial vertical
velocity is arbitrarily set to 1 m s−1, while its temperature and moisture excesses are assumed to be

∆Tu = 0.2 K and ∆qu = 1 × 10−4 kg kg−1 (3.52)

Furthermore, in the lowest 60 hPa of the atmosphere that typically correspond to the mixed-layer depth
over oceanic regions, the updraught values of the dry static energy and moisture at the departure level k
are initialized as suk = s̃k + cp∆Tu, where the tilde symbol represents a 50 hPa layer average, instead of
suk = sk + cp∆Tu as for departure levels above the 60 hPa mixed-layer.

If convection is found for the parcel initiated from the lowest level, it is classified as shallow convection
if cloud depth is lower than 200 hPa. If convection is found for a parcel initiated above the lowest model
level, it is classified as deep convection provided cloud depth exceeds 200 hPa. A grid point affected by
both shallow and deep convection is treated as deep convection. Note that mid-level convection is not
distinguished from deep convection.

3.9.3 Entrainment and detrainment

Updraught

Entrainment rate (ǫu) in the updraught is split into turbulent and organized components by writing
ǫu = ǫturbu + ǫorgu . Both parts consist of constant parameters that are modulated by humidity conditions
in the environment, in terms of relative humidity, RH , and saturation specific humidity, qsat.

The constant parameters for turbulent and organized entrainment are:

ǫ0
turb
u =






0.8 × 10−4 m−1 (ENTRPEN2) for deep convection

3 × 10−4 m−1 (ENTRSCV2) for shallow convection
(3.53)

ǫ0
org
u =





0.8 × 10−4 m−2 s2 (ENTRORG2) for deep convection

0 for shallow convection
(3.54)

The final entrainment rates in the updraught, to be used in (3.46)-(3.49), are computed as

ǫturb
u = ǫ0

turb
u × 4 × min

(
1,

qsat

qbase
sat

)
(3.55)

ǫorgu =





gǫ0
org
u

[
1.0 − min(RH, 1)

]
for z = zbase

gǫ0
org
u

[
1.3 − min(RH, 1)

]
min

(
1,

(
qsat

qbase
sat

)3
)

for z > zbase

0 otherwise

(3.56)
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In each layer, ǫorgu ∆z is limited to a maximum value of 0.4. Also note that organized entrainment is always
zero for shallow convection.

Detrainment in the updraught is assumed to occur inside the convective cloud only where updraught
vertical gradient of kinetic energy (∂w2

u/∂z) and buoyancy are negative (i.e. usually in the upper part of
the convective cloud). The corresponding detrainment rate, δu, between model levels k + 1 and k is given
by

δu = max

(
1.2ǫ0

turb
u , 1 − (w2

u)k
(w2

u)k+1

)
(3.57)

Any remaining updraught mass flux is supposed to be detrained at the level where wu vanishes.

Downdraught

For all types of convection, the entrainment rate in the downdraught is set to a constant value:

ǫd =

{
2 × 10−4 m−1 (ENTRDD2) for ztopde ≤ z ≤ zLFS

0 elsewhere
(3.58)

where subscript topde denotes the model level corresponding to the top of the 60 hPa atmospheric layer
just above the surface.

Detrainment in the downdraught is defined as

δd =






1
ztopde

Mtopde

d

Md
for z < ztopde

ǫd for ztopde ≤ z ≤ zLFS

0 for z > zLFS

(3.59)

This formulation ensures a downward linear decrease of downdraught mass flux to zero at the surface.

Special case of momentum

To describe momentum exchange between the updraught and the environment, the entrainment rate is
specified as a linear combination of the entrainment and detrainment rates that are applied to all other
variables (as given in (3.55), (3.56) and (3.57))

ǫmom
u =






ǫu + 2δu in all types of convection
ǫu + 3δu at the top three levels of deep convective cloud
0 otherwise

(3.60)

3.9.4 Precipitation formation

The formation of precipitation from the cloud water contained in the updraught (qul ) is parameterized
according to Sundqvist et al. (1989). The corresponding tendency writes:

(∂qul
∂z

)

prec
= −C0 CBF qul

{
1 − exp

[
−

(
qul
qcritl

)2]}
(3.61)

where the critical cloud water threshold, qcritl is set to 5×10−4 kg kg−1. Conversion factors C0 and CBF

(Bergeron-Findeisen mechanism) are given by:

C0 =
1.5 × 10−3

0.75wu
(3.62)

CBF =






1 + 0.5
√

min(TBF − Tice, TBF − Tu) if Tu < TBF

1 if Tu ≥ TBF

(3.63)

where wu and Tu are the vertical velocity and the temperature of the updraught, and Tice=250.16 K
(−23◦C) and TBF=268.16 K (−5◦C).
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In the code, (3.61) is integrated over each model layer during the updraught ascent. The new cloud
water content in the updraught at a given model level k after precipitation formation is expressed as a
function of the initial upraught cloud water content at model level k + 1 and of the additional amount
of condensate (Cond) produced by convection during the ascent from levels k + 1 to k (by convention,
model level number increases downwards):

(qul )k = (qul )k+1 exp(−D) + Cond
1 − exp(−D)

D
(3.64)

where the quantity D is computed as

D = C0 CBF ∆z

{
1 − exp

[
−

(
(qul )k+1

qcritl

)2]}
(3.65)

It is worth noting that precipitation formed from cloud liquid water at temperatures below the freezing
point is assumed to freeze instantly.

3.9.5 Closure assumptions

One needs to formulate so-called closure assumptions to compute the convective updraught mass-flux at
cloud base, Mbase

u , from quantities that are explicitly resolved by the model.

Deep convection

The closure is based on the balance between the convective available potential energy (CAPE) in the
subgrid-scale updraught and the total heat release (HEAT ) in the resolved larger-scale environment.
CAPE and HEAT are computed as vertical integrals over the depth of the convective cloud as

CAPE =

∫

cloud

g

(
T u

v − Tv

Tv

− qul

)
dz (3.66)

HEAT =

∫

cloud

( 1

cpT

∂s

∂z
+ 0.608

∂q

∂z

)
(µu + µd)

g

ρ
dz (3.67)

where Tv denotes virtual temperature. Finally, the cloud-base mass flux for deep convection situations is
given by:

Mbase
u =

CAPE

HEAT × τ
(3.68)

where τ is an adjustment timescale (in seconds), which is expressed as

τ = (1 + 264/nT)Hcld/wu (3.69)

In (3.69), wu is the updraught vertical velocity averaged over the cloud depth, Hcld, and nT if the spectral
truncation.

Shallow convection

The closure assumption links the moist-energy excess at cloud base, δhbase, to the moist-energy
convergence inside the sub-cloud layer (SCL), δhSCL. The two latter quantities are defined as

δhbase =
[
cp(Tu − T ) + Lv(q

u + qul − q)
]

base
(3.70)

δhSCL =

∫

SCL

(
cp
∂T

∂t
+ Lv

∂q

∂t

) dp

g
(3.71)

Eventually, the cloud-base mass flux for shallow convection is given by:

Mbase
u =

δhSCL

δhbase
(3.72)
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3.9.6 Flow chart

The computations performed in the simplified cumulus convection scheme are performed in the
subroutines shown in Fig. 3.3. LECUMFS and LECUMFS2 are the two main switches to activate
this simplified convection scheme in non-linear and linearized (tangent-linear and adjoint) integrations,
respectively (namelist NAMCUMFS).

CUMASTRN2 CUININ2

CUASCN2

CUDDRAFN2

CUFLX2

CUBASEN2 CUPDRA CUADJTQ(S)

CUADJTQ(S)

CUADJTQ(S)

CUCALLN2 SATUR

CUDTDQN2

CUDUDV2

CUCTRACER

Figure 3.3 Structure of the simplified convection scheme for data assimilation.

CUCALLN2: Provides interface of routines for cumulus parametrization. It is called from CALLPAR and
returns updated tendencies of T, q, u, v and chemical tracers, as well as convective precipitation rates.

CUMASTRN2: Master routine for convection scheme. Also performs the convective closure and computes
the momentum transport by convective draughts.

CUININ2: Initializes variables for convection scheme (including vertical interpolation to half model levels).

CUBASEN2: Triggering of convective updraught. Calculates condensation level and sets updraught base
variables and first-guess cloud type.

CUPDRA: Computes preliminary updraught ascent to evaluate convective cloud top and base heights.

CUASCN2: Calculates actual ascent in updraught.

CUDDRAFN2: Calculates the downdraught descent.

CUFLX2: Calculates final convective fluxes and surface precipitation rates taking into account of
melting/freezing and the evaporation of falling precipitation.

CUDTDQN2: Calculates the tendencies of T and q from convection.
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CUDUDV2: Calculates the tendencies of u and v from convection.

CUCTRACER2: Calculates the tendencies of tracer fields due to the transport by convection.

EXTERNALS

SATUR: Computes saturation specific humidity.

CUADJTQS: Calculates super/sub-saturation and adjusts T and q accordingly.

All subroutines listed above have tangent-linear and adjoint versions with extension TL and AD,
respectively. Of course, in the adjoint code, the calling order of the subroutines shown in Fig. 3.3 is
reversed.

SET-UP OF PARAMETERS

Defined in subroutine SUCUM2 called from SUPHEC.

3.9.7 Regularization

Special care had to be taken to avoid the spurious growth of some perturbations in the tangent-linear and
adjoint versions of the simplified convection code. In most cases, problematic perturbations are artificially
reduced or even set to zero, as described below for each affected routine. Switch LREGCV should be set to
.TRUE. in namelist NAMCUMFS to activate these regularizations in the linearized code. In the following,
the prime symbol is employed to denote perturbations.

CUMASTRN2TL/AD:

• (δhbase)
′ is multiplied by 0.1 in computation of Mbase

u for shallow convection.

• (Mbase
u )′ is scaled by 0.2 in test whether δhSCL/(δhbase)

2 > 103.

• (Mbase
u )′ is scaled by 0.25 for both deep and shallow convection.

CUBASEN2TL/AD:

• w′
∗ = 0 if w∗ < 0.5 m s−1 (convective-scale velocity).

• Buoyancy perturbation is scaled by 0.35 in updraught initialization.

CUASCN2TL/AD:

• (ǫorgu )′ is scaled by 0.1.

•
( w2

u(k)
w2

u(k+1)

)′
is set to 0 in organized detrainment computations.

• w′
u is set to






0 if wu < 0.1 m s−1

0.1 × w′
u if wu ≥ 0.1 m s−1

•
(
qsat
qbase
sat

)′
is set to 0 in turbulent entrainment computations.

• Buoyancy perturbation is scaled by 0.33 in updraught computations.

CUPDRATL/AD:

• Buoyancy perturbation is scaled by 0.33 in updraught computations.

SUCUMF2:

• Mass-flux limiter, RMFCFL2, is set to 1 to avoid instabilities in implicit solver.
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3.10 TRAJECTORY MANAGEMENT

The ECMWF physics uses the tendencies from the dynamics and variables at t− ∆t as input to
compute the tendencies of a given process (represented by the operator P) for a prognostic variable
ψ. Therefore

ψn+1 − ψn−1
u

2∆t
= P(ψn−1

u ) (3.73)

where the variable ψu has already been updated by the dynamics and by the previous physical processes
(which are called in the following order: radiation; vertical diffusion; subgrid-scale orographic effects;
moist convection; large-scale condensation).

Thus

ψn−1
u = ψn−1 +

(
∂ψ

∂t

)

dyn

+

(
∂ψ

∂t

)

phys

(3.74)

In (3.73), if the operator P is non-linear, its linearization around the basic state ψn−1
u , will require to

store the model state at time step n− 1 (trajectory at t− ∆t) as well as the tendencies produced by
the dynamics (∂ψ/∂t)dyn. The physical tendencies from the previous processes (∂ψ/∂t)phys, require
an additional call to the non-linear routines in the adjoint computations (CALLPARAD) and a local
storage of the partial tendencies.

The storage of the trajectory at t− ∆t is performed in EC PHYS by the routine STORE TRAJ PHYS
called before the driver of the ECMWF physics CALLPAR. Fields are stored in grid-point space in an
array TRAJ PHYS. This array is allocated in the module TRAJ PHYSICS, where also the number
of the fields to be stored is defined.

The following three-dimensional fields are stored.

(i) For the atmosphere: the prognostic variables (wind components, temperature, specific
humidity) and their tendencies produced by adiabatic processes, the vertical velocity, the long-
wave fluxes and the solar transmissivity.

(ii) For the soil: the prognostic variables for temperature and moisture content (used to compute
the surface fluxes from the trajectory in the linear vertical-diffusion scheme).

(iii) For the tiles (i.e. vegetation (surface cover) types): u- and v-stress, surface sensible heat
flux, surface evaporation and skin temperature.

A number of two-dimensional fields used at time step t− ∆t need to be stored: surface pressure,
surface fluxes, skin temperature, skin reservoir, snow reservoir, roughness lengths (mainly for the
vertical diffusion).

The preliminary computations (pressure and geopotential at full and half model levels, astronomy
parameters) are performed in EC PHYS TL and EC PHYS AD before calling the driver of the
tangent-linear physics CALLPARTL or the driver of the adjoint physics CALLPARAD, and after
reading the trajectory fields from GET TRAJ PHYS.
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Chapter 4

Background term

Table of contents
4.1 Introduction
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4.2.1 The wavelet correlation matrix and gridpoint variances

4.2.2 The multivariate error correlations between variables: ‘balance’

4.2.3 The univariate variable transform: ‘gaussianization’

4.3 Implementation

4.3.1 The Jb information structure: SPJB VARS INFO

4.3.2 User input

4.3.3 Input files

4.3.4 Initial setup

4.3.5 Change of variable

4.1 INTRODUCTION

The background term described in Courtier et al. (1998) was replaced in May 1997 by a new formulation
by Bouttier et al. (1997), and replaced again in April 2005 by a wavelet-based covariance model (Fisher
(2004), Fisher (2003)). The two older formulations are still part of the IFS but will not be described in
this documentation.

4.2 DESCRIPTION OF THE ALGORITHM

We use the following notation.

(i) B is the assumed background error covariance matrix.
(ii) δx = (δζ, δη, δ(T, psurf), δq, δo3, . . .)

T is the low-resolution analysis increment (i.e. model field
departures from the background) of vorticity, divergence, temperature and surface pressure, specific
humidity, ozone mass mixing ratio and . . ., on model levels.

(iii) A tilde ·̃ denotes a univariate transform of the increments with more Gaussian error statistics than
the original increments.

(iv) A subscript ·u denotes a multivariate transform of the increments with less correlated error statistics
than the original increments. Dynamic and other balance relationships are included here.

The incremental variational analysis problem, (1.2) of Chapter 1, is rewritten in the space defined by
the change of variable δx = Lχ (Section 1.4) where L satisfies LLT = B so that Jb takes a simple form.
In operational practice, the initial point of the minimization is either the background (in which case
δx = χ= 0) or the control vector saved from an earlier minimization. The minimization is carried out in
the space of χ. At the end of the minimization, the analysis increments are reconstructed in model space
by δx = Lχ. In order to compare with observations, x is reconstructed using (2.4), in each simulation.
Thus the variational analysis can be performed using only transformations from minimization space to
model space (CHAVARIN). The transformation from model space to minimization space is never required.
In particular, L is not required to be invertible, and may even be rectangular. This is the case in the
“wavelet” Jb formulation described here, where the dimension of the control vector is considerably larger
than the dimension of the model state vector.
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The background-error covariance matrix B is implied by the design of L, which currently has the form

L = KLu (4.1)

where K is a balance and variable transform operator going from the set of variables δx̃u to the model
variables δx.

The Lu operator defines the covariance matrix for δx̃u as

Bu = LuL
T
u (4.2)

So far, the formulation is quite general. Now, we restrict Lu to a simple form and choose a particular
balance and variable transform operator K.

The covariance matrix Bu is assumed to be block-diagonal, with no correlation between the parameters,
so that

Bu =




Cζ 0 0 0 0 0
0 Cηu 0 0 0 0
0 0 C(T,psurf )u 0 0 0
0 0 0 Cqu 0 0
0 0 0 0 Co3 0

0 0 0 0 0
. . .




(4.3)

The matrix Lu is similarly block-diagonal, with diagonal blocks Lζ , Lηu , L(T,psurf )u , Lqu , Lo3, (etc.).
However, these sub-matrices are rectangular. Each sub-matrix is treated identically in the code, except
for differences in the coefficients used to describe the covariances, so we will consider just one sub-matrix,
Lζ .

4.2.1 The wavelet correlation matrix and gridpoint variances

The “wavelet” Jb formulation was devised to allow both spatial and spectral variation of the horizontal
and vertical covariances of background error. Only a brief description is given here. The reader is referred
to Fisher (2004) for a mathematical justification of the method, and also to Fisher (2003).

Simultaneous spatial and spectral variation of horizontal and vertical covariances is achieved by dividing
the control vector up into several parts, each of which corresponds to a band of total spherical
wavenumbers, n. For each band, the elements of the control vector are arranged on a linear reduced
Gaussian grid that is appropriate to the spectral truncation corresponding to the highest wavenumber
in the band. The wavenumber bands overlap, with the result that exactly two bands use linear grids
corresponding to the full model resolution. The cutoff wavenumber decreases by approximately a factor
of

√
2 for each subsequent band and the number of gridpoints reduces by a factor of two, so that the

total number of elements of the control vector is approximately three times larger than a gridpoint
representation of the model fields.

Information about the vertical and horizontal correlations is stored in the form of sets of vertical covariance
matrices. There is one set of matrices for each wavenumber band, and for each band the symmetric square-
roots of these matrices are stored on a horizontal grid that is somewhat coarser than the grid used for
the band’s control vector elements.

The transformation of the control vector to model space, represented by Lζ , consists of the following
steps. First, for each wavenumber band, each vertical column of the grid is multiplied by the square-root
of the covariance matrix (from the set corresponding to the wavenumber band) that is nearest to the grid
column. Next, the control vector elements are transformed to spectral space. Since the wavenumber bands
overlap, there are now more than one (in fact, exactly two) sets of spectral coefficients for each spherical
wavenumber, n. These sets of coefficients are combined in a weighted sum to give a conventional spectral
description of the model fields. For each wavenumber, the sums of squares of the weights is equal to one.
In fact, the weights are the square-roots of triangle functions that decay to zero towards the boundaries
of each wavenumber band, and take the value one at the centre of the band. As a result, the vertical
covariance associated with each wavenumber is effectively linearly interpolated between the covariance
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matrices defined for each band, and the horizontal covariance is defined by a piecewise-linear function of
n.

The final step of the transformation Lζ is to transform the spectral fields to the model grid, and to
multiply by the assumed standard deviations of background error.

4.2.2 The multivariate error correlations between variables: ‘balance’

The operator K first applies a multivariate ‘balance’ operator to obtain variables with less correlated
errors, and then a univariate variable transform is applied to obtain variables with more Gaussian
error statistics. The multivariate part of K currently accounts for dynamic balance in spectral space
(nonlinear balance and quasi-geostrophic omega equation) and thermodynamic balance between humidity
and temperature in gridpoint space (moist-adiabatic relationship in cloud covered fraction of gridbox).
In general, any multivariate error correlations will be included here.

(a) Dynamic balance in spectral space

After the control variable has been multiplied by the background error standard deviations, the
contribution due to dynamic balances is added back in spectral space, currently defined by the following
transformations for temperature, surface pressure and divergence only:

δ(T, psurf) = Nδζ + Pδηu + δ(T, psurf)u

δη = (M + Q2)δζ + δηu + Q1δ(T, psurf)
(4.4)

The matrix blocks M, N, P, Q1 and Q2 are in general not invertible, however the balance operator K
is. The M, N and P operators used to define balance have a restricted algebraic structure. M and N are
both the product of a so-called horizontal balance operator H and vertical balance operators M , N such
that

M = MH

N = NH
(4.5)

The H operator is a block–diagonal matrix of identical horizontal operators transforming the spectral
coefficients of vorticity, independently at each level, into an intermediate variable Pb which is a kind of
linearized mass variable. The horizontal operators in H are defined analytically as linearized versions of
the non-linear balance equation:

∇2Pb = (f + ζ) × vψ +
1

2
∇(vψ · vψ) (4.6)

where vψ = k×∇ψ is the rotational wind.

This equation is simplified, by treating model levels as if they were pressure levels, and is linearised
about the background state to provide a linear equation for increments in Pb as a function of vorticity
increments.

The matrices Q1 and Q2 are also defined analytically, as simplified and linearised versions of the quasi-
geostrophic omega equation: (

σ∇2 + f2
0

∂2

∂p2

)
ω′ = −2∇ · Q (4.7)

(Here, Q is the Hoskins’ Q-vector: a function of temperature and rotational wind.)

Once again, model levels are treated as if they were pressure levels, and the stability parameter, σ is
assumed to be a function of pressure. This allows the equation to be separated into a set of small tri-
diagonal systems that can be solved non-iteratively to give divergence increments as a linear function of
vorticity and temperature increments.

The M , N and P operators all have the same structure: block-diagonal, with one full vertical matrix per
spectral component. The vertical matrices depend only on the total wavenumber n, and are calculated
by linear regression. (For example, in the case of the operator N , the regression is between δP and
δ(T, psurf).)
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Calibration of the statistically-derived operators of the balance operator is performed outside the IFS
using programs developed by Francois Bouttier.

(b) Thermodynamic balance in gridpoint space

The contribution to humidity coming from the thermodynamic relation with temperature is now added
back in gridpoint space,

δq̃ = δq̃u +QqT
qb

qs(T b)

L

Rv(T b)2
δT (4.8)

where δq̃ = δq/qs(T
b) (see below), qs(T

b) is the saturation specific humidity at the background
temperature T b, L is the latent heat for mixed phase and Rv is the gas constant for water vapour. This
relationship between humidity and temperature changes is derived from the Clausius-Clapeyron equation
which gives the heat generated by a given phase-change of water vapour in clouds. The coefficient QqT is
determined by a statistical regression as function of the background relative humidity rhb and model level.
QqT starts from zero in cloud free grid boxes, estimated as rhb below about 80% relative humidity, and
goes to unity as rhb approaches 1. The regression coefficient QqT does resemple a simplified statistical
model of cloud cover. The humidity-temperature balance is put to zero in supersaturated (wrt mixed
phase) areas and in the stratosphere (determined by a tropopause diagnosed from the background fields).

The statistical regression for obtaining QqT is performed outside the IFS using programs developed by
Eĺıas Hólm.

4.2.3 The univariate variable transform: ‘gaussianization’

The last step is to transform any variables that have been ‘gaussianized’ back to the model variables.
Currently only humidity has been transformed to another variable to obtain more Gaussian error
statistics,

δq = qs(T
b)δq̃ (4.9)

For the other variables δT = δT̃ , etc. It is important to note that this is a linear transform in the inner
loops, whereas a non-linear transform may really be what is required to account for the non-Gaussianity
at this stage. The non-linear aspect of the transform is dealt with at the outer loop level in the variational
framework, see Hólm et al. (2002) for a discussion.

4.3 IMPLEMENTATION

4.3.1 The Jb information structure: SPJB VARS INFO

The Jb code is required to be sufficiently flexible to allow the incorporation of new variables, and to
allow the choice of analysed variables to differ from the choice of model variables. This is achieved
through a separation of the arrays used by Jb from the model arrays, and is controlled by a “structure”
(Fortran derived type) containing information about the Jb variables: SPJB VARS INFO. This structure
is ubiquitous throughout the Jb code.

SPJB VARS INFO is defined in YOMJG, and is a one-dimensional array with one element for each
analysed variable. Analysed variables may be either three-dimensional (for example, vorticity) or two-
dimensional (e.g. surface pressure).

Each element of SPJB VARS INFO is a structure with the following elements:

• IGRIBCODE
• IGRIBCODE FCE
• IPT
• IPTJB
• IPTFCE
• IPTBG
• L IN SPA3
• L IN SPA2
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• L IN SPGFL
• L IN GPGFL
• COR STRING

The first two elements give the GRIB parameter codes used to identify the variable and the corresponding
background error fields. These may be different since, for fields involved in the balance operator,
IGRIBCODE FCE refers to the unbalanced component of the field, whereas IGRIBCODE refers to the
full (balanced plus unbalanced) field.

The elements IPT, IPTJB, IPTFCE and IPTBG are indexes into various arrays. IPT indicates which
field in the model’s SPA3, SPA2, SPGFL or GFL arrays corresponds to the analysed variable. IPTJB
provides an index into the (spectral) Jb arrays, SPA3JB and SPA2JB. IPTFCE locates the variable in
the forecast-error array FCEBUF, and IPTBG locates the corresponding background fields in SP7A3,
GP7A3 or SP7A2.

Four logical flags, L IN SPA3, L IN SPA2, L IN SPGFL and L IN GPGFL, show where in the model’s
various arrays the variable is stored. These flags are used in conjunction with the element IPT to locate
the model’s equivalent of the analysed variable.

The final element of SPJB VARS INFO is a character string. This is used to match the variable with the
covariance matrices in the input file “wavelet.cv”.

4.3.2 User input

The initial setup of Jb is performed by SUJB. The user can input, via NAMJG, the number of analysed
variables (N SPJB VARS). GRIB parameter codes for these variables (M GRIBCODES) and for the
corresponding background error fields (M GRIBCODES FCE), and also the character strings that identify
the corresponding covariance matrices (C COR STRINGS), are input via NAMJBCODES.

These inputs are sufficient for SUJB to construct the information structure, SPJB VARS INFO. The
correspondence between analysis fields and model fields is derived by looking up the grib code of the
analysed variable in the model’s GMV and GFL structures. If none of the inputs is specified, the analysis
defaults to 6 variables: vorticity, divergence, temperature, surface log-pressure, humidity and ozone.

Background error statistics for wavelet Jb may be calculated by setting LJBWSTATS to TRUE. In
this case, the code expects to read a large set of background states as spectral GRIB fields. The
states are expected to be produced by an analysis ensemble with N BGMEMBERS members and
covering N BGDATES dates. Inter-member differences are calculated for each date, and the statistics of
background error are calculated from this set of differences. (Statistics may be calculated using the “NMC
method” by regarding, for example, a set of 48-hour forecasts as member 1, and a set of 24-hour forecasts
as member 2.) The filename for each state is constructed as a six-character prefix (CINBGSTATES)
followed by a string of the form “mXXX dYYY”, where XXX is in the range 1. . . N BGMEMBERS, and
YYY is in the range 1. . . N BGDATES.

Calculation of the statistics is performed in SUJBWAVGEN and associated subroutines. At the end of
the calculation, a file called “wavelet.cv” is written, and the code stops a little inelegantly with an abort
message. Note that calculation of the Jb statistics is largely single-threaded.

4.3.3 Input files

The IFS requires three input files to define Jb. The covariance matrices that define the vertical and
horizontal correlations are read from “wavelet.cv”. This file also contains power spectrum information
which is used to determine global mean vertical profiles of standard deviations of background error.
Coefficients for the balance operator are read from “stabal96.bal”, and standard deviations of background
error are read from “errgrib”.

4.3.4 Initial setup

SUJBWAVELET0 determines the number of wavenumber bands and their wavenumber boundaries by
reading header information from the statistics file “wavelet.cv”. Next, the spherical transforms and grid
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layouts corresponding to the cutoff wavenumbers for each band are defined by a call to SUJBWAVTRANS.
This information is stored in the structure GRID DEFINITION (YOMWAVELET).

Some allocation of arrays is carried out in SUALGES, and the control vector is allocated in SUALCTV.
Coefficients for the humidity variable and for the balance operators are initialised by SUJBCHVAR and
SUJBBAL, respectively.

Most of the setup for “wavelet Jb” is performed by SUJBWAVELET and SUJBWAVALLO. The main
tasks are to read the input file, which contains the symmetric square-roots of the vertical covariance
matrices. To reduce the size of the input file, each matrix has an associated “skyline”, which identifies
the first and last element in each row (or column, since the matrices are symmetric) that is significantly
different from zero. Only the matrix elements between these limits are stored in the file.

In addition to the covariance matrices, the input file also contains power-spectrum information about the
analysed variables. This is used to construct global-mean profiles of background error standard deviation.

The covariance matrices are stored in the structure WAVELET VCORS, together with information about
their grid layout.

The final part of the Jb setup is to read the background fields (SUECGES), and to initialise the standard
deviations of background error (SUINFCE).

4.3.5 Change of variable

The change of variable, CHAVARIN, implicitly defines the background error covariance model. It consists
of three steps: CVAR2IN implements multiplication of control vector by the matrix denoted L in
Section 4.2. The transformed variables are inserted into the model’s arrays by JBTOMODEL. This
may involve spectral transforms, since the Jb variables are all spectral, whereas model variables may be
held as gridpoint fields. Finally, the background state is added to the model fields by ADDBGS.

The control vector for the minimization contains several components besides those related to Jb. Within
CVAR2IN all these components are handled, and the Jb components are dealt with by a call to CVAR3IN.
In CVAR3IN a call to SQRTBIN applies the vertical and horizontal correlations (JGCORI) and multiplies
by the standard deviations of background error (CVARGPTL). The next step in CVAR3IN is to apply
the dynamic balance operator via calls to BALNONLINTL, BALVERT and BALOMEGATL. The final
step in CVAR3IN is a call to JBCHVARI which includes the humidity related thermodynamic balance
and ‘gaussianization’ change of variable.

Note that CVARGPTL calls TRANSINV WAVELET and TRANSDIR WAVELET to perform the
spectral transforms required to convert variables between spectral and gridpoint representations. Here
these routines implement spectral transforms using the information stored in GRID DEFINITION. They
do not implement wavelet transforms.

JGCORI calls JBVCOR WAVELETIN once for each band of wavenumbers to perform the main
part of the wavelet Jb change of variable. JBVCOR WAVELETIN has three steps. First, each
column of the control vector is multiplied by the square-root of a vertical covariance matrix. This
is performed by JBVCORG. Next, the gridpoint fields are transformed to spectral space by a call to
TRANSDIR WAVELET. The coefficients are multiplied by the appropriate weights by WAVXFORM,
and the weighted coefficients are added into the arrays PSPA3JB and PSPA2JB.

The calls to JBVCORG are the most expensive part of the wavelet Jb code. The calls are performed
within an Open-MP loop over NPROMA blocks. For each grid column and each analysis variable, the
nearest covariance matrix is identified by a call to JBMATINTERP, and the column is multiplied by the
square-root of the covariance matrix. A considerable saving of computational time is achieved by taking
into account the fact that elements outside the matrix “skyline” (see above) are known to be zero.
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Chapter 5

Observation operators and observation cost
function (Jo)
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5.1 INTRODUCTION

The observation operators provide the link between the analysis variables and the observations (Lorenc,
1986; Pailleux, 1990). The observation operator is applied to components of the model state to obtain the
model equivalent of the observation, so that the model and observation can be compared. The operator
H in (1.4) signifies the ensemble of operators transforming the control variable x into the equivalent of
each observed quantity, yo, at observation locations. The 3D/4D-Var implementation allows H to be
(weakly) non-linear, which is an advantage for the use of satellite radiance data, scatterometer data with
aliased wind direction, cloud and precipitation data, for example. In this chapter we define the content
of each of the IFS observation operators and the associated controls for all data used in 3D/4D-Var. The
calculation of departures and the Jo costfunction are also described.

The IFS observation operators are generic in the sense that the same routine is often used for several
different data types. For example, the radiance operator (RTTOV) simulates measurements from a large
number of satellite radiometers (microwave and infrared), and the temperature operator (PPT) is used
for TEMP, AIREP, and other data types and it is also used to provide input to RTTOV. Similarly the
routine PPQ is used for interpolation of specific humidity to given pressures, but it can also be used for
any other atmospheric mixing ratio constituents, such as ozone and carbon dioxide. Note that many of
the PP-routines were developed for the model’s pressure-level post-processing package and are used also
in that context.

In Table 10.2 there is a list of the observing systems currently used by 4D-Var in ECMWF’s operational
data assimilation suite. The table also indicates important restrictions on data usage and thinning of data.
The observation errors are also given in Chapter 10. In 4D-Var, the evolving model state is compared to
the available observations at the correct time, currently at half-hourly intervals. These intervals are called
time-slots. The Observation Data Base (see ODB documentation) holds the observations organized by
time slots. If there are multiple reports from the same fixed observing station within a time slot then the
data nearest the analysis time are selected for use in the analysis. Some thinning is applied for satellite
data and other moving platforms reporting frequently. The thinning rules are applied to each time slot,
separately. The thinning, quality control and data selection tasks are performed in the screening job step
of 4D-Var – it is described in Chapter 10.

5.1.1 Data selection controls, and the interface to the blacklist

Most data selection criteria are coded in so called blacklist files, written in a convenient, readable blacklist
language (see the Blacklist Documentation, Järvinen et al., 1996). The blacklist mechanism is very flexible
and allows nearly complete control of which data to use/not use in the assimilation. The ‘monthly blacklist’
is the part of the blacklist that is based on operational data monitoring results, and it is maintained by
the Meteorological Operations Section. The blacklist is consulted in the screening job. The interface is
set up in BLINIT, in such a way that a number of named items from the header (Table 5.1) and body
(Table 5.2) parts of the observation report can be passed to the blacklist software. Depending on the
blacklisting criteria flags are communicated to the routine BLACK, and those are written to the ECMA
ODB data base. Blacklist-rejected data are subsequently excluded from the CCMA ODB and will not be
present in the minimisation job steps. Data selection rules should be coded in the blacklist files whenever
possible rather than in the IFS code itself. The operational blacklist history is kept in an archive.

Classes of data can also be switched on and off using the NOTVAR array in NAMJO, however it is
preferable to use the blacklist mechanism for this purpose. The second dimension in this array is the
observation type. The first dimension is the variable number (NVAR, see below). The elements of the
NOTVAR array can take either of two values: 0, means that the data will be used; −1, means that the
data will not be used.

5.2 HORIZONTAL INTERPOLATION TO OBSERVATION POINTS

5.2.1 Method

Currently it is assumed that each observation equivalent can be computed from a single vertical profile of
model data. That is, it is assumed that each observation operator can be written as H =HvHh(x) where
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Table 5.1 Header variables for the ifs/blacklist interface.

Index Name Description

1 OBSTYP observation type
2 STATID station identifier
3 CODTYP code type
4 INSTRM instrument type
5 DATE date
6 TIME time
7 LAT latitude
8 LON longitude
9 STALT station altitude

10 LINE SAT line number (atovs)
11 RETR TYP retrieval type
12 QI 1 quality indicator 1
13 QI 2 quality indicator 2
14 QI 3 quality indicator 3
15 MODORO model orography
16 LSMASK land-sea mask (integer)
17 RLSMASK land-sea mask (real)
18 MODPS model surface pressure
19 MODTS model surface temperature
20 MODT2M model 2-metre temperature
21 MODTOP model top level pressure
22 SENSOR satellite sensor indicator
23 FOV field of view index
24 SATZA satellite zenith angle
25 NANDAT analysis date
26 NANTIM analysis time
27 SOE solar elevation
28 QR quality of retrieval
29 CLC cloud cover
30 CP cloud top pressure
31 PT product type
32 SONDE TYPE sonde type
33 SPECIFIC amsua specific
34 SEA ICE model sea ice fraction

Table 5.2 Body variables for the ifs/blacklist interface.

Index Name Description

1 VARIAB variable name
2 VERT CO type of vertical coordinate
3 PRESS pressure, height or channel number
4 PRESS RL reference level pressure
5 PPCODE synop pressure code
6 OBS VALUE observed value
7 FG DEPARTURE first guess departure
8 OBS-ERROR observation error
9 FG ERROR first-guess error

10 WINCHAN DEP window channel departure
11 OBS T observed temperature
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Hh is horizontal interpolation of model data to the location of the observation. Hh is performed for all
observations within a time-slot directly after the corresponding model time step has been performed. The
output of Hh is a vertical profile of model data for each observation location. These profiles are stored
in a data structure call GOM-arrays, and used later in the vertical part of the observation operator Hv

performed in HOP, called from OBSV. Recently, two-dimensional GOM-arrays have been developed, to
permit horizontal integration as required for limb-sounding and radio-occultation data. The orientation
of the two-dimensional GOM-arrays (e.g. one vertical plane per observation) is then determined by the
satellite viewing geometry. The Hv operator for those data receive the vertical plane of model data as
input.

COBSLAG is the master routine for the horizontal interpolation of model data to observation points.
It is called after the inverse spectral transform in SCAN2MDM, and after the so-called semi-Lagrangian
buffers have been prepared by COBS and SLCOMM2, see the flow diagram in Fig. 5.1. The interpolation
code is shared with the semi-Lagrangian advection scheme of the dynamics. The buffers contain a halo of
gridpoints big enough to enable interpolation to all observations within the grid-point domain belonging
to the processor. COBSLAG calls OBSHOR which does the following.

(i) Performs the interpolation, using SLINT.
(ii) Message-passes the result to the processors where the corresponding observations belong, and copies

the model data at observation points to the so-called GOM-arrays (GOMS, described below) using
the routine MPOBSEQ.

There are three methods of horizontal interpolation.

(i) LAIDDIOBS: 12-point bi-cubic interpolation, used for all upper-air fields (if NOBSHOR = 203)
except clouds.

(ii) LAIDDIOBS: Bi-linear interpolation, used for surface fields.
(iii) LAIDLIC: Nearest gridpoint, used for cloud parameters.

The interpolation method for the upper-air fields can be switched to bi-linear by specifying NOBSHOR =
201 in namobs. The default is NOBSHOR = 203 (bi-cubic) for the trajectory jobs, but NOBSHOR = 201
(bi-linear) in the minimisation jobs. Lists of interpolation points and weights are prepared by the routine
LASCAW. In 4D-Var bi-cubic interpolation is used at high resolution (i.e. in the trajectory runs), and
bi-linear is used at low resolution (i.e. in the main minimization). The interpolation is invoked once per
4D-Var time slot.

The adjoint (OBSHORAD) follows the same general pattern but gets further complicated by the fact that
the gradient from several observations may contribute to the gradient at a given gridpoint. The summation
of gradients is to done in the same order, irrespective of the number of processors, as reproducibility is
desired (strictly speaking, overall 4D-Var reproducibility is only ensured if the so called reproducibility
switch is ON. This adds to computational cost, and the default is OFF). Tables for managing this are
prepared in MKGLOBSTAB.

5.2.2 Storage in GOM-arrays

There are two types of GOM arrays, one-dimensional GOM arrays which contain vertical profiles of model
values at observation points and two-dimensional GOM arrays which contain a set of vertical profiles of
model values. There are namelist-switches (in NAMGOM) to control which upper-air model variables that
will appear in the GOM-arrays and whether to use one or two-dimensional GOM arrays. The control is
at at the observation type level.

The setup of the GOM structures are done in routine SUGOMS and the data structures can all be found
in module GOMS

The trajectory GOM5 arrays (identical to GOM) are allocated in the case that tangent linear observation
operators are used. They are to hold the trajectory interpolated to the observation locations, and in that
case the GOM-arrays hold the perturbations.
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Figure 5.1 Flow diagram for subroutines scan2mdm and obsv.
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At the end of the adjoint observation operators the GOM-arrays are zeroed and overwritten by the
gradient (in PREINTAD).

The r.m.s. of the GOM arrays is printed (by PRTGOM) if the switch LPRTGOM = .TRUE., (in
YOMOBS). The default is that the print is switched on. It can be located in the log file by searching for
‘RMS OF GOM’. The printing is done from OBSV, (i) when the GOM arrays contain the background
interpolated to the observation points, (ii) when it contains ∇Jo of the first simulation, (iii) when it
contains first TL perturbations after the initial call to the minimizer and (iv) when it contains ∇Jo at
the final simulation.

5.2.3 Variable numbers and association with observation operators

In the ODB each observed value is associated with a vertical position (‘press’ with pointer MDBPPP, given
in terms of pressure, height or channel number) and a variable number (‘varno’ with pointer MDBVNM).
The defined variable numbers are listed in the array NVNUMB as described in the ODB documentation.
The variable number indicates which physical quantity has been observed. Each observed quantity is
linked to an IFS observation operator (in HVNMTLT). In the case there is no corresponding observation
operator in IFS, no observation equivalent will be computed, and the observation will be rejected from
further processing. Each available observation operator has been given a number (NVAR) and a short
name (CVAR NAME, three characters), set in YOMCOSJO.

There are currently JPXVAR = 25 operator names defined: U, U10, DD, FF, H, H2, T, Z, DZ, LH,
T2, TS, RAD, SN, RR, PS, CC, CLW, Q, FFF, S0, X, PWC, TO3 and TCW, numbered sequentially
in NVAR. Each number can be referenced by variables such as NVAR U(= 1), NVAR U10(= 2) and
so on. Based on the ODB variable number for each observation, which has been associated with an
observation-operator number and name, HOP calls the appropriate observation operator routine. For
example, observations with ODB variablenumber = NVNUMB(8), will in HVNMTLT be associated with
NVAR T = 7 and CVAR NAME(7) = ‘T’, and HOP will thus call the subroutine PPT.

In the log file CVAR NAME is used to label entries in the Jo-table. The Jo-table shows the Jo-values
for each observation sub-type, for each observation operator (NVAR). RMS of observation error and
background error are also shown. See Subsection 5.2.6.

5.2.4 Organization in observation sets

The vertical observation operators are vectorized over NMXLEN (yomdimo) data. To achieve this the
data first have to be sorted by type and subdivided into sets of lengths not exceeding that number.
NMXLEN is currently set to 511, in SUDIMO. The observation sets may span several 4D-Var time slots,
as the input to the observation operators is the GOM-arrays which have been pre-prepared for all time
slots during the tangent linear model integration. However, in the current operational context this is
not the case, as OBSV.F90 is called once per time slot. Furthermore, on the current IBM machines long
vector loops are not very important for performance, our IBMs being scalar machines.

The organization of the sets is done in ECSET and SMTOV and the information about the sets is kept in
yomobset. Radiance observation sets (e.g. ATOVS, AIRS, SSMI) must not contain data from more than
one instrument. That is to say that inside HOP, HOPTL and HOPAD (and routines called form there)
data from several instruments are not mixed – different instrument are handled in separate calls. This is
controlled by sorting according to the area-parameter, which for radiance data is an indicator of satellite
ID and instrument, prior to forming the sets. The area-parameter is determined in SUOBAREA, and is
irrelevant for the observation processing for all data other than the radiance data.

5.2.5 Cost function

The master routine controlling the calls to the individual observation operators is called HOP. This
routine deals with all different types of observations.

The HOP/HOPTL/HOPAD routines are called from TASKOB/TASKOBTL/TASKOBAD (called from
OBSV/OBSVTL/OBSVAD) in a loop over observation sets. The data type of each set is know from the
information in tables such as MTYPOB(KSET) stored in yomobset.
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Table 5.3 Association between variable numbering and observation operator routines. The CVAR-NAMEs
also appear in the printed Jo-table in the log-file.

NVAR CVAR NAME Observation operator routine Description

1 U PPUV Upper air wind components
2 U10 PPUV10M 10-metre wind components
3 DD Wind direction
4 FF PPUV Wind speed
5 H PPRH Relative humidity
6 H2 PPRH2M 2-metre relative humidity
7 T PPT Temperature
8 Z PPGEOP Geopotential
9 DZ PPGEOP Thickness

10 LH PPRH Layer mean RH (M-France)
11 T2 PPT2M 2-metre temperature
12 TS Surface temperature (M-France)
13 RAD RADTR/RADTR ML Radiance data
14 SN Snow (M-France)
15 RR Rain rate (M-France)
16 PS PPPS Surface pressure
17 CC PPTCC Cloud cover
18 CLW PPCLW Cloud liquid water
19 Q PPQ Specific humidity
20 FFF PPUV10M 10-metre wind speed
21 S0 Sigma 0
22 X Reserved
23 PWC PPPWC Layer water content or TCWV
24 TO3 PPPWC Layer ozone content
25 TCW Layer cloud water content
26 RFL REFLSIM Radar reflectivity
27 APD GPSZEN DELAY GPS total zenith delay
28 RO GPSRO OP GPS radio occultation
29 HLS RTL HOP 1D Limb sounding radiance
30 AOD AOD OP Aerosol optical depth
31 LRA unknown

The following describes HOP//HOPTL/. The adjoint HOPAD follows the reverse order.

(i) First prepare for vertical interpolation using the routine PREINT. Data on model levels are
extracted from the GOM-arrays (GOMS). Pressures of model levels are computed using GPPRE.
Help arrays for the vertical interpolation are obtained (PPINIT) and T ∗ and T0 are computed
(CTSTAR). T ∗ and T0 are later used for extrapolation of temperature below the model’s orography,
Subsection 5.6.1. The routine PREINTS deals with model surface fields needed for the near-surface
observation operators and PREINTR deals with those fields that are specific to the radiance
observation operators.

(ii) The observation array is then searched to see what data is there. The ‘body’ of each observation
report is scanned for data, and the vertical coordinate and the variable-number for each datum
is retained in tables (ZVERTP and IVNMRQ). These tables will later constitute the ‘request’ for
model equivalents to be computed by the various observation operators. Tables of pointers to data
(‘body’ start addresses) and counters are stored (arrays IPOS and ICMBDY).

(iii) Then the forward calculations are performed. There is an outer loop over all known ‘variable
numbers’. If there are any matching occurrences of the loop-variable number with the content
of IVNMRQ, then the relevant observation operator will be called. A variable-number and an
observation operator are linked by a table set up in the routine HVNMTLT. The interface routines
PPOBSA (upperair) and PPOBSAS (surface) are used, which in turn call PPFLEV and the
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individual operator routines. For radiance data the interface is RADTR which calls the radiative
transfer code.

(iv) In HDEPART, calculate the departure z as

z = yo −Hx + (yo −Hxb
HR) − (yo −HxbLR) (5.1)

where the two terms in brackets have been computed previously: the first one in the high resolution
trajectory run and the second one in the LOBSREF call, described in Section 2.2.
If LOBSTL then z is

z = yo − Hδx + (yo −HxbHR) − yo (5.2)

which simplifies to what has been presented in Section 1.4.
The TOVS radiance bias correction is also carried out at this point by subtracting the bias estimate
(kept in the NCMTORB-word of ODB) from the calculated departure.
Finally the departure is divided by the observation error σo (NCMFOE in ODB) to form the
normalized departure.

(v) Departures of correlated data are multiplied by R−1, see Subsection 5.2.7. The division by σo has
already taken place in HDEPART, so R at this point is in fact a correlation (not a covariance)
matrix.

(vi) The cost function is computed in HJO, as

Jo = zTz (5.3)

for all data, even for SCAT data when LQSCAT = .TRUE., as in current 4D-Var with quadratic cost-
function. When LQSCAT = .FALSE. (as in current 3D-Var configuration) the SCAT cost function
combines the two ambiguous winds (subscripts 1 and 2) in the following way (also in HJO),

JSCAT =

[
J4

1J
4
2

J4
1 + J4

2

]1/4

(5.4)

These expressions for the cost function are modified by variational quality control, see Section 5.3.
The cost-function values are store in two tables, as detailed in Subsection 5.2.6.

(vii) HJO, also stores the resulting effective departure in the NCMIOM0-word of ODB, for reuse as
the input to the adjoint. The effective departure is the normalized departure after the effects
of (vertical) observation error correlation and quality control have been taken into account,
zeff = zTR−1[QCweight], where the QC-weight will be defined below, Section 5.3 .

We have now reached the end of the forward operators. In the adjoint routine HOPAD some of the
tasks listed above have to be repeated before the actual adjoint calculations can begin. The input to the
adjoint (the effective departure) is read from the ODB. The expression for the gradient (with respect to
the observed quantity) is then simply

∇obsJo = −2zeff/σo (5.5)

which is calculated in HOPAD for all data. The gradient of JSCAT is much more complicated and is
calculated in a separate section of HOPAD. The adjoint code closely follows the structure of the direct
code, with the adjoint operators applied in the reverse order.

5.2.6 Jo tables

There are two different tables for storing the Jo values. One is purely diagnostic (JOT, yomcosjo.h),
and is used for producing the printed Jo tables in the log-file (PRTJO called rom EVCOST). JOT is
a FORTRAN90 derived type with items containing cost function value, data count, observation error,
background error and codetype, for each observation type and for each observed variable (as defined by
NVAR above).

The actual Jo-table is called FJOS (yomcosjo). FJOS is indexed by the absolute observation number,
iabnob = MABNOB(jobs, kset), so that the contributions from each individual observation can be
summed up in a predetermined order (in EVCOST), to ensure reproducibility, irrespective of number
of processors and tasks.
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5.2.7 Correlation of observation error

The observation error is assumed uncorrelated (i.e. the matrix R is diagonal) for all data. Optionally, by
setting LTC=.true., time-sequences of SYNOP/DRIBU surface pressure and height data (Järvinen et al.,
1999) will be time correlated. There used to be code for vertical correlation of observation error for
radiosonde geopotential data and SATEM thicknesses, but these were removed in Cy21r2. Similar can
easily be reintroduced again in a later cycle, provided the correlation acts on data within a single report
(vertical or inter-channel correlation).

The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation function
ae−b(t1−t2)

2

where a= RTCPART = 0.3 and b = RTCEFT = 6.0 hours, under the switch LTC (namjo).
The remaining fraction 1 − a of the error variance is assumed uncorrelated (see COMTC).

When R is non-diagonal, the ‘effective departure’ zeff is calculated by solving the linear system of
equations zeffR for zeff , using LAPACK routines SPOTRF (Choleski decomposition) and SPOTRS
(backwards substitution), as is done in COMTC.

5.3 VARIATIONAL QUALITY CONTROL

The variational quality control, VarQC, has been described by Andersson and Järvinen (1999). It is a
quality control mechanism which is incorporated within the variational analysis itself. A modification
of the observation cost function to take into account the non-Gaussian nature of gross errors, has the
effect of reducing the analysis weight given to data with large departures from the current iterand (or
preliminary analysis). Data are not irrevocably rejected, but can regain influence on the analysis during
later iterations if supported by surrounding data. VarQC is a type of buddy check, in that it rejects those
data that have not been fitted by the preliminary analysis (i.e. the current state vector), often because
it conflicts with surrounding data.

5.3.1 Description of the method

The method is based on Bayesian formalism. First, an a priori estimate of the probability of
gross error P (G)i is assigned to each datum, based on study of historical data. Then, at each
iteration of the variational scheme, an a posteriori estimate of the probability of gross error P (G)f is
calculated (Ingleby and Lorenc, 1993), given the current value of the iterand (the preliminary analysis).
VarQC modifies the gradient (of the observation cost function with respect to the observed quantity)
by the factor 1 − P (G)f (the QC-weight),which means that data which are almost certainly wrong
(P (G)f ≈ 1) are given near-zero weight in the analysis. Data with a P (G)f > 0.75 are considered ‘rejected’
and are flagged accordingly, for the purpose of diagnostics and feedback statistics, etc.

The normal definition of a cost function is

Jo = − ln p (5.6)

where p is the probability density function. Instead of the normal assumption of Gaussian statistics, we
assume that the error distribution can be modelled as a sum of two parts: one Gaussian, representing
correct data and one flat distribution, representing data with gross errors. We write

pi =Ni[1 − P (Gi)] + FiP (Gi) (5.7)

where subscript i refers to observation number i. N and F are the Gaussian and the flat distributions,
respectively, given by

Ni =
1√

2πσo

exp

[
−1

2

(
yi −Hx

σo

)2]
(5.8)

Fi =
1

Li
=

1

2liσo
(5.9)

The flat distribution is defined over an interval Li which in (5.9) has been written as a multiple of the
observation error standard deviation σo. Substituting (5.7) to (5.9) into (5.6), we obtain after rearranging
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the terms, an expression for the QC-modified cost function JQC
o and its gradient ∇JQC

o , in terms of the
normal cost function JN

o

JN
o =

1

2

(
yi −Hx

σo

)2

(5.10)

JQC
o = − ln

(
γi + exp[−JN

o ]

γi + 1

)
(5.11)

∇JQC
o = ∇JN

o

(
1 − γi

γi + exp[−JN
o ]

)
(5.12)

∇JQC
o = ∇JN

o wi (5.13)

where

wi = 1 − γi
γi + exp[−JN

o ]
(5.14)

γi =
P (Gi)/(2li)

[1 − P (Gi)]/
√

2π
(5.15)

5.3.2 Implementation

The a priori information, i.e. P (G)i and li, is set during the screening, in the routine DEPART, and
stored in the NCMFGC1 and NCMFGC2-words of the ODB. Default values are set in DEFRUN, and
can be modified by the namelist namjo. VarQC can be switched on/off for each observation type and
variable individually using LVARQC, or it can be switched off all together by setting the global switch
LVARQCG = .FALSE.. Since an as good as possible ‘preliminary analysis’ is needed before VarQC starts,
it is necessary to perform part of the minimization without VarQC, and then switch it on.

HJO computes JQC
o according to (5.11) and the QC-weight, wi, according to (5.14).

The 3D-Var assimilation system (Chapter 3) can handle non-quadratic cost functions because it is using
the M1QN3 minimization routine. This allows VarQC to be activated after NITERQC (40 by default)
iterations during the minimization process. The 4D-Var assimilation system (Chapter 2) by default use
a conjugate gradient minimization method that requires a strictly quadratic cost function. So in 4D-Var
we use a quadratic formulation of VarQC, controlled by LQVARQC (default .TRUE.).

In the non-quadratic formulation the QC-weight, wi, (5.14) is updated for each simulation based on the
normalized departure values calculated from the latest model state. However, to obtain a strictly quadratic
cost function the QC-weight is not allowed to change during the minimisation process, because the cost
function shape would then change. Also, when LQVARQC = .TRUE. it is not possible to activate VarQC
in the middle of the minimisation process, i.e. NITERQC MUST be zero, because this would otherwise
introduce a sudden jump in the cost function. Therefore, in 4D-Var assimilations VarQC is not applied
during the first outer-loop but only for the second (and possibly subsequent) outer-loop iteration(s).

The quadratic VarQC implementation satisfies the quadratic constraint by calculating the QC-weight,
wi, based on the high resolution trajectory fields and using this constant weight during the next
minimisation step. The cost function value is increased/reduced for each simulation during the
minimisation by a factor w∗

i (norm dep LR-norm dep HR), linearized in the vicinity of the high resolution
cost function at norm dep HR. For the minimisation the most important input is the modification of
the gradient by the weight wi. During the trajectory run the high resolution departure is stored in
ROBODY(..,MDBIFC1(NUPTRA+1)) in HDEPART. For each simulation during the next minimisation
step the high resolution departure is read and normalized by the final observation error in HJO HJO loop
1.3.2. This is used as input to the VarQC weight calculations (loop 1.5.3–1.5.4 in HJO). It is assured that
the same weight is used for each simulation in the minimisation if LLQVARQC MIN = .TRUE., because
ZFJOS HR(JOBS,JBODY) is constant during the minimisation. The cost function value is calculated
like Jo varqc LR = Jo varqc HR + w∗

i (norm dep LR-norm dep HR).

The a posteriori probability of gross error is stored in the ODB and passed to BUFR feedback. Storing
in ODB is done at the final simulation of the last minimisation if LQVARQC = .F., but done during the
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final trajectory run if LQVARQC = .TRUE. in order to use the updated final trajectory for calculating
the QC-weight based on final high-resolution analysis values. This is done in HJO – see Subsection 5.2.5.

Variational quality control for time correlated observations: The same method as above is (by default)
applied for time correlated observations (LTC = .TRUE.). Here the high resolution departure values are
required for all the time correlated observations. This is achieved by storing the normalized high resolution
departures in the array RTCNDPHR in HJO and reading them in COMTC. They are then copied to
local array ZTCNDPHR W and then used instead of the low resolution departures in the calculation
(overwriting ZOM1DEP W by high resolution values).

5.4 VARIATIONAL BIAS CORRECTION

Variational bias correction (VarBC, Dee (2004)) of observations was first introduced into the IFS in
Cy31r1. VarBC works by including additional degrees of freedom (bias parameters) in the observational
term of the 4D-Var cost function to account for possible systematic errors in selected observations and/or
observation operators. The systematic errors (or biases) are represented by linear predictor models, which
can be formulated separately for different groups of observations.

Configuration of the VarBC system involves specifications of:

observation classes: types of observations subject to VarBC (e.g. clear-sky radiances;
aircraft temperatures)

data groups: subsets within each class that share the same bias model (e.g.
individual radiance channels; reports from specified aircraft types)

bias predictors: information used to explain the bias in a given data group (e.g.
layer thickness; scan position; solar elevation)

The bias correction b for an observation belonging to data group j is defined as

b=

Nj−1∑

i=0

βji p
j
i (5.16)

where the pji are the N j bias predictors associated with the group. The bias parameters βji are adjusted
by the variational analysis. By convention p0 ≡ 1, representing a globally constant component of bias, but
the other predictors can be flexibly defined. They may depend on properties of the observed atmospheric
column, on the state of the instrument, or on any other available information.

If Ng is the number of data groups, then the total number Np of bias parameters to be estimated is

Np =

Ng∑

j=1

N j (5.17)

The number N j of predictors used for each data group is typically between 1 and 10. As of Cy36r1,
the number Ng of data groups subject to variational bias correction is approximately 103, and the total
number Np of bias parameters used for this purpose is slightly less than 104.

5.4.1 Variational estimation of the bias parameters

Including the bias parameter vector β = {βji , i= 1, . . . , N j ; j = 1, . . . , Ng} in the variational analysis
replaces equation (1.2) by

J(δx, δβ) =
1

2
δxTB−1δx +

1

2
δβTB−1

β δβ +
1

2
(Hδx + b(β) − d)TR−1(Hδx + b(β) − d) (5.18)

where δβ = β − βb with βb a prior estimate, usually the result of the previous analysis cycle. The matrix
Bβ controls the adaptivity of the bias parameter estimates. We use a diagonal Bβ with elements

σ2
βj

i

= (σj)2/M j, i= 1, . . . , N j ; j = 1, . . . , Ng (5.19)
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where σj is an estimate of the error standard deviation for a typical observation in group j, and M j is
a positive integer. This formula effectively provides the same weight to the prior estimate for βji as it
would to M j newly available observations.

The number M j in (5.19) is a stiffness parameter for the bias estimates associated with a data group.
It should be interpreted as the minimum sample size required to allow significant adjustment of the
estimates by VarBC. For satellite observations, the number of data per analysis cycle is typically much
larger than the number of bias parameters to be estimated. The background term in that case does not
strongly affect the bias estimates unless M j is extremely large. For data groups with typically small
sample sizes, such as station data, the effect of the stiffness parameter M j is mainly to control the time
scale over which bias estimates are allowed to vary.

Preconditioning of the joint minimisation problem (5.18) is based on a separately defined change-of-
variable for the bias control parameters, and is described in Dee (2004).

5.4.2 Modular implementation

VarBC was originally designed to handle clear-sky radiance data only, with data groups consisting of
individual channels for all available satellite sensors. The code was completely rewritten for Cy35r2 to
facilitate implementation of bias corrections for other types of observations. The new design is modular,
with separate code modules for different observation classes. All information needed by VarBC that is
specific to the observations contained in a class is handled by the corresponding class module. This
includes, for example, the exact definition of a data group, the choice of predictors for each group, the
option for initialising bias parameters for new groups, specification of the stiffness parameters, and various
other configuration choices.

The following class modules are included in Cy36r1:

varbc rad clear-sky radiance data
varbc allsky all-sky radiance data
varbc to3 ozone layer concentrations (MACC ozone, greenhouse gases, and aerosol

optical depth available in Cy36r4)
varbc tcwv total column water vapour data from MERIS
varbc airep temperature reports from aircraft (available in Cy36r4)

Several generic modules provide functions that are essentially independent of the type of data involved.
These are:

varbc setup to configure VarBC, administer VarBC data structures, set up
preconditioning, provide I/O functions

varbc pred to evaluate predictors
varbc eval to evaluate the bias models, including TL and AD

Communication between the various class-dependent code modules on the one hand and the generic
modules on the other is accomplished by assigning a unique key to each data group within a class. This
key is a character string created by the class module, which encodes into the key whatever information it
needs in order to uniquely identify the observations for that group. In the case of satellite radiance data,
for example, the key contains the satellite id, sensor number, and channel number associated with the
group. Only the class module needs to be able to decode the key. The generic modules communicate with
the class modules simply by reference to the keys. VarBC assigns a unique integer (index) to each key,
and requests the class modules to store this index in the ODB at varbc idx@body. From that point on,
the IFS recognises observations that are subject to VarBC simply by the presence of a positive VarBC
index, and handles all VarBC-related operations in essentially the same way, independently of the type
of data involved, by reference to its VarBC index.

Each class module must have the following public interfaces to serve the generic code modules
(”varbc xxx” denotes the class module name):
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varbc xxx config to configure itself
varbc xxx groups to identify the available data groups in its class
varbc xxx groupdescr to provide a printable description for a data group
varbc xxx varbcix to store the assigned varbc indices for all its data groups in the ODB
varbc xxx pred to provide configuration parameters needed to define and/or initialise

the bias predictor models
varbc xxx min to provide configuration parameters for the minimisation

5.5 OBSERVATION OPERATORS – GENERAL

The operator H is subdivided into a sequence of operators, each one of which performs part of the
transformation from control variable to observed quantity.

(i) The inverse change of variable (CHAVARIN) converts from control variables to model variables.
(ii) The inverse spectral transforms put the model variables on the model’s reduced Gaussian grid

(controlled by SCAN2MDM).
(iii) A 12-point bi-cubic or 4-point bi-linear horizontal interpolation, similar to the semi-lagrangian

interpolation routines described elsewhere, gives vertical profiles of model variables at observation
points (controlled by COBS, COBSLAG). The surface fields are interpolated bi-linearly to avoid
spurious maxima and minima. The three steps (i) to (iii) are common to all data types. Thereafter
follows steps (iv) and (v).

(iv) Vertical integration of, for example, the hydrostatic equation to form geopotential, and of the
radiative transfer equation to form radiances (if applicable).

(v) Vertical interpolation to the level of the observations.

The vertical operations depend on the variable. The vertical interpolation is linear in pressure for
temperature (PPT) and specific humidity (PPQ), and it is linear in the logarithm of pressure for wind
(PPUV). The vertical interpolation of geopotential (PPGEOP) is similar to wind (in order to preserve
geostrophy) and is performed in terms of departures from the ICAO standard atmosphere for increased
accuracy (Simmons and Chen, 1991, see Section 5.6). The current geopotential vertical interpolation
together with the temperature vertical interpolation are not exactly consistent with hydrostatism. A
new consistent and accurate vertical interpolation has been devised by Météo-France, which may be
important for intensive use of temperature information. The new routines have been tested by ECMWF
and as the results were not unambiguously positive the new routines have not yet been adopted –
and they are not described in this documentation. In the meantime, the old routines are still used
(switch LOLDPP = .TRUE. in namct0), under the names PPT OLD, PPGEOP OLD and PPUV OLD,
with tangent linear PPTTL OLD, PPGEOPTL OLD and PPUVTL OLD and adjoint PPTAD OLD,
PPGEOPAD OLD and PPUVAD OLD.

The vertical interpolation operators for SYNOP 10-metre wind (PPUV10M) and 2-metre temperature
(PPT2M) match an earlier version of the model’s surface layer parametrization. The vertical gradients
of the model variables vary strongly in the lowest part of the boundary layer, where flow changes are
induced on very short time and space scales, due to physical factors such as turbulence and terrain
characteristics. The vertical interpolation operator for those data takes this into account following Monin–
Obukhov similarity theory. Results using such operators, which follow Geleyn (1988) have been presented
by Cardinali et al. (1994). It was found that 2-metre temperature data could not be satisfactorily used in
the absence of surface skin temperature as part of the control variable, as unrealistic analysis increments
appeared in the near-surface temperature gradients. The Monin–Obukhov based observation operator
for 10-metre wind, on the other hand, is used for all surface winds (SYNOP, DRIBU, TEMP, PILOT
and SCAT), where interpolation is not confined to only 10 m, but is performed to the actual observation
height (in practise ranging from 4 to 10 m).

Relative humidity is assumed constant in the lowest model layer to evaluate its 2-metre value (PPRH2M),
see Subsection 5.9.4. Model equivalents of total column water vapour data are obtained by vertical
integration of q (in GPPWC and PPPWC). The routine PPPWC is also used for vertical integration
of GEMS/MACC trace gasses. Observation operators exist for precipitable water content (also using
PPPWC) and thicknesses (PPGEOP).

IFS Documentation – Cy37r2 53



Chapter 5: Observation operators and observation cost function (Jo)

The variational analysis procedure requires the gradient of the objective function with respect to the
control variable. This computation makes use of the adjoint of the individual tangent linear operators,
applied in the reverse order. The details regarding observation operators for conventional data can be
found in Vasiljevic et al. (1992), Courtier et al. (1998), and in the following sections.

5.6 THE OBSERVATION OPERATOR FOR CONVENTIONAL DATA

5.6.1 Geopotential height

The geopotential at a given pressure p is computed by integrating the hydrostatic equation analytically
using the ICAO temperature profile and vertically interpolating ∆φ, the difference between the model
level geopotential and the ICAO geopotential (Simmons and Chen, 1991). The ICAO temperature profile
is defined as

TICAO = T0 −
Λ

g
φICAO (5.20)

where T0 is 288 K, φICAO is the geopotential above 1013.25 hPa and Λ is 0.0065 K m−1 in the ICAO
troposphere and 0 in the ICAO stratosphere (the routine PPSTA). The ICAO tropopause is defined by
the level where the ICAO temperature has reached 216.5 K (SUSTA). Using this temperature profile and
integrating the hydrostatic equation provides TICAO and the geopotential φICAO as a function of pressure
(PPSTA). We may then evaluate the geopotential φ(p) at any pressure p following

φ(p) − φsurf = φICAO(p) − φICAO(psurf) + ∆φ (5.21)

where psurf is the model surface pressure and φsurf , the model orography. ∆φ is obtained by vertical
interpolation from the full model level values ∆φk. The interpolation is linear in ln(p) up to the
second model level (PPINTP) and quadratic in ln(p) for levels above it (PPITPQ, see below).
Following Simmons and Burridge (1981) the full model level values are obtained by integrating the
discretized hydrostatic equation using the routine GPGEO of the forecast model to give

∆φk =
k+1∑

j=L

Rdry(Tvj
− TICAOj

) ln

(
pj+1/2

pj−1/2

)
+ αkRdry(Tvk

− TICAOk
) (5.22)

with

αk = 1 − pk−1/2

pk+1/2 − pk−1/2
ln

(
pk+1/2

pk−1/2

)

for k > 1 and α1 = ln(2).

(a) Quadratic vertical interpolation near the top of the model

Above the second full level of the model, the linear interpolation (PPINTP) is replaced by a quadratic
interpolation in ln p, performed in the routine PPITPQ using

z(ln p) = a+ b(ln p) + c(ln p)2 (5.23)

where a, b and c are constants determined so that the above equation fits the heights at the top levels
(k = 1, 2 and 3). The interpolation formula is

φ(ln p) = z2 +
(z2 − z1)(ln p− ln p2)(ln p− ln p3)

(ln p2 − ln p1)(ln p1 − ln p3)
− (z2 − z3)(ln p− ln p1)(ln p− ln p2)

(ln p2 − ln p3)(ln p1 − ln p3)
(5.24)

where 1,2 and 3 refer to levels k = 1, 2 and 3, respectively.

(b) Below the model’s orography

The extrapolation of the geopotential below the model’s orography is carried out as follows: Find T ∗

(surface temperature) by assuming a constant lapse rate Λ, from the model level above the lowest model
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level (subscript l − 1), see the routine CTSTAR, using

T ∗ = Tl−1 + Λ
Rdry

g
Tl−1 ln

psurf

pl−1
(5.25)

T ∗ =
{T ∗ + max[Ty,min(Tx, T

∗)]}
2

(5.26)

Find the temperature at mean sea level, T0 (also in CTSTAR) from

T0 = T ∗ + Λ
φsurf

g
(5.27)

T0 = min[T0,max(Tx, T
∗)] (5.28)

where Tx is 290.5 K and Ty is 255 K. The geopotential under the model’s orography is (in PPGEOP)
calculated as

φ= φsurf −
RdryT

∗

γ

[(
p

psurf

)γ
− 1

]
(5.29)

where γ =
Rdry

φsurf
(T0 − Tsurf).

5.6.2 Wind

In PPUV a linear interpolation in ln p (PPINTP) is used to interpolate u and v to the observed pressure
levels up to the second full model level, above which a quadratic interpolation is used (PPITPQ, see
Subsection 5.6.1). Below the lowest model level wind components are assumed to be constant and equal
to the values of the lowest model level.

5.6.3 Humidity

Specific humidity q, relative humidity U and precipitable water content PWC are linearly interpolated
in p, in PPQ, PPRH and PPPWC, respectively. Upper air relative humidity data are normally not used,
but could be used, if required. The use of surface relative humidity data is described in Subsection 5.9.4.

(a) Saturation vapour pressure

The saturation vapour pressure esat(T ) is calculated using Tetens’s formula given by

esat(T ) = a1 exp
a3

(
T−T3
T−a4

)

(5.30)

using FOEEWM (mixed phases, water and ice) in the model and FOEEWMO (water only) for
observations. The use of water-phase only is in accordance with the WMO rules for radiosonde and
synop reporting practices. Note that these statement functions compute (Rdry/Rvap)esat(T ), with the
parameters set according to Buck (1981) and the AERKi formula of Alduchov and Eskridge (1996),
i.e. a1 = 611.21 hPa, a3 = 17.502 and a4 = 32.19 K over water, and for FOEEWM a3 = 22.587 and
a4 = −0.7 K over ice, with T3 = 273.16 K. Furthermore in FOEEWM the saturation value over water
is taken for temperatures above 0◦C and the value over ice is taken for temperatures below −23◦C. For
intermediate temperatures the saturation vapour pressure is computed as a combination of the values
over water esat(water) and esat(ice) according to the formula

esat(T ) = esat(ice)(T ) + [esat(water)(T ) − esat(ice)(T )]

(
T − Ti
T3 − Ti

)2

(5.31)

with T3 − Ti = 23 K.

(b) Relative humidity

In GPRH relative humidity U is computed from

U =
pq

Rvap

Rdry[
1 +

(
Rvap

Rdry
− 1

)
q
]
esat(T )

(5.32)
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and then in PPRH interpolated to the required observed pressure levels (using PPINTP). Below the lowest
model level and above the top of the model is U assumed to be constant. Saturation vapour pressure is
calculated using FOEEWMO if GPRH has been called form the observation operator routines, and using
FOEEWM if called from the model post processing.

(c) Precipitable water

In GPPWC precipitable water is calculated as a vertical summation from the top of the model by

PWC k =
1

g

k∑

i=1

qi(pi − pi−1) (5.33)

and then in PPPWC interpolated to the required observed pressure levels (using PPINTP). PWC is
assumed to be zero above the top of the model. Below the model’s orography PWC is extrapolated
assuming a constant q = ql.

(d) Specific humidity

Specific humidity q is in PPQ interpolated to the required observed pressure levels (using PPINTP).
Below the lowest model level and above the top of the model is q assumed to be constant and equal to
ql and q1, respectively.

5.6.4 Temperature

Temperature is interpolated linearly in pressure (PPINTP), in the routine PPT. Above the highest model
level the temperature is kept constant and equal to the value of the highest model level. Between the
lowest model level and the model’s surface the temperature is interpolated linearly, using

T =
(psurf − p)Tl + (p− pl)T

∗

psurf − pl
(5.34)

Below the lowest model level the temperature is extrapolated by

T = T ∗
[
1 + α ln

p

psurf
+

1

2

(
α ln

p

psurf

)2

+
1

6

(
α ln

p

psurf

)3]
(5.35)

with α= ΛRdry/g, for φsat/g < 2000 m, but α is modified for high orography to α=Rdry(T
′
0 − T ∗)/φsurf ,

where
T ′

0 = min(T0, 298) (5.36)

for φsurf/g > 2500 m, and

T ′
0 = 0.002[(2500− φsurf/g)T0 + (φsurf/g − 2000) min(T0, 298)] (5.37)

for 2000< φsurf/g < 2500 m. If T ′
0 < T ∗ then α is reset to zero. The two temperatures T ∗ and T0 are

computed using (5.25) to (5.28).

5.7 SATELLITE RADIANCE OPERATORS

The majority of satellite data assimilated currently is radiances. Radiances, rather than retrieved
products, are assimilated directly (Andersson et al., 1994), wherever possible. The current operational
configuration uses clear level-1C radiances from a number of sensors, including ATOVS (McNally et al.,
1999), AIRS, IASI, SSMI, and AMSR-E as well as geostationary water vapour clear-sky
radiances (Munro et al., 2004). Rain affected SSMI radiances are also assimilated (Bauer et al., 2006a).

There are currently two routes in the IFS to assimilate satellite radiances. The first one uses the radiative
transfer operator on model profiles interpolated to observation locations. The processing within 3D/4D-
Var of satellite data assimilated through this route follows the same general layout as that of conventional
data. This route is currently used for all clear-sky radiances, as well as for totally overcast infrared
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radiances. The second route uses the radiative transfer operator on model profiles at model grid point
locations, and associates the output with observations within a given collocation radius around the model
grid point. This assimilation route differs considerably from that used for conventional observations. The
route is currently used for rain- or cloud-affected microwave radiances only.

For the nadir radiances, the observation operators for both routes are different flavours of the
RTTOV radiative transfer model (Saunders and Matricardi, 1998; Matricardi et al., 2001), currently
using RTTOV version 9.

5.7.1 Common aspects for the setup of nadir radiance assimilation

The operational radiance assimilation shares the following setup aspects for both radiance assimilation
routes. The datasets are distinguished by a satellite ID, a sensor ID, and a codetype. The latter is used
to distinguish clear-sky (codetype=210=NGTHRB) or all-sky radiances (codetype=215=NSSMI).

The main set-up routine for radiances is SURAD. It recognises satellite IDs (call to GETSATID), reads
RTTOV coefficient files (call to RTSETUP), and builds a “satellite group table” containing information
on which satellite groups are present.

(a) Satellite identifiers and sensors

Satellite identifiers are dealt with in the routine GETSATID, called from SURAD. The ODB contains
the identifiers as given in the original BUFR messages. Lists of identifiers for which data exist in any
given ODB are prepared in the routine SURAD. The routine GETSATID matches those BUFR satellite
identifiers with the more traditional satellite numbers, used by the RT-code (e.g. 10 for NOAA-10 and 5
for METEOSAT-5). The id-conversion tables can be modified through the namelist NAMSATS.

The various types of radiance data in the IFS are also classified by sensor. Each satellite sensor is
assigned a number, defined in the module YOMTVRAD. The sensor number is used as index to various
tables containing observation errors, BgQC thresholds, VarQC parameters, the Jo-table JOT, etc. See
the routine DEFRUN.

(b) Satellite group table

Various satellite-related indices are gathered in the routine SURAD in the FORTRAN90 data structure
called the ‘satellite group table’, satgrp t (defined in YOMTVRAD). The table contains elements such
as the satellite ID, the sensor ID, the codetype, a sequence number for addressing the transmittance
coefficients (rtcoef pos), the number of channels, a channel number list, etc. The various satellite-related
indices are universally determined across all processors. There is one entry in the satellite group table
per satellite, sensor, and codetype. A list of all the satellite groups can be found in the ifstraj output
by searching for SATGRP.

(c) Radiative transfer coefficients, pressure levels and validation bounds

Various preparations for RTTOV calculations are set-up in the call to RTSETUP from SURAD. This
includes reading of the various coefficient files required by RTTOV. The files can be found under
/home/rd/rdx/data/36r1/sat/rttov. There is one file with the prefix rtcoef containing coefficients for
the general clear-sky radiative transfer for each instrument and satellite, and files with prefix sccldcoef
used for a parametrization of cloud scattering effects for some infrared sensors. Both types of files are
read via a call to RTTVI (in the satrad library) which also communicates other settings from the RTTOV
code in the satrad library to the IFS side. Only the files that are required are read, i.e. only the files
for which observations are present (for the clear-sky coefficients) or for which data is present and the
calculation of cloudy radiances is requested through switching the flags LCLD RTCALC SCREEN or
LCLD RTCALC ASSIM on in the module YOMTVRAD for the respective sensor. A third type of
RTTOV coefficient files (prefix mietable ) is required for RTTOV SCATT computations in the all-sky
system (see 5.7.3), read via a call to MWAVE SETUP under RTSETUP.

If the interpolation to RTTOV pressure levels is performed on the IFS side (rather than inside RTTOV,
see 5.7.2), the list of the NLSAT = 43 fixed pressure levels is stored in arrays in YOMTVRAD. They
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are read in the satrad project from the transmittance coefficient file, called via the route of SURAD and
RTSETUP. RTSETUP similarly obtains (from RTTOV) lists of temperature, humidities and ozone limits
indicating the valid range of the RT transmittance regression. The RT code is not reliable in conditions
beyond these limits. The IFS uses just one set of fixed pressure levels, reference or limit profiles (rather
than having instrument dependent ones), and the ones that are read last are used. The reference pressure
levels and limit profiles are only used if the interpolation to RTTOV pressure levels is performed in the
IFS before the call to RTTOV instead of using the internal RTTOV interpolation (see 5.7.2), and the
number of levels is fixed to NLSAT = 43.

If the interpolation to RTTOV pressure levels is performed inside RTTOV (see 5.7.2), the transmittance
coefficient file for different sensors can use any number of fixed pressure levels, and the number can be
different for different sensors.

5.7.2 Clear-sky nadir radiances and overcast infrared nadir radiances

(a) Radiance observation errors and bias correction

Observation errors for 1C radiances are written to the ODB in a call to RAD1COBE (from HRETR).
They are set by sensor and channel in the routine DEFRUN, variable ROERR RAD1C.

The bias correction is performed through variational bias correction, see section Section 5.4. The VarBC
class is called “rad”, and the class-specific routines for the generic VarBC code are in the module
VARBC RAD. For most sounding radiances, the predictors used consist of four layer-thicknesses derived
from the First Guess (as defined in VARBC PRED), but some window channels do not include such
airmass predictors to avoid aliasing of cloud information into the bias correction. Also, AMSU-A channel
14 is assimilated without a bias correction, in order to anchor the stratospheric temperature analysis.
Without such an anchor, the variational bias corrections tend to drift to unrealistic values as a result of
model biases. This is done at script level, through the namelist NAMVARBC RAD.

(b) Surface emissivity

Microwave (EMIS MW N) and infrared (EMIS IR) surface emissivities are set during the screening phase
in RAD1CEMIS (called from HRETR) and stored in the ODB for later use by RTTOV. Setting the
emissivity to values outside the range of 0 and 1 prompts the calculation of surface emissivity within
RTTOV, using FASTEM (Deblonde and English, 2001) for the microwave and ISEM-6 (Sherlock, 1999)
for the infrared. This is done for all microwave and infrared radiances over sea.

For microwave radiances over land, several options exist to specify the surface emission, following the
methods described in Karbou et al. (2006). The surface emissivity can be specified through an atlas, or
it can be dynamically retrieved from window channel observations and FG estimates of skin temperature
and atmospheric profiles, or the skin temperature can be retrieved given an emissivity atlas value and FG
estimates of atmospheric profiles. Default choices are made by sensor in SUEMIS CONF (including which
channel is used for the last two options) and can be overwritten through the namelist NAMEMIS CONF
or controlled through the preIFS switch AMSU LAND in the Satellites window in the case of AMSU-
A/B/MHS. For the two options with dynamic retrieval of emissivity or skin temperature, the required
radiative transfer calculations are performed in the routine SATRAD/RTTOV/rttov ec when called
from HRETR via RADTR or RADTR ML (see also next section). The atlas values and the retrieved
emissivities or skin temperatures are written to the ODB, and used as fixed input in subsequent calls to
RTTOV. If atlas values are required, these are read in the routine DEFRUN. The default for AMSU-
A/B/MHS over land is to use the dynamic retrieval of surface emissivity, using an evolving emissivity
atlas to quality-control the retrieved emissivities.

For AMSU-A/B/MHS a Kalman Filter is used to produce an evolving emissivity atlas from
past dynamically retrieved emissivity values, as summarised in Krzeminski et al. (2009). The
atlas is updated using the programs EMISKF UPDATE AMSUA, EMISKF UPDATE AMSUB, and
EMISKF UPDATE MHS in the satrad project (together with emiskf* and kfgrid* routines that can
be found in the emiss directory of the satrad project). These programs access the ODB and read
the required retrieved emissivity values. Routine EMISKF INIT specifies the resolution of the atlas
and other configuration settings. Routine EMISKF INIT SENSOR is used to read the atlas values,
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EMISKF UPDATE ATLAS to update the emissivity parametrization, and EMISKF WRITE SENSOR
to output the updated atlas. The cycling of the atlas information is done through the files emiskf.cycle*
which are stored as tar-ball in ECFS. The routine EMISKF INIT SENSOR is also used to read the atlas
under DEFRUN during the application stage in the screening run. If no atlas is available a “coldstart”
is performed, setting the atlas values and their errors to pre-specified values.

(c) Calling the radiative transfer model

The radiative transfer model RTTOV is called from the general observation operator routine HOP. More
details on RTTOV can be found in Eyre (1991), updated by Saunders and Matricardi (1998).

RTTOV performs optical depth calculations on a number of fixed pressure levels, as specified in the
rtcoef coefficient file mentioned earlier. RTTOV-9 (introduced in 35r2) includes the option to provide
the atmospheric profile input either on this set of fixed pressure levels or on a set of different and variable
pressure levels. In the latter case, RTTOV will perform the required interpolation internally, using an
interpolation that provides smoother gradients than a simple linear interpolation. If this option is used,
the radiative transfer computations are also performed on the input user levels, rather than the fixed
RTTOV pressure levels.

The IFS allows the user to either perform the interpolation to the RTTOV pressure levels before the call
to RTTOV on the IFS side, or to provide the model data on the model fields and use the RTTOV internal
interpolation. The choice is done via the flag LRTTOV INTERPOL in the module YOMTVRAD. The
default for ECMWF is to use the RTTOV internal interpolation, so the flag is set to .True..

Depending on the setting of LRTTOV INTERPOL, the routine HOP will perform different tasks:

In case LRTTOV INTERPOL is set to .False., HOP interpolates the model profiles of temperature,
humidity and ozone (T, q, and oz) to the NLSAT(= 43) RT levels (Ṫ and q̇) and calls the interface
RADTR to the RT code RTTOV. The standard routines PPT and PPQ are used to carry out the
vertical interpolation, and they are called through the PPOBSA interface, as usual. Various radiance
preparations are performed in the routine HRADP. For the purpose of radiance calculations T2m = Tl
(the lowest model level temperature) and q2m = q̇NLSAT (specific humidity at the lowermost of the RT
pressure levels). These quantities represent a very shallow layer of air near the surface and contribute little
to the calculated radiances – it was not considered necessary to use PPT2M and PPRH2M (Section 5.9)
in this context. In order to make the radiance cost function continuous in psurf it was necessary to ensure
that Ṫ and q̇ approach T2m and q2m as the pressure on any of the RT levels approaches psurf . This is
done in a section of HRADP. The routine RADTR checks that the input model profile is within the valid
range of the transmittance regression, and re-sets the values to the limit values if they fall outside these
validity bounds.

In case LRTTOV INTERPOL is set to .True. (the default), HOP will call RTTOV via the routine
RADTR ML and profile information will be input to RTTOV on NFLEVG+1 levels. These correspond
to the NFLEVG model levels with an additional level set at the model’s surface pressure, for which
the temperature, humidity, and other gas concentration values are taken from the lowest model level.
A check against the validity bounds of the RTTOV transmittance parametrization is in this case
done within RTTOV (routine SATRAD/RTTOV/RTTOV CHECKINPUT.F90), for the optical depth
calculations only (switch APPLY REGRESSION LIMITS in SATRAD/MODULE/rttov const.F90).
Various radiance preparations are again performed in a modified version of HRADP, HRADP ML.

In either case, the routine HOP constructs a list of requested channel numbers for each report from the
observation array, and only model radiances for exactly those channels are then requested from the RT-
code. The routines RADTR or RADTR ML packets the profiles into chunks of work of an appropriate
maximum size for the RT-code (currently set to 8 in SATRAD/MODULE/mod cparam.F90). The RT
packet size has been communicated to IFS in the call to RTSETUP. The output is radiances for the
channels requested.

The tangent linear HOPTL and the adjoint HOPAD follow the same pattern as HOP. In both the TL
and the adjoint Ṫ and q̇ have to be recomputed before the actual tangent linear and adjoint computations
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can start. The pointers to the radiance data in the observation array are obtained just as it was done in
the direct code.

(d) Skin-temperature ‘sink-variable’ at satellite FOVs

In the case of 1C, or ‘raw’ radiance data, as used since May 1999 (McNally et al., 1999) surface
skin temperature is retrieved by 3D/4D-Var at each field of view, if the switch LTOVSCV is on
(default is on), in namelist NAMVAR. This is done for all infrared and microwave satellite sensors
and instruments. The handling of the SST retrieval at the radiance FOVs is performed in the routine
HRADP/HRADPTL/HRADPAD, called from HOP/HOPTL/HOPAD. The background SST is provided
by the model trajectory integration, and a background error of 1 K/5 K is assigned over sea/land,
respectively (stored in TOVSCVER, module YOMTVRAD). The gradient with respect to SST obtained
from RTTOV is temporarily stored in the TOVSCVX array and later transferred to its location in
the distributed control vector (Chapter 2). The next iteration of the minimisation provides updated
SST increments (also stored in TOVSCVX) that are used by RTTOVTL in subsequent iterations. The
outer-loop iterations result in a new linearisation state SST, stored in TOVSCVX5. All the SST-related
information at FOV locations that needs to be passed between job-steps, reside in the ODB, in the satellite
predictors table. This approach has been adopted for CO2 retrieval at AIRS FOVs (Engelen et al., 2004).

5.7.3 All-sky nadir radiances

Observations from the microwave imagers and sounders can be assimilated using an all-sky approach which
unifies clear-sky, cloudy, and precipitation-affected radiances in one observation operator, using RTTOV-
SCATT for the radiative transfer, which is capable of modelling the effects of multiple scattering from
hydrometeors. At 37r3, the microwave imagers TMI and SSMIS are actively assimilated, and at 38r1,
channel 4 of AMSU-A will also be assimlated in the all-sky framework. Observations are assimilated only
over oceans, and only for latitudes equatorward of 60◦ (40◦ for AMSU-A).

All-sky observations follow a path through the IFS code that is often quite different from that for clear-
sky radiance observations. The observation operator requires a number of diagnostics (e.g. preciptation
flux and fraction) that come from the moist physics parametrizations and are not easily available in
observation space. In general, there is no interpolation from the model grid points to the observation
locations. Instead, the observation operator takes input from the nearest grid point. Practically, this
means that the observation operator (and bias correction - see Section 5.4) is called from the model
physics (CALLPAR). The simulated observation and bias correction are stored in the ODB. Later, in
HOP, no processing is done except to read these back from the ODB. The tangent linear and adjoint
follow similar principles. An exception to this is made for AMSU-A assimilation, where the interpolated
temperature from the GOM arrays is used, rather than the local temperature profile in the physics code.
This is to avoid inaccuracies of order 0.05K in regions with strong temperature gradients.

All-sky assimilation can be switched on in PrepIFS by means of switches for individual sensors, e.g.
LSSMI, LAMSRE, LTMI, LSSMIS etc. For all-sky AMSU-A, which runs in parallel to the clear-sky
assimilation, there is a separate switch LAMSUA ALLKSY. Comprehensive scientific documentation of
the all-sky approach can be found in Bauer et al. (2010), Geer et al. (2010), Geer and Bauer (2011b),
Geer and Bauer (2011a)

(a) Preprocessing

Observations are received in BUFR format and are pre-processed by SCRIPTS/GEN/premwimg, which
calls a number of fortran programs:

SATRAD/PROGRAMS/bufr screen ssmi 1d and bufr screen amsre 1d perform a preliminary screening,
removing observations over land and checking for any unrealistic brightness temperatures. AMSR-
E observations are re-assigned to the BUFR subtype 127, which is that of SSM/I. Later, this is
used to identify the observations as part of the all-sky path by giving them codetype 215 (see
ODB/CMA2ODB/buf2cmat new).

SATRAD/PROGRAMS/bufr grid screen is called to do superobbing. Based on the final inner loop
resolution, typically T255, observations are binned onto the Gaussian grid. This brings the relatively
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high observation resolution of microwave iamgers (up to 10 km) down to roughly the scale of clouds in
the IFS model. The superobbing is done by computing the numerical mean of all BUFR fields, except
longitude and latitude, which are taken to be those of the grid-point, and the observation time, which
comes from the last observation meaned. This program also allows a further thinning of the data by
keeping only observations associated with grid points at every nth longitude and mth latitude.

(b) Observation operator

Code for the all-sky observation operator is prefixed by ‘mwave’ and located either in
IFS/MWAVE or SATRAD/MWAVE. As mentioned, the observation operator, its TL or adjoint
(IFS/MWAVE/mwave obsop, mwave obsop tl or mwave obsop ad) are called from the physics operator
(IFS/MWAVE/callpar, callpartl or callparad). In the screening trajectory, IFS/MWAVE/mwave screen
is called instead. Inputs to the observation operator are the profiles of model variables
(passed in via a structure of mwave phys type) and any observation-related information (passed
via a structure of mwave rad type). The observation-related information has been read from
the ODB by IFS/MWAVE/mwave get, mwave get tl or mwave get ad, which are called from
IFS/CONTROL/gp model, gp model tl or gp model ad, and then passed down the call chain to
CALLPAR through EC PHYS, or the TL or adjoint equivalents. Outputs from the observation operator
(such as the simulated brightness temperatures, and the observation error) are returned in a similar
way and are written to the ODB by IFS/MWAVE/mwave put or mwave put tl, which are called from
IFS/CONTROL/gp model or gp model tl.

The main function of the observation operator code in IFS/MWAVE and SATRAD/MWAVE is simply to
provide the correct inputs and initialisations to run RTTOV SCATT. However, there is code for quality
control, to produce diagnostic output, and to determine the observation error, which is not constant,
but a function of hydrometeor amount, as described in Geer and Bauer (2011b). VarQC (Section 5.3),
VarBC (Section 5.4), and blacklisting, thinning and background quality control (all in Chapter 10) are
done largely as for other radiance observations.

A number of initialisation tasks are performed in IFS/MWAVE/mwave setup, including reading the
namelist NAMMWAVE for configuration flags. An array of mwave ids structures is created, one for each
satellite and sensor combination that will pass through the all-sky operators. In this private table are
stored things like the instrument zenith angle, observation eror specifications, and the ID numbers used
in the rest of the IFS (e.g. sensor, satellite and bufr IDs).

(c) Translation between grid-point and observation space

For MPI parallelisation, clear-sky observations are essentially randomly distributed across processors into
ODB ”pools”. This is not appropriate for all-sky observations, because the observation operator must
be called from the model physics and the model parallelisation is done by geographical region, with the
globe divided into blocks. Hence the all-sky observations must be allocated to the appropriate processor
on a geographical basis. During the minimisation, the all-sky observations are stored in a special CCMA
called CCMA.grid whereas normal observations use CCMA.obs. Whenever the IFS is initialised, the ODB
re-maps the all-sky observations according the the current resolution and parallelisation structure. This
enables it to deal with the changes of resolution during the minimisation.

(d) External files

Observation error definitions for completely clear and compltely cloudy skies are stored in files with names
like mwave error < satellite > < instrument > .dat. These are read by IFS/MWAVE/mwave setup.

Some configuration options are specified in the NAMMWAVE namelist in SCRIPTS/GEN/ifsmin and
ifstraj.

(e) Diagnostics

The consistency of the TL and adjoint operators can be tested by setting ldmwave test
= .true. in the NAMMWAVE namelist in the SCRIPTS/GEN/ifsmin script. This causes
IFS/MWAVE/mwave obsop test to be called during the minimisation with the real TL input
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values for each observation. The results of the test are written to the IFS logfiles, prefixed by
‘MWAVE OBSOP TEST AD:’. The first number gives the TL / AD innaccuracy in multiples of machine
precision. Typically this should be substantially less than 100 but it will go over 1000 for a few
observations.

A number of diagnostics are stored in the ODB in the ssmi table:

DATUM TBFLAG - This is a bitfield which records quality control decisions for the all-sky observations.
It is an additional diagnostic on top of the usual status and event flags, and it only records decisions made
internally in the all-sky observation operator. A value of 1 indicates an OK observation; all other values
indicate rejection. However, even if the observation is considered OK by the all-sky observation operator,
it may subsequently be rejected by the other IFS screening processes (e.g. blacklisting, thinning, VarQC,
background QC), so always check the ‘status@hdr’ and ‘status@body’ too. Binary arithmetic can be used
to decipher the tbflag bitfield. For example, if DATUM TBFLAG = 33 = 25 + 20, that means bits 5 and
0 have been set. Bit 5 indicates contamination by sea-ice. 20 is equal to 1; this would have indicated
”OK” if no other bit had been set. The full structure of the DATUM TBFLAG bitfield is described in
IFS/MODULE/yommwave.

DATUM TBCLOUD - this is a bitfield recording the status of diagnostic cloud and rain identification
tests performed on observed and simulated brightness temperatures by IFS/OP OBS/mwimager cloud
and further documented in the code and in Geer et al. (2008). The bitfield structure is documented
in IFS/MODULE/yommwave. The lowest 2 bits give the results of the FG cloud test. With AND
representing the bitwise boolean operator, (DATUM TBCLOUD AND 2) / 2 will give the result of
the test for cloud in the FG, with 1 indicating a cloudy scene. (DATUM TBCLOUD AND 1) / 1 will
give the result for the observation.

There are also a number of diagnostics relating to FG and analysis model state. These are valid at the
time and location of the observation, giving information that is not otherwise archived. These values
include the surface rain and snow rate, in kg m−2 s−1, and the total columns of water vapour, cloud
water, cloud ice, rain and snow, in kg m−2.

5.7.4 Cloud affected infrared radiances

For infrared data from HIRS, AIRS and IASI simplified cloud parameters (cloud top pressure and effective
cloud fraction) are estimated for each field of view. Background values are computed during the screening
in routine CLOUD ESTIMATE using a method described in McNally (2009). If the scene is diagnosed
as overcast (i.e. cloud fraction equal to 1) then all channels are used (that would be used in a completely
clear scene) and the cloud parameters become additional elements of the local control vector (as skin
temperature). This is done by default, but can be disabled by setting the switch LCLDSINK to false in
namelist NAMVAR. The cloud top pressure is assigned an error (CTOPBGE in YOMTVRAD currently
equal to 5 hPa) but the cloud fraction is effectively fixed. The handling of the estimated cloud parameters
is then performed in the routine HRADP/HRADPTL/HRADPAD, called from HOP/HOPTL/HOPAD.
The gradient with respect to the cloud parameters is obtained from RTTOV and is TOVSCVX array and
later transferred to its location in the distributed control vector (Chapter 2). The next iteration of the
minimisation provides updated cloud parameter increments (also stored in TOVSCVX) that are used by
RTTOVTL in subsequent iterations. The outer-loop iterations result in a new linearisation state, stored
in TOVSCVX5. All the cloud parameter information at FOV locations that needs to be passed between
job-steps, resides in the ODB, in the satellite predictors table.

If the scene is not diagnosed as overcast, only channels flagged as clear are assimilated and the cloud
parameters are essentially inactive.

5.7.5 Clear-sky limb radiances

Assimilation of clear-sky limb radiances has been implemented in the IFS for experimental purposes.
The radiances are assimilated using the RTLIMB radiative transfer model which is an extention of
RTTOV to the limb geometry. Details of the radiative transfer model and the assimilation of limb
radiances can be found in Bormann et al. (2005); Bormann and Healy (2006); Bormann and Thépaut
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(2007); Bormann et al. (2007). Many aspects have been primarily developed for the assimilation of MIPAS
limb radiances; the assimilation of radiances from other sensors is likely to require additional coding.

Limb radiances fall under obstype 10 “Limb observations”, codetype 251. The general approach mirrors
that used for clear-sky nadir radiances, i.e., the assimilation uses spatially interpolated vertical profile(s)
of model variables. However, setup routines, the radiative transfer code, and the interface routines are
different from the clear-sky nadir radiance assimilation.

The routine SULIMB sets up a limb group table (defined and stored in module YOMLIMB), for each
satellite, sensor, and codetype, along the lines of the satellite group table set up in SURAD. Limb
radiances are treated together with GPS radio occultation observations here. SULIMB calls the routine
RTL SETUP which includes the interface routine to the satrad library to read the RTLIMB coefficient
files. Note that in contrast to the setup for nadir radiances, the code is set up to use fixed pressure levels,
reference and limit profiles that are specific to the RT-coefficient files. This information is stored in the
limb group table. RTL SETUP also reads a channel selection file into the channel selection structure
Y LIMB CHAN SEL in the module YOMLIMB. Observation errors and constant, channel-specific biases
are also read here from auxillary files and stored in dedicated variables YOMLIMB.

Setting of observation errors and biases and screening of clear-sky limb radiances is performed from
HRETR in the routines RTL OBERROR and RTL SCREEN. The latter applies the channel selection
previously stored in Y LIMB CHAN SEL in module YOMLIMB, and it performs cloud screening.

The actual assimilation happens in the routine HOP and its tangent linear and adjoint. HOP calls the
routine RTL HOP 1D which performs the following tasks: it interpolates the model profiles in the vertical
to the fixed pressure levels (using the standard interpolation routines), does a simple extrapolation above
the model top if required (based on a fixed mesospheric lapse rate for temperature, and holding humidity
or ozone constant), and it checks the model profiles against the validity limits provided with the RTLIMB
coefficient file. Finally, RTL HOP 1D calls RTLIMB HAT to enter the satrad library and perform the
radiance computations.

The routine RTL HOP 1D is used when local horizontal homogeneity is to be assumed for the radiative
transfer computations. Alternatively, the radiative transfer computations can take the horizontal structure
in the limb-viewing plane into account by providing a series of profiles covering the limb-viewing plane.
In this case, profiles provided by PREINT2D are used, and the routine RTL HOP 2D is called from HOP
instead of RTL HOP 1D. The two-dimensional facility is switched on by specifying NOBSPROFS(10)
> 1 for obstype 10 in the namelist NAMNPROF. Note that this means GPS radio occulation bending
angles present in the assimilation will also take horizontal structure into account.

5.8 OTHER SATELLITE OBSERVATION OPERATORS

Non-radiance satellite data are assimilated through various other observation operators, using model
profiles interpolated to observation locations. Different operators are called from HOP, depending
on the variable identifier of the observation. Dedicated observation operators exist, for instance, for
scatterometer ambiguous surface winds (Stoffelen and Anderson, 1997; Isaksen and Janssen, 2004), or
SATEM thicknesses and PWC (Kelly and Pailleux, 1988; Kelly et al., 1991), SSM/I total-column water
vapour (TCWV) and wind speed.

5.8.1 Atmospheric Motion Vectors

Groups of AMVs (aka SATOBs) are set up in the routine SUAMV, one group per satellite, computational
method, and codetype. The information is stored in the satob group table, residing in the module
YOMTVRAD.

The group table also specifies what type of observation operator is to be used for the particular group
(entry obs oper). The default used in operations is to assimilate all AMVs as single-level wind observations
(Tomassini et al., 1998; Bormann et al., 2003), much in the same way as conventional data, using the same
interpolation routine. Other options are treating AMVs as layer averages, with weights defined by 1) a
Gaussian weighting function around the assigned pressure level, 2) a boxcar weighting function for given
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top and bottom pressure levels, or 3) through radiative transfer calculations. In the latter case, the weights
are calculated from radiative transfer weighting functions in routine HRETR.

5.8.2 Thicknesses

The pressures of layer bounds (top T, and bottom B) are found (in HOP) by scanning the observation
array for thickness data. The geopotential for the top and the bottom of the layer are computed, using
PPGEOP (Section 5.6), and the thickness is given by the difference φT − φB.

5.8.3 Gas retrievals

Retrievals of atmospheric species such as ozone or water vapour are used in the form of integrated layers
bounded by a top and bottom pressure which are given as a part of the observation. The same observation
operator is used as for precipitable water (PPPWC, Section 5.5). The same concept is applied to all data,
whether it is total column data (like TOMS and GOME ozone data or MERIS total column water vapour)
or data with higher vertical resolution (like SBUV). For ozone, variational bias correction is implemented
(see Section 5.4, class name “to3”, module VARBC TO3). SBUV data is currently used as anchor for the
variational bias correction of ozone and therefore assimilated without bias correction.

5.8.4 Scatterometer winds

In HOP, the observation array is scanned for SCAT data. For ERS-2 and ASCAT normally two ambiguous
pairs of u-component and v-component observations are found at each SCAT location – with directions
approximately 180 degrees apart. QuikSCAT can have 2, 3 or 4 ambiguous winds. Up to the first
NSCAWSOLMAX (4 by default, adaptable through the namelist NAMSCC) wind solutions are accepted.
In case only one ambiguity is found, the report is rejected. If LQSCATT = .TRUE. (the default, modifiable
through the namelist NAMJO), the normal quadratic Jo will be used. In this case only the SCAT wind
nearest to the high resolution background will be used (which is determined in a section of HOP). For
winds that are not closest to the first guess or analysis, global datum event flag 9, respectively 10 is
set (see Table 9.40). For the latter case datum status is set to rejected as well (Table 9.39). When
LQSCATT = .FALSE, the two first winds are used and the ambiguity removal takes place implicitly
through a special SCAT cost-function, (5.4), in HJO (Stoffelen and Anderson, 1997). In that case for
QuikSCAT the most likely wind (highest a priori probability) and its most opposing ambiguity are
selected.

Routine PPUV10M (Section 5.9) is like SYNOP, SHIP and DRIBU wind, also used also for SCAT data.
Difference is that (in case account is taken for ocean current) the relative wind rather than the absolute
wind is returned (not active in the operational suite, though), and the evaluation of equivalent-neutral
wind rather than the real wind (which latter includes for scatterometer data undesired stability effects;
operational since November 2011).

In the adjoint (SURFACAD) there is a separate section of HOP for the calculation of the ∇obsJSCAT.

5.8.5 GPS Radio Occultation bending angles

The subroutine GPSRO OP is called in HOP and it simulates GPS radio occulation bending angles using
the one-dimensional model outlined in Healy and Thépaut (2006). The subroutine evaluates a profile of
bending angles, α as function of impact parameter, a, at each observation location by evaluating the
integral

α(a) = −2a

∫ ∞

a

d lnn
dx

(x2 − a2)1/2
dx (5.38)

where n is the refractive index and x= nr, the product of the refractive index and r, a radial coordinate
value. The pressure, temperature, specific humidity and geopotential on the model levels (ZPRESF5,
ZTF5, ZQF5 and ZGEOPF5, respectively) produced by PREINT (see Subsection 5.6.1) are the inputs
to GPSRO OP. The observation operator calculates the refractivity (defined as N = 10−6(n− 1)) on
the full model levels using the pressure, temperature and specific humidity profiles. It then converts the
geopotential heights to geometric heights and then radius values. The bending angle integral is evaluated
assuming that the refractivity, N , varies exponentially between the model levels.
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The bending angle observation errors are set in GPSRO OBERROR, which is called in HRETR. Entries
in the JO tables are set in SULIMB.

The routine GPSRO OP is used when local horizontal homogeneity is to be assumed for the bending angle
computations. Alternatively, the ray-tracing can take the horizontal structure in the limb-viewing plane
into account by providing a series of profiles covering the limb-viewing plane. In this case, profiles provided
by PREINT2D are used, and the routine GPSRO 2DOP is called from HOP instead of GPSRO OP. The
2d facility is switched on by specifying NOBSPROFS(10)> 1 for obstype 10 in the namelist NAMNPROF.
Note that this means any limb radiances present in the assimilation will also take horizontal structure
into account.

5.9 SURFACE OBSERVATION OPERATORS

Preparations for the vertical interpolation of surface data is done in PREINTS (see Subsection 5.2.5). Here
dry static energy (SURBOUND), Richardson number, drag coefficients and stability functions (EXCHCO)
are computed. For scatterometer data, information on equivalent neutral 10-metre wind is directly fetched
from the physics package (via the GOM arrays) which is preprocessed in routine EXCHCO VDF. The
actual vertical interpolation is performed in PPOBSAS, which embraces routines for 10-metre vector-wind
components (PPUV10M), 2-metre temperature (PPT2M) and 2-metre relative humidity (PPRH2M).

5.9.1 Vertical interpolation

For wind and temperature an analytical technique (Geleyn, 1988) is used to interpolate values between
the lowest model level and the surface. It is based on Monin–Obukhov theory in which simplified versions
of stability functions φM and φH are used. The following equations are to be integrated:

∂u

∂z
=

u∗

κ(z + z0)
φM

(
z + z0
L

)
, (5.39)

∂s

∂z
=

s∗
κ(z + z0)

φH

(
z + z0
L

)
, (5.40)

L=
cp
g

T

κ

u2
∗
s∗
, (5.41)

were u, s are wind and energy variables, u∗, s∗ are friction values, u∗ = |u∗|, and κ= 0.4 is von Kármán’s
constant. Note that u denotes the vector wind relative to a surface current u0,

u = ua − u0, (5.42)

with ua the wind in the absolute (model) frame. In default configuration (global variable LECURR is
false) surface current is zero, in which case the distinction between absolute and relative wind is irrelevant.

The temperature is linked to the dry static energy s by

s= cpT + φ (5.43)

cp = cpdry

[
1 +

(
cpvap
cpdry

− 1

)
q

]
. (5.44)

The neutral surface exchange coefficient at the height z is defined as

CN =

[
κ

ln
(
z+z0
z0

)
]2

, (5.45)

where z0 is the surface roughness length. Drag and heat coefficients are defined as

CM =
u2
∗

[u(z)]2
, (5.46)

CH =
u∗s∗

u(z)[s(z) − s̃]
, (5.47)
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where u(z) = |u(z)| and s̃ is the dry static energy at the surface. Details on the estimation of the roughness
length and transfer coefficients can be found in Subsection 5.9.3.

For convenience the following quantities are introduced:

BN =
κ√
CN

, BM =
κ√
CM

, BH =
κ
√
CM

CH
. (5.48)

For stable conditions the (simplified) stability function is assumed

φM/H = 1 + βM/H
z

L
, (5.49)

and integration of (5.39) and (5.40) from 0 to z1 (the lowest model level) leads to values for relative wind
u(z) and static energy s(z) at observation height z:

u(z) =
u(z1)

BM

[
ln

(
1 +

z

z1
(eBN − 1)

)
− z

z1
(BN −BM)

]
, (5.50)

s(z) = s̃+
s(z1) − s̃

BH

[
ln

(
1 +

z

z1
(eBN − 1)

)
− z

z1
(BN − BH)

]
. (5.51)

In unstable conditions the stability function is chosen as

φM/H =

(
1 − βM/H

z

L

)−1

(5.52)

and the vertical profiles for relative wind and dry static energy are then given by

u(z) =
u(z1)

BM

[
ln

(
1 +

z

z1
(eBN − 1)

)
− ln

(
1 +

z

z1
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, (5.53)

s(z) = s̃+
s(z1) − s̃

BH

[
ln
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1 +

z

z1
(eBN − 1)

)
− ln
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1 +

z

z1
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)]
. (5.54)

In case the influence of stability is neglected, the following equivalent-neutral wind profile un(z) is
obtained:

un(z) =
u(z1)

BM
ln

(
1 +

z

z1
(eBN − 1)

)
. (5.55)

For wind, the relevant routine PPUV10M embodies this method of Geleyn (1988) to estimate vector
wind components at observation height z from provided lowest model level wind u(z1) = ua(z1) − u0.
For scatterometer data, by default, relative wind (5.50), (5.53) is returned, while for all other data the
wind in the absolute frame is evaluated:

ua = u + u0. (5.56)

For scatterometer data, by default equivalent-neutral wind (5.55) is returned. In case non-neutral wind
is to be assimilated (operational before November 2010), a variable LSCATT NEUTRAL is to be set to
false.

The temperature at observation height z = 2 m is evaluated in PPT2M. It is obtained from s as

T (z) = s(z) − zg

cp
, (5.57)

where s is interpolated according to (5.51) and (5.54).

The vertical interpolation relies on estimates for coefficients BM, BN for wind, and on coefficients BH, BN

and dry static energy at the surface s̃= s̃ (Tsurf , q = 0). These are provided in the routines EXCHCO,
EXCHCO VDF and SURBOUND, and are described in the following two subsections.
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5.9.2 Surface values of dry static energy

To determine the dry static energy at the surface we use (5.43) and (5.44) where the humidity at the
surface is defined by

q̃ = q(z = 0) = h(Csnow, Cliq, Cveg)qsat(Tsurf , psurf) (5.58)

where, according to Blondin (1991), h is given by

h= Csnow + (1 − Csnow)[Cliq + (1 − Cliq)h̄] (5.59)

with

h̄= max

{
0.5

(
1 − cos

πϑsoil

ϑcap

)
,min

(
1,

q

qsat(Tsurf , psurf)

)}
(5.60)

where ϑsoil is the soil moisture content and ϑcap is the soil moisture at field capacity (2/7 in volumetric
units). Equation (5.59) assigns a value of 1 to the surface relative humidity over the snow covered and
wet fraction of the grid box. The snow-cover fraction Csnow depends on the snow amount Wsnow so that

Csnow = min

(
1,

Wsnow

Wsnowcr

)

where Wsnowcr
= 0.015 m is a critical value. The wet skin fraction Cliq is derived from the skin-reservoir

water content Wliq by

Cliq = min

(
1,

Wliq

Wliqmax

)
,

where
Wliqmax

=Wlayermax
{(1 − Cveg) + CvegAleaf}

with Wlayermax
= 2 × 10−4 m being the maximum amount of water that can be held on one layer of leaves,

or as a film on bare soil, Aleaf = 4 is the leaf-area index, and Cveg is the vegetation fraction.

5.9.3 Transfer coefficients

Comparing the (5.39) and (5.40) integrated from zo to z + z0 with (5.45) to (5.47) , CM and CH can be
analytically defined:

1
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1

κ2
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φM(z′/L)

z′
dz′

]2

(5.61)

1
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]
(5.62)

Because of the complicated form of the stability functions, the former integrals have been approximated
by analytical expressions, formally given by (coded in EXCHCO)

CM = CNfM

(
Ri ,

z

z0

)

CH = CNfH

(
Ri ,

z

z0

) (5.63)

where CN is given by (5.45). The bulk Richardson number Ri is defined as

Ri =
g∆z∆Tv

cpTv|∆u|2
(5.64)

where Tv is the virtual potential temperature. The functions fM and fH correspond to the model instability
functions and have the correct behaviour near neutrality and in the cases of high stability (Louis, 1979;
Louis et al., 1982).
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(i) Unstable case Ri < 0

fM = 1 − 2bRi

1 + 3bcCN

√(
1 + z

z0

)
(−Ri)

, (5.65)

fH = 1 − 3bRi

1 + 3bcCN

√(
1 + z

z0

)
(−Ri)

, (5.66)

with b= c= 5.
(ii) Stable case Ri > 0

fM =
1

1 + 2bRi/
√

(1 + dRi)
, (5.67)

fM =
1

1 + 3bRi/
√

(1 + dRi)
, (5.68)

with d= 5.

(a) Extraction of stability information from the ECMWF surface-layer physics

The estimation of transfer coefficients as described above (Louis, 1979; Louis et al., 1982) does not overlap
well with the stability as evaluated in the full nonlinear surface layer physics parametrization, for two
reasons. First, the method of Louis (1979); Louis et al. (1982) does not correspond anymore with the
presently used parametrization. And second, the estimation of the neutral exchange coefficient (5.45)
uses (for technical reasons) a roughness length z0 that is based on climatology, rather than on the actual
roughness. Over oceans this embraces a value of z0 = 1mm , which is typically one order of magnitude
too high. The effect on the estimation on 10-metre wind appears to be negligible, however, for 10-metre
equivalent neutral wind (used for scatterometer data) and wind at 4 or 5 metre height (typical buoy
observation height) a systematic effect can be observed (Hersbach, 2010a).

As an alternative, the information on stability can be extracted from the 10-metre equivalent neutral
wind un as evaluated in SPPCFL MOD in the ECMWF surface-layer physics, which is activated by a
switch LVDFTRAJ=true. In that case, over the ocean roughness length z0 is estimated from un and the
ocean-wave Charnock parameter α, by an approximate solution (Hersbach, 2011) of the following set of
implicit equations (coded in Z0SEA):

z0 = αM
ν

u∗
+ α

u2
∗
g
, (5.69)

un =
u∗
κ

log(1 + z10/z0). (5.70)

Here z10 = 10 m, αM = 0.11, κ= 0.4 is the Von Kármán constant, g = 9.80665 ms−2 is the gravitational
acceleration, and ν = 1.5x10−5m2s−1 the kinematic viscosity.

The coefficient CN is, again evaluated by (5.45), but now using the inproved estimate of zo, while coefficient
CM for momentum is given by (EXCHCO VDF):

CM =B2
M/κ, BM = log(1 + z10/z0)||u(z1)||/un. (5.71)

In the operational configuration this method is only used for the assimilation of scatterometer wind. For
other observables, the method of Louis (1979); Louis et al. (1982) (LVDFTRAJ=false) is used. Routine
EXCHCO VDF does not provide an estimate for the coefficient CH for heat.

5.9.4 Two-metre relative humidity

In GPRH relative humidity is computed according to (5.32). The relative humidity depends on specific
humidity, temperature and pressure (q, T and p, respectively) at the lowest model level. It is constant in
the surface model layer, see PPRH2M.
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Chapter 6

Background, analysis and forecast errors

Table of contents
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6.4 Calculation of eigenvalues and eigenvectors of the Hessian
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6.6 Calculation of analysis-error variances

6.7 Calculation of forecast-error variances

6.8 Diagnosis of background-error variances through the EDA

6.1 NOMENCLATURE

The calculation of standard deviations of background errors is unfortunately an area of confusing
nomenclature. “Standard deviations of background error” is quite a mouthful, so they are generally
referred to simply as ‘background errors’ (likewise for standard deviations of analysis errors and forecast
errors). Although inaccurate, this nomenclature has been adopted in the following for the sake of brevity.

A second source of confusion is that the terms ‘background error’ and ‘forecast error’ are often used
interchangeably. This confusion has even crept into the code, where the buffer which contains the standard
deviations of background error is called FCEBUF. Such confusion is clearly unwise when discussing their
calculation. In the following, we describe the processing of error variances during a single analysis cycle.
The term ‘background error’ will be used exclusively to refer to the standard deviations of background
error used in the background cost function. The background errors are an input to the analysis. The term
‘forecast error’ will refer to an estimate of the standard deviation of error in a short-term forecast made
from the current analysis. The forecast errors are calculated by inflating an estimate of the standard
deviation of analysis error, and are an output from the analysis system. They provide background errors
for the next analysis cycle.

6.2 INPUT AND ‘MASSAGING’ OF BACKGROUND ERRORS

Background errors for use in Jb are initialised by a call to SUINFCE. This is part of the Jb set-up, which
is described in Subsection 4.3.3.

As with most of the Jb code, the structure SPJB VARS INFO, described in Subsection 4.3.1, is important.
At the beginning of SUINFCE, this structure is examined to determine which variables are present
in Jb, and to locate the corresponding profiles of globally-averaged background error. Next, a call to
IO INQUIRE is made to determine which fields are present in the input file (filename errgrib), and to
find details of their grid resolution, etc.

The fields of background error are read by a call to IO GET, and interpolated to the model’s horizontal
grid using SUHIFCE.

Vertical interpolation requires knowledge of the backgound surface pressure. In addition, one method of
constructing humidity background errors requires knowledge of background values of specific humidity
and temperature. So, background fields in grid space are obtained either by a call to GET TRAJ GRID,
or by transforming the corresponsing spectral fields.
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Before the vertical interpolation takes place, the locations of the different Jb variables within the
background error array FCEBUF are found by a set of calls to the internal subroutine LOOKUP, which
interrogates SPJB VARS INFO.

The large loop “VARIABLE LOOP” in SUINFCE loops over the fields of the input file. Each field is
interpolated onto model levels by a call to SUVIFCE (unless it is a surface field), and either stored in
FCEBUF or used to construct a field in FCEBUF. (For example, if backgound errors for vorticity are
not available in the input file, they are constructed by scaling zonal wind errors.)

Background errors for the humidity variable are treated as a special case, and generated after the main
loop over variables by a call to SUSHFCE. The calculation of background errors for humidity is described
in Subsection 4.3.4.

Next, one of two routines is called. SUMDFCE calculates a vertically averaged ‘pattern’ of background
error. This is required if the background errors are to be represented as a product of a vertical profile of
global mean error and a horizontal pattern. The pattern is stored in FGMWNE. (Note in particular that
SUMDFCE is called if horizontally-constant background errors are requested by setting LCFCE. In this
case, all elements of FGMWNE are set to one.)

Alternatively, SUPRFFCE is called to calculate global mean profiles of the input background errors. This
is the default. The profiles are stored in FCEIMN.

The final step in processing the background errors is performed by SUSEPFCE. This modifies the
background errors in one of two ways. If separable background errors have been requested, the contents
of the background error buffer are replaced by the product of the vertical profile stored in FCEMN and
the horizontal pattern stored in FGMWNE. Otherwise, the background errors for each variable at each
level are multiplied by the ratio of the corresponding elements of FCEMN and FCEIMN. The result of
this operation is to adjust the global mean profiles of background error to match those stored in FCEMN.

6.3 DIAGNOSIS OF BACKGROUND-ERROR VARIANCES

Background error variances for use in Jb and for observation first guess checks can be computed in two
distinct ways. If an Ensemble of Data Assimilations (EDA) is available, background errors can be directly
diagnosed from the EDA background forecasts as described in section 6.8. EDA-derived errors will be used
if the logical switch LENS ERRORS is true. Otherwise they can be estimated by subroutine BGVECS,
which is called from FORECAST ERROR. One of two methods may be employed, depending on whether
NBGVECS is equal to, or greater than, zero. In either case, the estimated variances of background error
are stored in the analysis error buffer, ANEBUF (in YOMANEB).

If NBGVECS is zero, then background errors for variables which are explicitly present in the background
error buffer, FCEBUF, are copied into ANEBUF and squared. Errors for those variables whose
background errors are defined implicitly through the change of variable are estimated using simple scaling
of appropriate explicit errors. This scaling is performed by a call to ESTSIGA.

If NBGVECS is non-zero, then the variances of background error are estimated using randomization. This
method assumes that the change of variable transforms the background error covariance matrix into the
identity matrix. A sample of NBGVECS vectors drawn from a multi-dimensional Gaussian distribution
with zero mean and identity covariance matrix is generated by calls to RANDOM CTLVEC. These
vectors are transformed to the space of physical variables by CHAVARIN. The transformed variables
form a sample drawn from the distribution of background errors. A call to STEPOTL(‘0AA00A000’)
transforms each vector to gridpoint space and accumulates the sums of squares in ANEBUF. In addition,
observation operators are appled to the random variables to generate samples of background error in terms
of radiance, for example. The sums of squares of these observation-space variables are also accumulated
to provide estimates of background error in observation space.

Finally, the sums of squares of random vectors are divided by the number of vectors by a call to SCALEAE
to provide a somewhat noisy estimate of the variances of background error actually used in the analysis.
Noise may be filtered by a call to FLTBGERR, which transforms the variances to spectral coefficients,
multiplies each coefficient by cos2(min((n/NBGTRUNC), 1)π/2), and then transforms to grid space. The
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default is to filter with a very large value of NBGTRUNC. Effectively, the background errors are simply
spectrally truncated. It is highly recommended that the filtering is performed, since it prevents a grid-
scale numerical instability which occurs when the error growth model introduces spatial features which
cannot be resolved by the spectral control variable.

Flow-dependent background errors, valid at the end of the window may be generated by setting LBGM
(namvar) to TRUE. In this case, the tangent linear model is used to propagate each of the random
background vectors to the end of the analysis window. The eigenvectors of the analysis Hessian (see the
next section) are also propagated in time, by a call to CNT3TL from XFORMEV. For the normal case,
LBGM is false, and background and analysis errors are estimated at the beginning of the analysis window,
and propagated using the simple error-growth model described in section 6.7.

The background errors diagnosed by BGVECS may be written out for diagnostic purposes by setting
LWRISIGB. The errors are written by a call to WRITESD (called from FORECAST ERROR).

6.4 CALCULATION OF EIGENVALUES AND EIGENVECTORS OF
THE HESSIAN

The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvectors of the
Hessian of the cost function. This is done using a combined Lanczos and conjugate-gradient algorithm,
CONGRAD, called from CVA1 under the control of LAVCGL. The reader is referred to Fisher (1998,
ECMWF Seminar proceedings pp364-385) for a detailed description of the CONGRAD algorithm. Note
that CONGRAD requires that the cost function is strictly quadratic.

CONGRAD starts by transforming the initial control variable and gradient to a space with Euclidian
inner product. Typically, this transformation is simply a multiplication by YRSCALPSQRT, but may
also involve preconditioning via calls to PRECOND. The transformed initial gradient is normalized to
give the first Lanczos vector. The Lanczos vectors are stored in the array YL ZCGLWK.

Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of the
Hessian and the latest search direction. This is calculated as J ′′d = [∇J(x0 + d) −∇J(x0)], where d” is
a vector of unit length. This finite difference formula is exact, since the cost function is quadratic.

The main iteration loop calculates the sequence of gradients, and the sequence of coefficients according
to the the Lanczos recurrence. The sequence of control vectors that partially minimize the cost function
is not explicitly generated. Thus, unlike e.g. M1QN3, the control vectors passed to SIM4D do not lie
on a path towards the minimum, and the gradients returned by SIM4D do not, in general, decrease as
the minimization proceeds. The optimal control vector and the corresponding gradient can, however, be
determined as a linear combination of the Lanczos vectors.

In general, only the gradient is calculated at each iteration. It is required in order to monitor the
convergence of the minimization. Optionally, by setting L CHECK GRADIENT, the optimal point is
also calculated, and an additional call to SIM4D is made to evaluate the true gradient at the optimal
point. This is useful as a means of checking the assumption of linearity on which the algorithm is based.
However, it doubles the cost of the minimization.

The Lanczos algorithm produces a sequence of coefficients, which are stored in the arrays ZDELTA and
ZBETA. These correspond to the diagonal and sub-diagonal of a symmetric tri-diagonal matrix. The
calculation of the optimal point and the corresponding gradient require the solution of a linear system
involving this matrix. This is performed by the internal subroutine PTSV, which is a simple interface to
the LAPACK routine SPTSV. In addition, the eigenvalues of the tri-diagonal matrix are approximations
to eigenvalues of the Hessian of the cost function. These approximate eigenvalues are calculated every
iteration, together with bounds on their accuracy. As soon as the leading eigenvalue has converged
sufficiently, it is monitored to check that it does not increase. This provides a sensitive test that the
algorithm is behaving correctly. Any increase in the leading eigenvalue provides an early indication of
failure (for example, due to a bad gradient) and the algorithm is immediately terminated. The calculation
is not aborted, since the test detects the failure of the algorithm before the converged eigenvalues and
eigenvectors become corrupted.
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A call to PREDICT RUNTIME is made every iteration. This subroutine attempts to predict how many
iterations will be required to minimize the cost function, and how long this is likely to take. These
predictions are written to STDERR.

After the last iteration, the converged eigenvectors of the Hessian are calculated by calling WREVECS.
Note that the criterion used to decide which eigenvalues have converged is relaxed at this stage to
‖J ′′v − λv‖ < ε‖v‖, where ε is given by EVBCGL. The default value for EVBCGL is 0.1.

Next, if required, upper and lower bounds for N − pT(J”)−1p (where N is the dimension of the
control vector) and −pT log2[(J”)−1]p are calculated using the algorithm of Golub and Meurant (1994).
These quantities may be used to evaluate the information content of the analysis using the switch
L INFO CONTENT.

Finally, CONGRAD calculates the the optimal control vector and gradient as a linear combination of the
Lanczos vectors, and transforms them from the Euclidian space used internally to the usual space of the
control variable.

6.5 THE PRECONDITIONER

CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the
Hessian matrix of the cost function. The preconditioner used in CONGRAD is a matrix of the form

I +

L∑

i=1

(µi − 1)wiw
T
i (6.1)

where the vectors wi are orthogonal. The pairs {µi,wi} are calculated in PREPPCM, and are intended
to approximate some of the eigenpairs (i.e. eigenvalues and associated eigenvectors) of the Hessian matrix
of the cost function. They are calculated as follows.

A set of L vectors, ui, is read in using READVEC. These vectors may be in the space of the control
vector (if LEVECCNTL is true), or in model space (if LEVECCNTL is false). In the latter case, the
vectors are transformed to control space by calls to CHAVAR.

The vectors (transformed, if necessary to control space) are assumed to satisfy

I−
L∑

i=1

uiu
T
i ≈ (J ′′)−1 (6.2)

Vectors which meet this criterion can be written out from an earlier forecast error calculation by setting
LWRIEVEC.

The input vectors are not necessarily orthogonal, whereas the preconditioner requires a set of orthogonal
vectors. Let us denote by U the matrix whose columns are the vectors ui. A sequence of Householder
transformations is now performed to transform U to upper triangular. Let us represent this sequence
of Householder transformations by the matrix Q. Then QU is upper triangular, which means that
(QU)(QU)T is zero except for an L× L block in the top left hand corner.

It is clear that (QU)(QU)T has only L non-zero eigenvalues. Moreover, the non-zero eigenvalues are
the eigenvalues of the L× L block matrix, and the eigenvectors of (QU)(QU)T are the eigenvectors of
the block matrix, appended by zeroes. These eigenvalues and eigenvectors are calculated by a call to the
LAPACK routine SSYEV.

Now, since Q is an orthogonal matrix, we have QQT = I. So, we may write (6.2) as

I− QT(QU)(QU)TQ≈ (J ′′)−1 (6.3)

Let us denote the eigenpairs of (QU)(QU)T by {ρi, vi}. Then we may write (6.3) as

I −
L∑

i=1

ρi(Q
Tvi)(Q

Tvi)
T ≈ (J ′′)−1 (6.4)
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The orthogonality of Q and the orthonormality of the eigenvectors vi, means that the vectors QTvi are
orthonormal. They are, in fact, the required vectors, wi of the preconditioner matrix.

Inverting (6.4) gives

I −
L∑

i=1

1

ρi
wiw

T
i ≈ J ′′ (6.5)

Defining µi = 1 − 1/ρi gives the required approximation to the Hessian matrix.

The preconditioner vectors are sorted in decreasing order of µi, and all vectors for which µi < 1 are
rejected. These vectors cannot be good approximations to eigenvectors of the Hessian matrix, since the
eigenvalues of the Hessian matrix are all greater than or equal to one. A final refinement to the calculation
is to reduce large values of µi to a maximum of R MAX CNUM PC (typically 10). This was found to be
necessary in practice to avoid ill-conditioning the minimization.

The numbers µi are stored in RCGLPC. The vectors, wi are stored in YVCGLPC, and the total number
of preconditioner vectors is stored in NVCGLPC.

Application of the preconditioner is straightforward, and is performed by subroutine PRECOND. This
routine can also apply the inverse, the symmetric square root, or the inverse of the symmetric square
root of the preconditioner matrix. Application of the latter matrices relies on the observation that if

M = I +

L∑

i=1

(µi − 1)wiw
T
i (6.6)

with orthonormal wi, then the expressions for M−1, M1/2 and M−1/2 result from replacing µi in (6.6)
by 1/µi,

√
µi and 1/(

√
µi) respectively.

6.6 CALCULATION OF ANALYSIS-ERROR VARIANCES

The eigenvectors and eigenvalues of the Hessian matrix calculated by CONGRAD are passed to
XFORMEV, which uses them to estimate the analysis-error variances.

The first step is to undo any preconditioning. If preconditioning has been employed, then the eigenvectors
and eigenvalues produced by CONGRAD provide an approximation to the preconditioned Hessian,
M−1/2J ′′M−1/2, of the form

M−1/2J ′′M−1/2 ≈ I +
K∑

i=1

(λi − 1)viv
T
i (6.7)

Multiplying to the left and right by M1/2, gives

J ′′ ≈ M +

K∑

i=1

(λi − 1)(M1/2vi)(M
1/2vi)

T (6.8)

Substituting for the preconditioner matrix from (6.6), gives the following

J ′′ ≈ I +

L+K∑

i=1

sis
T
i (6.9)

where

si =

{
(µi − 1)1/2wi for i= 1 . . . L

(λi−L − 1)1/2M1/2vi−L for i= L+ 1 . . . L+K
(6.10)

Note that the resulting approximation to the Hessian is not expressed in terms of eigenvalues and
eigenvectors. Consequently, inversion of the approximation must be performed using the Shermann–
Morrison–Woodbury formula. Let S be the matrix whose columns are the vectors si. Then, according to

IFS Documentation – Cy37r2 73



Chapter 6: Background, analysis and forecast errors

the Shermann–Morrison–Woodbury formula, the inverse of the approximate Hessian matrix is

(J ′′)−1 ≈ I − S(I + STS)−1ST (6.11)

The matrix (I + STS) has dimension (L +K) × (L+K). This matrix is constructed, and its Cholesky
decomposition is calculated using the LAPACK routine SPOTRF. This gives a lower triangular matrix
C such that

(J ′′)−1 ≈ I− (SC−1)(SC−1)T (6.12)

The matrix (SC−1) is calculated by back-substitution.

The final stage in the calculation of the analysis errors is to transform the columns of the matrix (SC−1)
to the space of model variables by applying the inverse change of variable, CHAVARIN. This gives the
required approximation to the analysis error covariance matrix

Pa ≈ B− VVT (6.13)

where V = L−1SC−1, and where L−1 represents the inverse of the change of variable. The columns
of V may be written out (e.g. for diagnostic purposes, or to form the preconditioner for a subsequent
minimization) by setting LWRIEVEC. The columns of V are then transformed to gridpoint space, and
their sums of squares (i.e. the diagonal elements of VVT in gridpoint space) are subtracted from the
variances of background error which were stored in ANEBUF before the minimization by BGVECS.

The analysis errors are calculated as the difference between the background errors and a correction derived
from the eigenvectors of the Hessian. If the background errors are underestimated, there is a danger that
the correction will be larger than the background error, giving negative variances of analysis error. This
is unlikely to happen if the background errors are estimated using randomization, or for variables whose
background errors are explicitly specified in the background cost function, but is possible for variables such
as temperature whose background errors are not explicitly specified. To guard against this eventuality,
if NBGVECS is zero, then the variances of analysis error for variables whose background errors are not
explicit are estimated by applying a scaling to the explicit variables by a call to ESTSIGA from CVA1.
The variances are then converted to standard deviations and written out by a call to WRITESD.

6.7 CALCULATION OF FORECAST-ERROR VARIANCES

The analysis errors are inflated according to the error growth model of Savijärvi (1995) to provide
estimates of short-term forecast error. This is done by a call to ESTSIG.

The error growth model is
dσ

dt
= (a+ bσ)

(
1 − σ

σ∞

)
(6.14)

Here, a represents growth due to model errors, b represents the exponential growth rate of small errors,
and σ∞ represents the standard deviation of saturated forecast errors. The growth due to model error is
set to 0.1 times the global mean background error per day. The exponential growth rate, b, is set to 0.4
per day.

The saturation standard deviations are calculated as
√

2 times the standard deviation of each field. The
standard deviations have been calculated for each month from the re-analysis dataset. ESTSIG reads
these climatological error fields from file ‘stdev of climate’ by calling READGRIB, and interpolates them
in the horizontal and vertical using SUHIFCE and SUVIFCE. The climatological errors may also be
artificially increased in the tropics under the control of LFACHRO. If climate standard deviations are
not available for any field, they are estimated as 10 times the global mean background error for the field.

The error growth model is integrated for a period of NFGFCLEN hours. The integration is done
analytically using the expression given by Savijärvi (1995). Two precautions are taken in integrating
the error growth model. First, negative analysis-error variances are set to zero. Second, the growth rate
due to model error is limited to a sensible value with respect to the saturation errors. This was found to
be necessary to prevent numerical problems when calculating specific humidity errors for the upper levels
of the model.
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ESTSIG overwrites the contents of ANEBUF with the estimated variances of forecast error. The variances
are converted to standard deviations and written out by WRITESD.

6.8 DIAGNOSIS OF BACKGROUND-ERROR VARIANCES THROUGH
THE EDA

The EDA consists of an ensemble of 10 independent lower-resolution 4D-Var assimilations (T399L91
with two inner loops at T95 and T159) that differ by the explicit perturbation of the observations, the
sea-surface temperature and the model physics. The reason for running an EDA is that it can be shown
( Isaksen et al. (2010)) that if the perturbations to the observations, model evolution and boundary
conditions are properly chosen, the EDA analysis and background spread will provide realistic estimates
of analysis and background errors standard deviations.

In the EDA, for each observation, perturbations are defined by randomly sampling a Gaussian distribution
with zero mean and standard deviation equal to the estimate of the observation error standard deviation.
Sea surface temperature fields are also perturbed, with correlated patterns as currently used in the
Seasonal Forecasting System ( Vialard et al. (2005)). To simulate the impact of model uncertainty,
the stochastically perturbed parametrization tendency (SPPT) scheme is used; this perturbs the total
parametrized tendency of physical processes (more details can be found in part V of this document).

The EDA background mean and standard deviations are computed in the enda pp family which runs after
completion of the EDA background forecasts family. The first job of the enda pp family is ens stats, where
the EDA background fields are retrieved from storage and their ensemble mean and standard deviations
are computed. In this job background fields are also computed by GH RH for parameters (geopotential
height and relative humidity) which are needed for observation first guess checks but are not directly
computed by the EDA.

The second job of the enda pp family is ens cal. In ens cal the calibration coefficients of the EDA
background variances are computed by Spread Skill Time Avg. Variance Calibration is performed against
the ECMWF operational analysis separately for each parameter, model level and geographical region
(Northern Extra-Tropics, Tropics, Southern Extra-Tropics).

Variance calibration is done to ensure that EDA background variance matches the mean squared difference
of the EDA background mean and the corresponding operational analysis. In order to have a large enough
statistical sample and to reduce time variability, the calibration is computed using the latest 10 sets of
EDA backgrounds and operational analysis verifying at the same time.

The last job in the enda pp family is ens errors. If the logical switch LENS CAL is true the EDA
background variances computed in ens stats are calibrated by Ens Spread Cal using the coefficients
computed in ens cal. The calibrated variances are then transformed to a spectral representation and
filtered by Spectral Filter in order to eliminate the sampling noise. The filtering procedure is based
on Raynaud et al. (2009). Finally the filtered spectral variances are transformed back to a gridpoint
representation, converted to standard deviations and stored as grib files of type ’ses’ of stream ’enda’.
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Chapter 7

Gravity-wave control

Table of contents
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7.3.1 Vertical modes

7.3.2 Horizontal modes and help arrays

7.4 Implementation of NMI

7.5 Computation of Jc based on NMI

7.6 Digital filter initialization

7.7 Implementation of DFI as a weak constraint in 4D-Var

7.1 INTRODUCTION

In 3D-Var, gravity-wave control is achieved via a penalty term Jc based on the techniques of normal-mode
initialization (NMI), in 4D-Var a weak constraint digital filter is used.

Section 7.2 provides a brief overview of NMI techniques, together with references to scientific papers in
which further details can be found. Section 7.3 describes the computation of normal modes and related
arrays. Section 7.4 documents the implementation of nonlinear NMI in 3D- and 4D-Var, while Section 7.5
describes the computation of Jc based on NMI. Section 7.6 gives an overview of digital filter initialization
techniques while Section 7.7 describes its implementation as it is used in the 4D-Var assimilation system.

7.2 NORMAL-MODE INITIALIZATION

If the model equations are linearized about a state of rest, the solutions can (with a certain amount of
arbitrariness) be classified into ‘slow’ (Rossby) and ‘fast’ (gravity) modes. This classification defines two
mutually orthogonal subspaces of the finite-dimensional vector space containing the model state x. Thus,
the model state can be written as

x = xR + xG (7.1)

where xR is the ‘slow’ component and xG the ‘fast’ component. Linear NMI consists of removing the
fast component altogether (xG = 0). Since the model is nonlinear, a much better balance is obtained by
setting the tendency of the fast component to zero (ẋG = 0); it is this balance condition which nonlinear
NMI seeks to impose.

Nonlinear NMI was first demonstrated by Machenhauer (1977), in the context of a spectral shallow-water
model. For a multi-level model, the first stage in the modal decomposition is a vertical transform; each
vertical mode then has its own set of horizontal slow and fast modes (for the shallower vertical modes, all
the corresponding horizontal modes can be considered as ‘slow’). In the case of a multi-level spectral model
using the ECMWF hybrid vertical coordinate the details may be found in the report by Wergen (1987),
which also describes techniques for taking into account forcing by physical (non-adiabatic) processes and
the diurnal and semi-diurnal tidal signals. Although these options are still coded in the IFS, they are no
longer used operationally at ECMWF and will not be described in this documentation.

Implicit normal mode initialization (Temperton, 1988) is based on the observation that, except at the
largest horizontal scales, the results of NMI can be reproduced almost exactly without computing the
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horizontal normal modes at all. The calculation reduces to solving sets of elliptic equations. In the case
of a spectral model (Temperton, 1989), these sets of equations are tridiagonal in spectral space. The IFS
code includes the option of ‘partially implicit NMI’, in which the initialization increments are computed
using the full ‘explicit’ NMI procedure for large horizontal scales while the remaining increments at
smaller horizontal scales are computed using the simpler implicit procedure.

7.3 COMPUTATION OF NORMAL MODES

7.3.1 Vertical modes

The vertical normal modes depend on the number of levels in the model and on their vertical distribution.
They also depend on the choice of reference temperature SITR (assumed isothermal) and reference surface
pressure (SIPR). The vertical modes used by the initialization routines are also used in the semi-implicit
scheme for the forward integration of the model. The computation of Jb and Jc also uses the vertical
normal modes, but for these purposes different values of SITR and SIPR may be selected. Thus the
vertical modes are computed both in SUDYN and SUSINMI, the latter being used especially in 4D-Var
where it is necessary to alternate between applications using different choices of SITR and SIPR. The
vertical modes are computed by first calling SUBMAT to set up a vertical structure matrix and then
calling an eigenvalue/eigenvector routine EIGSOL (at the end of SUDYN, it calls routine RG in the
auxiliary library). After reordering and normalization, the eigenvectors (vertical modes) are stored in the
matrix SIMO, while the corresponding eigenvalues (equivalent depths) are stored in the array SIVP. The
inverse of SIMO is computed and stored in SIMI.

7.3.2 Horizontal modes and help arrays

The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral
truncation NXMAX. For ‘explicit’ NMI, NXMAX is equal to the model’s spectral truncation NSMAX.
Normally, ‘partially implicit NMI’ is chosen by setting the switch LRPIMP to .TRUE. In this case the
explicit NMI increments are used only up to spectral truncation NLEX (21 by default) but in order to
blend the explicit and implicit increments smoothly, explicit increments are computed up to a slightly
higher resolution. By default, NXMAX = NLEX + 5.

For most applications of the NMI procedure in the operational suite, it is considered that the larger
horizontal scales are best left uninitialized (they include, for example, atmospheric tidal signals and large-
scale tropical circulations driven by diabatic processes). To cater for this option there is another logical
switch, LASSI (‘adiabatic small-scale initialization’), which sets to zero all the initialization increments
for total wavenumbers up to NFILTM (= 19 by default). Since only the small-scale increments are used,
the NMI can be completely implicit: NLEX is set to 0 and there is no need to calculate the ‘explicit’
horizontal normal modes.

All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical modes.
By default, NVMOD = 5.

The horizontal modes are computed by calling SUMODE3. In turn, SUMODE3E computes the explicit
modes and their frequencies while SUMODE3I computes the ‘help’ arrays required to invert the
tridiagonal systems encountered in implicit NMI.

7.4 IMPLEMENTATION OF NMI

Nonlinear NMI can be invoked by calling NNMI3. This is no longer applied by default in IFS, now all
gravity-wave control during the assimilation process is done through the penalty term or digital filter.
But signicant parts of the NMI code is still used for this, as described in Section 7.5. Model tendencies
are computed by calling STEPO to perform one (forward) timestep. The tendencies are then supplied to
MO3DPRJ which computes the required increments, using the ‘explicit’ (Machenhauer) or the ‘implicit’
scheme (or both, after which the results are merged). The increments are added to the original spectral
fields and the process is iterated NITNMI (by default 2) times.
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7.5 COMPUTATION OF Jc BASED ON NMI

In the notation of (7.1), the penalty term Jc is defined by

Jc = ε‖(ẋ− ẋb)G‖2 (7.2)

where ε is an empirically chosen weighting factor, x is the current state of the control variable and xb is
the background. The norm ‖ ‖2 is based on a weighted sum of squares of spectral coefficients. Only the
first NVMOD vertical modes are included in the evaluation of (7.2).

Jc is computed by calling the routine COSJC. Control passes through JCCOMP to NMIJCTL, where Jc

is evaluated by calling STEPO twice, then projecting the differences in the tendencies on to the gravity
modes via MO3DPRJ, and finally computing Jc in NMICOST.

7.6 DIGITAL FILTER INITIALIZATION

Digital filter initialization consists in removing high frequency oscillations from the temporal signal
represented by the meteorological fields. A general description of digital filter initialization can be found
in Lynch (1993). It can be implemented as a strong constraint by filtering the model fields at the beginning
of each forecast or as a weak constraint as described in Gustafsson (1992) and Gauthier and Thépaut
(2001).

Time oscillations exceeding a cut-off frequency ωc = (2π)/Tc can be filtered by applying a digital filter
to a time series fk = f(tk) for fk = k∆t, ∆t being the timestep. This proceeds by doing a convolution of
f(t) with a step function h(t) so that

f • h(tN) =

∞∑

k=−∞
hkfN−k

The step function hk is found to be

hk =
sin(ωck∆t)

kπ

In practice, the convolution is restricted to a finite time interval of time span Ts. We can write Ts = 2M∆t
and

f • h(t0) =
M∑

k=−M
αkfk

with αk = −h−k. This truncation introduces Gibbs oscillations which can be attenuated by introducing
a Lanczos window which implies that the weights αk are defined as αk = −h−kWk with

Wk =
sin((kπ)/(M + 1))

(kπ)/(M + 1)

An alternative which is used at ECMWF has been proposed by Lynch (1997) to use a Dolph–Chebyshev
window in which case

Wk =
1

2M + 1

[
1 + 2r

M∑

m=0

T2M (x0 cos θm/2) cosmθk

]
(7.3)

where 1/x0 = cos(π∆t)/τs, 1/r = cosh(2Macosh x0), θk = (k2π)/M and T2M is the Chebyshev polynomial
of degree 2M . The time span of the window is chosen so that τs =M∆t.

7.7 IMPLEMENTATION OF DFI AS A WEAK CONSTRAINT IN
4D-VAR

In the context of 4D-Var data assimilation, the digital filter is used as a weak constraint. A penalty term
is added to the cost function and replaces the NMI based penalty term. The implementation is based
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on Gauthier and Thépaut (2001). The filtered increments are calculated as

δX̄(tN/2) =

N∑

k=0

αkδX(tk)

where N is the number of time steps in the minimisation and delta represents increments.

During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital filter is
applied to the increments and the partial sum accumulated by EDIGFIL. This gives a filtered increment
valid at the mid-point of the assimilation window (arrays RACCSPA2 and RACCSPA3). The value of
the non-filtered increment valid at the same time is also stored by ECOPSP in arrays RSTOSPA2 and
RSTOSPA3. These routines are called in CNT4TL each time-step.

The adjoint model integration calculates the gradient in EDIGFILAD. The gradient is obtained by a
single backward integration of the adjoint model. The adjoint calculations associated with the digital
filter is a virtually cost free addition to the adjoint observation cost function calculations.

The filtering weights used by the digital filter are calculated during the setup phase by SUEFW. The
default is to use a Dolph–Chebyshev non-recursive filter (NTPDFI = 4, see equation (7.3))

The weak constraint term which is added to the cost function is the moist energy norm of the departure
between those two states times a weight factor. All these computations are conducted in spectral space
and applied to the spectral fields. The default mode at ECMWF is to redefine the norm so the digital
filter is only applied to divergence (LDIVONLY = .TRUE.). A larger weight factor (ALPHAG = 100.) is
in that case used in the weak constraint term.

The norm of the departure is computed in two steps. In EVJCDFI, the difference between RACCSPA2/
RACCSPA3 and RSTOSPA2/RSTOSPA3 is computed and multiplied with ALPHAG for the subset of
wave numbers and vertical levels associated with each processor. The cost contribution is calculated for
each wavenumber and vertical level using the specified norm. The contributions for all wavenumbers,
levels and variables are gathered on each processor by GATHERCOST2 and the total cost contribution
is summed in array RSUMJCDFI for each variable and level. Finally, in EVCOST, the contributions from
each variable and level are added to obtain the value of the penalty term.
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Chapter 8

Diagnostics
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8.3 Gradient test

8.4 The 24-hour forecast error contribution to observations (FEC)

8.1 INTRODUCTION

8.1.1 Influence matrix diagnostic in 4D-Var

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-
regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of
individual data on the analysis, the analysis change that would occur by leaving one observation out,
and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data.
The corresponding concepts have been derived in the context of linear statistical data assimilation in
numerical weather prediction. An approximate method to compute the diagonal elements of the influence
matrix (the self-sensitivities or observation influence) has been developed for a large-dimension variational
data assimilation system (the 4D-Var system of ECMWF).

8.1.2 How to compute the observation influence (OI)

In prepIFS, experiment type ‘an’ task ‘forecast error handling’, the logical switch LANOBS=on will allow
the OI computation for all observation assimilated. OI is saved in ODB in an sens obs.

A Fortran program is available to compute the DFS (Degree of Freedom for Signal) and OI. The program
output is a Table that can be imported in XL for graphical display. Geographical maps and time series
for all the assimilated observations are produced by OBSTAT.

8.2 OBSERVATIONAL INFLUENCE FOR A DA SCHEME

8.2.1 Linear statistical estimation in numerical weather prediction

Data assimilation systems for NWP provide estimates of the atmospheric state x by combining
meteorological observations y with prior (or background) information xb. A simple Bayesian Normal
model provides the solution as the posterior expectation for x, given y and xb. The same solution can
be achieved from a classical frequentist approach, based on a statistical linear analysis scheme providing
the best linear unbiased estimate (Talagrand, 1997) of x, given y and xb. The optimal GLS solution to
the analysis problem (see Lorenc, 1986) can be written

xa = Ky + (In − KH)xb (8.1)

The vector xa is the ‘analysis’. The gain matrix K(n× p) takes into account the respective accuracies of
the background vector xb and the observation vector y as defined by the n× n covariance matrix B and
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the p× p covariance matrix R, with

K = (R−1 + HTR−1H)−1HTR−1 (8.2)

Here, H is a p× n matrix interpolating the background fields to the observation locations, and
transforming the model variables to observed quantities (e.g. radiative transfer calculations transforming
the models temperature, humidity and ozone into brightness temperatures as observed by several satellite
instruments). In the 4D-Var context introduced below, H is defined to include also the propagation in
time of the atmospheric state vector to the observation times using a forecast model.

Substituting (8.2) into (8.1) and projecting the analysis estimate onto the observation space, the estimate
becomes

ŷ = Hxa = HKy + (Ip − HK)Hxb (8.3)

It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background
(in observation space, Hxb) and the observations y, weighted by the p× p square matrices I − HK and
HK, respectively.

In this case, for each unknown component of Hx, there are two data values: a real and a ‘pseudo’
observation. The additional term in (8.3) includes these pseudo-observations, representing prior knowledge
provided by the observation-space background Hxb. From (8.3), the analysis sensitivity with respect to
the observations is obtained

S =
∂ŷ

∂y
= KTHT (8.4)

Similarly, the analysis sensitivity with respect to the background (in observation space) is given by

∂ŷ

∂(Hxb)
= I − KTHT = Ip − S (8.5)

We focus here on the expressions (8.4) and (8.5). The influence matrix for the weighted regression DA
scheme is actually more complex, but it obscures the dichotomy of the sensitivities between data and
model in observation space.

The (projected) background influence is complementary to the observation influence. For example, if the
self-sensitivity with respect to the ith observation is Sii , the sensitivity with respect the background
projected at the same variable, location and time will be simply 1 − Sii . It also follows that the
complementary trace, tr(I − S) = p− tr(S), is not the df for noise but for background, instead. That
is the weight given to prior information, to be compared to the observational weight tr(S). These are
the main differences with respect to standard LS regression. Note that the different observations can
have different units, so that the units of the cross-sensitivities are the corresponding unit ratios. Self-
sensitivities, however, are pure numbers (no units) as in standard regression. Finally, as long as R is
diagonal, 0 ≤ Sii ≤ 1 is assured, but for more general non-diagonal R-matrices it is easy to find counter-
examples to that property.

Inserting (8.1) into (8.4), we obtain

S = R−1H(B−1 + HTR−1H)−1HT (8.6)

As (B−1 + HTR−1H) is equal to the analysis error covariance matrix A, we can also write S =
R−1HAHT.

8.2.2 Approximate calculation of self-sensitivity in a large variational analysis system

In a optimal variational analysis scheme, the analysis error covariance matrix A is approximately
the inverse of the matrix of second derivatives (the Hessian) of the cost function J , i.e. A = (J)−1

(Rabier and Courtier, 1992). Given the large dimension of the matrices involved, J and its inverse cannot
be computed explicitly. Following Fisher and Courtier (1995) we use an approximate representation of
the Hessian based on a truncated eigen-vector expansion with vectors obtained through the Lanczos
algorithm. The calculations are performed in terms of a transformed variable P, P = L−1(x − xb), with L
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chosen such that B−1 = LTL. The transformation L thus reduces the covariance of the prior to the identity
matrix. In variational assimilation L is referred to as the change-of-variable operator (Courtier et al.,
1998).

J′′−1 ≃ B −
M∑

i=1

1 − λi
λi

(Lvi)(Lvi)
T (8.7)

The summation in (8.7) approximates the variance reduction B-A due to the use of observations in
the analysis. (λi, vi) are the eigen-pairs of A. In ECMWF’s operational data assimilation system,
the variances of analysis error are computed according to this method. The variances are inflated to
provide estimates of short-term forecast (background) error variances to be used as background errors
in the next analysis cycle (Fisher, 1996). The Hessian eigen-vectors are also used to precondition the
minimization (Fisher and Andersson, 2001). The computed eigen-values are not used to minimize the
cost function but only to estimate the analysis covariance matrix. It is well known, otherwise, that the
minimization algorithm is analogous to the conjugate-gradient algorithm. Because the minimum is found
within an iterative method, the operational number of iterations is sufficient to find the solution (with
required accuracy) but does not provide a sufficient number of eigen-pairs to estimate the analysis-error
variances.

The diagonal of the background error covariance matrix B in (8.7) is also computed approximately, using
the randomisation method proposed by Fisher and Courtier (1995). From a sample of N random vectors
ui (in the space of the control-vector), drawn from a population with zero mean and unit Gaussian
variance, a low-rank representation of B (in terms of the atmospheric state variables x) is obtained by

B =
1

N

N∑

i=1

(Lui)(Lui)
T (8.8)

This approximate representation of B has previously been used by Andersson et al. (2000) to diagnose
background errors in terms of observable quantities, i.e. HBHT.

Inserting (8.7) and (8.8) into (8.6) we arrive at an approximate method for calculating S, that is practical
for a large dimension variational assimilation (both 3D and 4D-Var). This is given by

S = R−1H

[
1

N

N∑

i=1

(Lui)(Lui)
T +

M∑

i=1

1 − λi
λi

(Lvi)(Lvi)
T

]
HT (8.9)

Only the diagonal elements of S are computed and stored in ODB – that is, the analysis sensitivities
with respect to the observations, or self-sensitivities Sii . The cross-sensitivity Sij for i 6= j, that represents
the influence of the jth observation to the analysis at the ith location, is not computed. Note that the
approximation of the first term is unbiased, whereas the second term is truncated such that variances
are underestimated. For small M the approximate Sii will tend to be over-estimates. For the extreme
case M = 0, (8.9) gives S = R−1HBHT which in particular can have diagonal elements larger than one
if elements of HBHT are larger than the corresponding elements of R. The number of Hessian vectors
operationally computed is M = 40 and the number of random B vectors is N = 50.

In general, in the operational system, 15% of the global influence is due to the assimilated observations
in any one analysis, and the complementary 85% is the influence of the prior (background) information,
a short-range forecast containing information from earlier assimilated observations. About 25% of the
observational information is currently provided by surface-based observing systems, and 75% by satellite
systems.

Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-
sparse areas or in dynamically active regions. Background error correlations also play an important role:
High correlation diminishes the observation influence and amplifies the importance of the surrounding real
and pseudo observations (prior information in observation space). Incorrect specifications of background
and observation error covariance matrices can be identified, interpreted and better understood by the
use of influence matrix diagnostics for the variety of observation types and observed variables used in the
data assimilation system.
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Self-sensitivities cannot be larger than one (they are bounded in the interval zero to one) but, because of
the small number of eigenpair we can compute, Sii can be greater than one. Approximations in both of
the two terms of (8.9) contribute to the problem. In the second term the number of Hessian eigen-vectors
is truncated to M. The term is therefore underestimated, and Sii will tend to be over-estimated. The
degree of over-estimation depends on the structure of the covariance reduction matrix B-A.

For an analysis in which observations lead to strongly localised covariance reduction (such as the humidity
analysis with its short co-variance length scales ∼180 km, and large observational impacts) a large M
is required to approximate B-A accurately. The approximate computation is mostly affecting the self-
sensitivities close to the upper bound leaving the self-sensitivities <0.7 almost unaffected.

To conclude, the self-sensitivity provides a quantitative measure of the observation influence in the
analysis. In robust regression, it is expected that the data have similar self-sensitivity (sometimes called
leverage) – that is, they exert similar influence in estimating the regression line. Disproportionate data
influence on the regression estimate can have different reasons: First, there is the inevitable occurrence
of incorrect data. Second, influential data points may be legitimately occurring extreme observations.
However, even if such data often contain valuable information, it is constructive to determine to which
extent the estimate depends on these data. Moreover, diagnostics may reveal other patterns e.g. that the
estimates are based primarily on a specific sub-set of the data rather than on the majority of the data. In
the context of 4D-Var there are many components that together determine the influence given to any one
particular observation. First there is the specified observation error covariance R, which is usually well
known and obtained simply from tabulated values. Second, there is the background error covariance B,
which is specified in terms of transformed variables that are most suitable to describe a large proportion
of the actual background error covariance. The implied covariance in terms of the observable quantities is
not immediately available for inspection, but it determines the analysis weight given to the data. Third,
the dynamics and the physics of the forecast model propagate the covariance in time, and modify it
according to local error growth in the prediction. The influence is further modulated by data density.
Low influence data points occur in data-rich areas while high influence data points are in data-sparse
regions or in dynamically active areas. Background error correlations also play an important role. In fact,
very high correlations drastically lessen the observation influence in favour of background influence and
amplify the influence of the surrounding observations.

With the approximate method used here, out-of-bound self-sensitivities occur if the Hessian representation
based on an eigen-vector expansion is truncated, especially when few eigen-vectors are used. However, this
problem affects only a small percentage of the self-sensitivities computed in this study, and in particular
those that are closer to one. Remaining values greater than one can be due to large background to
observation error ratio, which is one factor that is known to contribute towards ill-conditioning and poor
convergence of the 4D-Var algorithm.

8.3 GRADIENT TEST

If LTEST = .TRUE. a gradient test will be performed both before and after minimization. This is done by
the routine GRTEST. In the gradient test a test value t1 is computed as the ratio between a perturbation
of the co-t-function and its first-order Taylor expansion using

t1 = lim
δχ→0

J(χ+ δχ) − J(χ)

〈∇J, δχ〉 (8.10)

with δχ= −α∇J . Repeatedly increasing α by one order of magnitude, printing t1 at each step should
show t1 approaching one, by one order of magnitude at a time, provided J(χ) is approximately quadratic
over the interval [χ, χ+ δχ]. The near linear increase in the number of 9’s in the print of t1 over a wide
range of α (initially as well as after minimization) proves that the coded adjoint is the proper adjoint for
the linearization around the given state χ.

The behaviour of the cost function in the vicinity of χ in the direction of the gradient ∇J is also diagnosed
by several additional quantities for each α. The results are printed out on lines in the log-file starting
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with the string ‘GRTEST:’. To test the continuity of J , for example, a test value t0 is computed with

t0 =
J(χ+ δχ)

J(χ)
− 1 (8.11)

and printed. For explanation of other printed quantities see the routine GRTEST itself. A range of
additional test was introduced in Cy28r2.

8.4 THE 24-HOUR FORECAST ERROR CONTRIBUTION TO
OBSERVATIONS (FEC)

For information about the FEC computation see:

http://datasvc.ecmwf.int/twiki/bin/view/Main/DiagnosticsToolsDataAssimilation.
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Chapter 9

Observation processing
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9.1 BASIC PRINCIPLES

The ECMWF Data Assimilation Observation Processing System prior to Cy26r1 (April 2003) was roughly
split in two parts.

(i) Non-IFS observation processing modules.
(ii) IFS integrated observation processing module.

Originally, the main difference in function between these two parts was based on whether information
about a field (e.g. first guess) was required or not. Thus, the observation processing functions for which
field information was not required were dealt with by the non-IFS modules, whereas the IFS itself dealt
with those observation processing functions for which field information was needed.

The non-IFS observation processing came in two main parts.
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(i) Preparation and massaging of input BUFR data.
(ii) Creation of two data structure; one acceptable by the IFS as input and the other one for archiving

purposes (observation feedback).

The first part of the non-IFS observation processing, which is still intact, consists of a number of modules:
PRE1CRAD (further split by instrument type), PREOBS, PREOBS WAVE, PREGEOS, PREREO3 and
PRESCAT. Without going into too many details here, the main theme for all of them is to prepare input
BUFR data in an appropriate form for further processing. This also involves performing preliminary data
thinning. As such, this part is preserved even after the major change which occurred with Cy26r1.

The second part of the non-IFS observation processing consisted of two modules: OBSPROC and
OBSORT. The main task of OBSPROC was to prepare input BUFR data in a form to be used by
the analysis, whereas OBSORT dealt with any issues related to parallel computing. In this context
OBSORT was not doing anything on its own; it was normally called by OBSPROC to ensure efficient
parallelisation. During an analysis cycle OBSPROC is executed twice: just before and just after the IFS.
The task before the IFS, called MAKECMA or for short MKCMA, performed a number of observation
processing functions.

(i) Read in and crack input BUFR data.
(ii) Carry out preliminary data checks.
(iii) Perform necessary variable changes.
(iv) Assign observation errors.
(v) Create CMA data structure recognised by the IFS.
(vi) Etc.

On the other hand the task of OBSPROC just after the IFS, called FEEDBACK, was to create
BUFR feedback. This was done by appending the input BUFR data with analysis-related information
(departures, flags, events, etc.).

Cy26r1 saw a major revision in this area. Observation processing modules OBSPROC and OBSORT, as
well as the CMA observation data structure, have been phased out. Hence, MKCMA and FEEDBACK
tasks as we knew them were made obsolete. However, a new data structure, the ODB, as well as two
new observation processing modules (BUFRTOODB and ODBTOBUFR) have been introduced. Most of
the observation processing functions earlier performed by the MKCMA task within OBSPROC have now
been included in the IFS. It is only purely BUFR related processing functions that have now been taken
over by BUFRTOODB and ODBTOBUFR.

• BUFRTOODB, together with MERGEODB, runs just before the IFS and is called MAKEODB.
Effectively what it does is to read input BUFR data and create initial ODB which is formally
acceptable by the IFS.

• ODBTOBUFR together with MATCHUP runs just after the IFS and is called ODB2BUFR.

Both MAKEODB and ODB2BUFR have been developed and are handled by the Operations Department.

The OBSORT observation processing functions have now almost entirely been incorporated into the ODB
software.

As mentioned earlier most of the observation processing functions of OBSPROC are now integrated in
the IFS. These newly integrated IFS observation processing functions are now known as “MAKE CMA
REPLACEMENT” or for short MKCMARPL.

Here we will mostly concentrate on the IFS integrated observation processing whereas the other parts of
the ECMWF documentation will deal with the remaining aspects of observation processing.
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9.2 MAIN MKCMARPL TASKS AND FUNCTIONS

9.2.1 Basic observation processing setup

In order to perform the observation processing functions, a number of basic observation processing setups
are carried out at the very beginning of initialising the IFS. This is done by calling several routines in
addition to all other routines needed to setup the IFS (see Fig. 9.1).

• Program MASTER calls CNT0 which in turn calls SU0YOMA.
• SU0YOMA calls (among other routines) SUOAF from which SUCMOCTP, SUEVENTS,

SUCODES, SUFLTXT and SUCMA are called. SUCMOCTP defines the ODB observation types
and code types, and SUEVENTS, SUCODES and SUFLTXT define analysis events, various codes
used and flags naming conventions.

• SUCMA calls SUCMAF which then calls several subroutines: SUCMAD1, SUCMAD2,
SUCMAHFP, SUCMAHOP, SUCMBDFP and SUCMBDTP. These routines define the structure
of ODB Data Descriptor Records (DDRs) as well as the ODB packing patterns (bit structure)
employed for header and body respectively.

9.2.2 Invoking, initializing and controlling the MKCMARPL

The MKCMARPL run is initiated by the MKCMARPL subroutine (see Fig. 9.2). This routine is only
invoked in the SCREENING run of the IFS. It is called, together with some of its additional setup routines
via subroutine SUOBS. The additional setup routines called at this level are: SUANCT, DEFRUN,
SULIM, SULEVLAY, SUSATRET, SUVNMB, SUSCRE0, SUOBSORT, SETCOM, DEPERERR,
SUERRORS, INIERSCA and INISSMIP.

• MKCMARPL is namelist driven and in DEFRUN a logical variable LMKCMARPL is defined. By
default LMKCMARPL = .TRUE. but it can be overwritten via namelist NAMOBS. Furthermore,
many other parameters and switches are defined in DEFRUN and some of them can also be
overwritten via namelists.

• SUANCT and SULIM define some additional analysis constants and limits.
• SULEVLAY and SUSATRET define analysis related level/layer and satellite retrieval parameters,

respectively.
• SUVNMB declares variable numbers.
• SUSCRE0, SUOBSORT and SETCOM define flag limits, identify ambiguous moving platforms,

initialise observation sorting, and provide some general observation common variables.
• DEPERERR and SUERRORS deal with observation error statistics definitions. SUERRORS

calls SUPERERR to define observation persistence errors and SUOBSERR to define prescribed
observation errors.

• INIERSCA and INISSMIP deal with initialising SCATT and SSMI processing.

The next step is to find out if it is a SCREENING run and if so to check if it is a MKCMARPL run as
well. In the case of a MKCMARPL run all aspects of the observation processing before the screening are
dealt with by calling MKCMARPL (more about it in Subsection 9.2.3). After MKCMARPL has finished
there are several ways to proceed. These depend on the status of LMKCMARPLO and LRPLSWAPOUT
logical switches (NAMOBS namelist). If LRPLSWAPOUT = .TRUE. the ODB is swapped out and if
LMKCMARPLO = .TRUE. the ODB is written out and the run terminated. Both of these options are
not normally used and their use is for diagnostics/debugging purposes. Once the MKCMARPL work has
been completed the remainder of SUOBS will execute as before. Thus, calls to WRITEOBA, WINDAUX,
OBATABS, SUAMV, SURAD, SULIMB, SUOBAREA, MKGLOBSTAB and SUREO3 are issued.

In the context of operational running, the MKCMARPL related switches are set:

LMKCMARPL = .TRUE. LRPLSWAPOUT = .FALSE. LMKCAMRPLO = .FALSE.

9.2.3 MKCMARPL

The main purpose of MKCMARPL is to control the IFS observation pre-processing. Observation pre-
processing at this stage is done in groups of observations. At the moment there are seven groups:
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Figure 9.1 Simplified IFS observation pre-processing flow diagram (MASTER). Colour coding scheme:
(a) routines in red boxes perform observation pre-processing, (b) routines in pink boxes carry out
observation pre-processing set up, and (c) routines in black boxes are not directly involved in observation
pre-processing. Fig. 9.2 continues the flow diagram from SUOBS.
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Figure 9.2 (Continued from Fig. 9.1) Simplified IFS observation pre-processing flow diagram
(SUOBS). Colour coding scheme: (a) routines in red boxes perform observation pre-processing,
(b) routines in pink boxes carry out observation pre-processing set up, (c) routines in black boxes are not
directly involved in observation pre-processing, (d) routines in blue boxes are obsolete and (e) routines in
plum boxes are awaiting revision. Fig. 9.3 continues the flow diagram from AIREPIN.
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CONVENTIONAL, SATOB, TOVS/RTOVS, SCATT, LEVEL1C/GEOSS, OZONE and SSMI/TRMM
observations. For each group a separate subroutine is called: CONVENTIONAL OB, SATOB OB,
TOVSRTOVS OB, SCAT OB, LEVEL1CGOES OB, OZONE OB and SSMITRMM OB. These routines
are just cover or hat routines for the actual work to be carried out underneath. However,
TOVSRTOVS OB and SSMITRMM OB are currently not called because TOVSRTOVS OB is obsolete
and SSMITRMM OB is waiting for a major revision.

Each cover routine would call the ODB to get the observations it wants to process. This is done by calling
the ODB GETDB subroutine. As the observations are brought, in one or more worker routines would be
called to perform the observation processing functions. Once the worker routines have finished the control
is handed back to the cover routine. The next step in the cover routine is to return observations back to
the ODB database. This is done by calling the ODB PUTDB routine. In some of these cover routines
several calls to GETDB/PUTDB might be issued. This is because there may be sufficient differences
between similar data to justify a slightly different approach in their pre-processing. For example under
the CONVENTIONAL OB routine there are two calls to a GETDB and PUTDB pair. The first call deals
with all conventional observations except SATEMs; the second call deals with the SATEMs. As indicated
earlier, between each GETDB and PUTDB a number of observations type or code type designed worker
routines are called.

• CONVENTIONAL OB calls the following worker routines: SYNOPIN, AIREPIN, DRIBUIN,
TEMPIN, PILOTIN, EWPRFIN, AWPRFIN, PAOBIN and MERTSIN. A worker routine name
indicates which observations it is dealing with.

• SATOB OB calls SATOBIN and SATAMIN.
• SCAT OB calls ERS1IN, NSCATIN, ASCATIN and QSCATIN.
• LEVEL1CGEOS OB calls RAD1CIN and GOESRIN.
• OZONE OB calls only REO3SIN.

9.2.4 Basic observation handling routines

The observation pre-processing worker routines referred to in Subsection 9.2.3, names of which always
end with “IN”, are the basic observation handling routines. They all follow more or less the same logic.
As an example consider AIREPIN which deals with AIREP observations (see Fig. 9.3).

The first thing which is done is to define the instrument specification (OBINSTP) followed by preliminary
quality control check both at the report level (PRLMCHK) as well as at the data level (GETSETE and
AIREPBE).

• PRLMCHK calls REPSEL and TIMDIF to do report selection according to preset criteria and to
find out time difference between analysis time and the actual observation time, respectively.

• GETSETE makes a local copy of a given observation variable and its related parameters from an
ODB supplied array.

• After updating the local copy, AIREPBE is called to return the updated local copy back to the
ODB supplied array.

The preliminary quality control at the report level consists of making sure that observation position, date
and time are reasonable. Furthermore, as there is a possibility of excluding certain observations via the
NAMOBS namelist, a check is made of whether the observation is actually wanted at this stage. Once
the report level check is passed attention is turned to the data itself. Each datum is checked against
predefined list of expected data. If not in the list, datum is rejected and a warning message issued. At
this stage it is also ensured that missing indicators used are unique.

After the preliminary phase attention is turned to getting data in the right form and shape for further
usage. Thus, in the case of an AIREP observation, this is done in sections of available variables: wind
and temperature.

(i) Wind. There are four wind variables: wind direction (DDD), wind force (FFF), u and v components.
For each of these variables the first thing which is done is to get a local copy of it together with its
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Figure 9.3 (Continued from Fig. 9.2) Simplified IFS observation pre-processing flow diagram
(AIREPIN). Colour coding scheme: routines in red boxes perform observation pre-processing.

related parameters from an ODB supplied array (GETSETE). Once a variable is made available
locally a check is made to ensure that the vertical coordinate is pressure; if instead of pressure
a flight level is supplied it is converted into pressure by assuming a standard ICAO atmosphere
(Z2PICAO). If the variable in question is either u or v, then DDD and FFF are converted into u
and v wind components. Furthermore, for each of the four variables appropriate observation error
statistics are assigned (ERRSTAT, FINOERR). Also, if any flags are set at this stage an appropriate
word in the local copy is updated (PPVAFL). Finally, an updated local copy of an observed quantity
and its related parameters are returned back into the ODB (AIREPBE).

(ii) Temperature. In the case of temperature only one observed variable is dealt with. The pattern
of making a local copy (GETSETE), ensuring that pressure is the vertical coordinate (Z2PICAO),
assigning the observation error statistics (ERRSTAT), updating flags (PPVAFL) and returning an
updated local copy back to the ODB (AIREPBE) is repeated.
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As just mentioned ERRSTAT deals with assigning observation errors for a given observation variable.
ERRSTAT first calls OBSPERR to assign observation persistence error; then it calls OBSERR which in
turn calls FIXERR to assign prescribed observation error. It is worth mentioning that observation errors
themselves are already predefined at an earlier stage (SUERRORS).

The pattern of activities outlined for AIREPIN is repeated more or less in the other worker routines.
However, the SYNOPIN routine is first split further into SHIPIN, METATRIN, PGPSIN and LANSYIN.
This is because SHIP, METAR, GPS and SYNOP LAND observations are sufficiently different to justify
a separate worker routine. Furthermore, LANSYIN is somewhat more complicated than AIREPIN. One
of the reasons for this is that we have to distinguish between low and high level stations.

9.3 OBSERVATION TYPES, SUBTYPES AND CODE TYPES

All observations, both in the BUFR and ODB contexts, are split into a number of observation types. The
observation types are then further divided into observation code types (ODB) and observation subtypes
(BUFR). Although BUFR observation types and subtypes are not directly used in the IFS they are
defined here. BUFR observation types and subtypes are mapped into ODB observation types and code
types before the IFS (i.e. the MERGEODB step).

9.3.1 BUFR observation types and subtypes

There are eight BUFR observation types. However, the number of subtypes differs between observation
types; they are listed in Table 9.1.

9.3.2 ODB observation and code types

There are ten ODB observation types and, as with BUFR, there are a different number of code types
for each of them. It is a reasonable to question why the BUFR and ODB observation types and sub or
code types are different. The answer is a historic one. The ODB observation types and code types have
been used before BUFR came in to existence and as an international code it was difficult to impose our
practice on the others. Also, there was not enough enthusiasm on our side to switch to the BUFR ones.
The ODB observation types and code types are listed in Table 9.2.

9.3.3 Mapping between ODB and BUFR observation types, code types and subtypes

As indicated in Subsection 9.3.2 the coexistence of different codes used for BUFR and ODB observation
types and the subtype and code type requires a mapping from one to another. This is given in Table 9.3.

9.4 VARIABLES

Different quantities are observed by different observing systems. It is only a subset of observed quantities
that are used in the analysis and most of them are used in their original form. However, some of them
are transformed into the ones actually used by the analysis. This transformation, or a change of variable,
may also include retrieval from satellite data if they are independent from the background model fields.
The original variables may be kept with the derived ones so that first guess departures can be assigned
for both. Furthermore, if an observed variable is transformed then, if necessary, so is its observation error
statistics. Also, in the case of an off-time SYNOP observation, the observed surface pressure may be
adjusted.

9.4.1 Observed variables

The exact list of what is observed or present in the list of BUFR observation types and sub types
(Table 9.3) is long. Therefore Table 9.4 just lists (per observation types) those variables which are of
interest at present.

9.4.2 Derived variables

Variables which are transformed for further use by the analysis are as follows.
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Table 9.1 BUFR observation types and subtypes.

Observation Type Subtype

Code Name Code Name

0 Land Surface 1 Land SYNOP
3 Automatic Land SYNOP
9 Abbreviated Land SYNOP

110 GPS
140 METAR

1 Sea Surface 9 SHIP
11 SHIP
13 Automatic SHIP
19 Reduced SHIP
21 DRIBU
22 BATHY

2 Upper Air Sounding 91 Land PILOT
92 SHIP PILOT
95 Wind Profiler (American)
96 Wind Profiler (European/Japanese)

101 Land TEMP
102 SHIP TEMPS
103 DROP TEMP
104 ROCOB
105 SHIP ROCOB
106 Mobile TEMP

3 Satellite Sounding 0 High Resolution TOVS
51 High Resolution TOVS
53 RTOVS
54 ATOVS
55 ATOVS
57 ATOVS
61 Low Level Temperature SATEM
62 High Level SATEM
63 PWC SATEM
65 Merged SATEM
71 Low Level TOVS
72 High Level TOVS
73 PWC TOVS
75 Merged TOVS

129 TRMM
130 TMI
161 PAOB
206 OZONE Retrieved Layers

4 AIREP 142 AIREP
143 COLBA
144 AMDAR
145 ACARS

5 SATOB 82 Temperature and Wind
83 Wind Only
84 Temperature only
85 Temperature only
86 High Resolution VIS Wind
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Table 9.1 Continued.

Observation Type Subtype

Code Name Code Name

87 AMV
89 Geostationary Clear Sky Radiances (GRAD)

189 Geostationary Clear Sky Radiances (GRAD)

12 SCATT/SSMI 122 ERS-1, ERS-2
127 SSMI
136 NSCAT
137 QSCAT
139 ASCAT

253 PAOB 161 PAOB

(i) Wind direction (DDD) and force (FFF) are transformed into wind components (u and v) for SYNOP,
AIREP, SATOB, DRIBU, TEMP and PILOT observations.

(ii) Temperature (T) and dew point (Td) are transformed into relative humidity (RH) for SYNOP and
TEMP observations, with a further transformation of the RH into specific humidity (Q) for TEMP
observations.

(iii) SCATTEROMETER backscatters (σ0’s) are transformed into several pairs of ambiguous wind
components (u and v); this actually involves a retrieval according to some model function describing
the relationship between winds and σ0’s and requires a fair bit of computational work. Details of
this procedure are given in Section 10.5.

(iv) Mean layer temperature is transformed into thickness (DZ) for SATEM and TOVS observations.

All these variable transformations, except for the σ0’s transformation, are more or less trivial ones. The
wind components are worked out as

u= −FFF sin

(
DDD

π

180

)

v = −FFF cos

(
DDD

π

180

)

The RH is derived using

RH =
F (Td)

F (T )

where function F of either T or Td is expressed as

F (T ) = a
Rdry

Rvap
eb

T−T0
T−c

where T0 = 273.16 K, a= 611.21, b= 17.502, c= 32.19, Rdry = 287.0597 and Rvap = 461.5250 are con-
stants.

The specific humidity Q is worked out by using

Q= RH
A

1 − RH
(
Rvap

Rdry
− 1

)
A

with function A is expressed as

A= min

[
0.5,

F (T )

P

]

where P is pressure. Q is assigned in the RH2Q subroutine.
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Table 9.2 ODB observation types and code types.

Observation Type Code Type

Code Name Code Name

1 SYNOP 11 Land SYNOP
14 Automatic Land SYNOP
16 French RADOME
21 SHIP
22 Abbreviated SHIP
23 SHRED
24 Automatic SHIP

140 METAR
110 GPS

2 AIREP 41 CODAR
141 AIREP
142 Simulated AIREP
144 AMDAR
145 ACARS
241 COLBA

3 SATOB 88 SATOB
89 High Resolution VIS wind
90 AMV

188 SST

4 DRIBU 63 BATHY
64 TESAC

160 ERS as DRIBU
165 DRIBU

5 TEMP 35 Land TEMP
36 SHIP TEMP
37 Mobile TEMP
39 ROCOB
40 SHIP ROCOB

135 DROP TEMP
137 Simulated TEMP

6 PILOT 32 Land PILOT
33 SHIP PILOT
34 American Wind Profiler

131 Japanese Wind Profiler
132 Mobile Wind Profiler
134 European Wind Profiler

7 SATEM 86 GTS SATEM
184 High Resolution Simulated TOVS
185 High Resolution Simulated DWL SATEM
186 High Resolution SATEM
200 GTS BUFR SATEM 250km
201 GTS BUFR Clear Radiances
202 GTS BUFR Retrieved Profiles/Clear Radiances
210 ATOVS/GRAD
211 RTOVS
212 TOVS
215 SSMI
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Table 9.2 Continued.

Observation Type Code Type

Code Name Code Name

8 PAOB 164 PAOB

9 SCATTEROMETER 122 ERS-1, ERS-2
210 NSCAT
301 QuikSCAT
139 ASCAT

10 RAW RADIANCE

9.4.3 Adjusted variables

The only observed quantity which is adjusted is the SYNOP’s surface pressure (Ps). This is done by using
pressure tendency (Pt) information, which in turn may be first adjusted. Pt is adjusted only in the case
of SYNOP SHIP data for the ship movement.

The ship movement information is available from input data in terms of ship speed and direction, which
are first converted into ship movement components Us and Vs. The next step is to find pressure gradient
(∂p/∂x and ∂p/∂y) given by

∂p

∂x
= C(A1u−A2v)

1

2
∂p

∂y
= −C(A1u+A2v)

where u and v are observed wind components, and A1 = 0.94 and A2 = 0.34 are the sine and cosine of the
angle between the actual and geostrophic winds. C is the Coriolis term multiplied by a drag coefficient
(D) so that

C = 2ΩD sin θ

where, θ is the latitude and Ω = 0.7292× 10−4s−1 is the angular velocity of the earth andD is expressed as

D = GZ

G= 1.25 is an assumed ratio between geostrophic and surface wind over sea and Z = 0.11 kgm−3 is an
assumed air density. Now the adjusted pressure tendency (P a

t ) is found as

P a
t = Pt −

(
Us
∂p

∂x
+ Vs

∂p

∂y

)

Finally, the adjusted surface pressure (P a
s ) is found as

P a
s = Ps − P a

t ∆t

where, ∆t is a time difference between analysis and observation time. Of course in the case of non-SHIP
data P a

t ≡ Pt. Subroutine PTENDCOR is used for this adjustment.

9.4.4 Codes for variables

To provide easy recognition of ‘observed’ variables each of them is assigned a numerical code. These codes
are then embedded in ODB reports. There are 93 codes used so far. These codes are defined in subroutine
SUVNMB. For the sake of completeness these codes are listed in Table 9.5.

9.5 OBSERVATION ERROR STATISTICS

Three types of observation errors are dealt with at the observation pre-processing level.

98 IFS Documentation – Cy37r2



Part II: Data Assimilation

Table 9.3 Mapping between ODB and BUFR observation types, code types and subtypes.

ODB (Observation Type, Code Type) BUFR (Observation Type, Subtype)

ODB(1, 11) ↔ BUFR[(0,1);(0,9)]
ODB(1, 14) ↔ BUFR(0,3)
ODB(1, 21) ↔ BUFR(1,9)
ODB(1, 22) ↔ BUFR(?,?)
ODB(1, 23) ↔ BUFR(1,19)
ODB(1, 24) ↔ BUFR(1,13)
ODB(1,110) ↔ BUFR(0,110)
ODB(1,140) ↔ BUFR(0,140)
ODB(2,41) ↔ BUFR(?,?)

ODB(2,141) ↔ BUFR(4,142)
ODB(2,142) ↔ BUFR(?,?)
ODB(2,144) ↔ BUFR(4,144)
ODB(2,145) ↔ BUFR(4,145)
ODB(2,241) ↔ BUFR(4,143)
ODB(3,88) ↔ BUFR[(5,82);(5,83);(5,84);(5,85)]
ODB(3,89) ↔ BUFR(5,86)
ODB(3,90) ↔ BUFR(5,87)

ODB(3,188) ↔ BUFR(?,?)
ODB(4,63) ↔ BUFR(1,23)
ODB(4,64) ↔ BUFR(1,22)

ODB(4,160) ↔ BUFR(?,?)
ODB(4,165) ↔ BUFR(1,21)
ODB(5,35) ↔ BUFR(2,101)
ODB(5,36) ↔ BUFR(2,102)
ODB(5,37) ↔ BUFR(2,106)
ODB(5,39) ↔ BUFR(2,104)
ODB(5,40) ↔ BUFR(2,105)

ODB(5,135) ↔ BUFR(2,103)
ODB(5,137) ↔ BUFR(?,?)
ODB(6,32) ↔ BUFR(2,91)
ODB(6,33) ↔ BUFR(2,92)
ODB(6,34) ↔ BUFR(2,94)

ODB(6,131) ↔ BUFR(2,95)
ODB(6,134) ↔ BUFR(2,95)
ODB(7,86) ↔ BUFR[(3,61);(3,62);(3,63);(3,65)]

ODB(7,184) ↔ BUFR(?,?)
ODB(7,185) ↔ BUFR(?,?)
ODB(7,186) ↔ BUFR[(3,71);(3,72);(3,73);(3,75)]
ODB(7,200) ↔ BUFR(?,?)
ODB(7,201) ↔ BUFR(?,?)
ODB(7,202) ↔ BUFR(?,?)
ODB(7,206) ↔ BUFR(?,?)
ODB(7,210) ↔ BUFR[(3,54);(5,89)]
ODB(7,211) ↔ BUFR(3,53)
ODB(7,212) ↔ BUFR[(3,0);(3,51)]
ODB(7,215) ↔ BUFR(12,127)
ODB(8,180) ↔ BUFR(253,154)

ODB(9,8) ↔ BUFR(12,8)
ODB(9,122) ↔ BUFR(12,122)
ODB(9,139) ↔ BUFR(12,139)
ODB(9,210) ↔ BUFR(12,136)
ODB(9,301) ↔ BUFR(12,137)
ODB(9,511) ↔ BUFR(?,?)
ODB(10,1) ↔ BUFR(?,?)
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Table 9.4 Observed variables.

Observation Type

BUFR ODB Observed Variable

Land Surface Land SYNOP Surface Pressure (Ps)
10 m Wind Direction/Force (DDD/FFF )

2 m Temperature (T2m)
2 m Dew Point (Td2m)
Pressure Tendency (Pt)

Cloud Information
Precipitation Information

Snow Depth (Sd)
Etc.

Sea Surface SHIP SYNOP, DRIBU Surface Pressure (Ps)
10 m Wind Direction/Force (DDD/FFF )

2 m Temperature (T2m)
2 m Dew Point (Td2m)

Etc.

Upper Air Sounding TEMP, PILOT 10m/Upper Air Wind Direction/Force (DDD/FFF )
2m/Upper Air Temperature (T2m/T )
2m/Upper Air Dew Point (Td2m/Td)

Geopotential Height (Z)
Etc.

Satellite Sounding SATEM Mean Layer Temperature
Precipitable Water Content (PWC)

Brightness Temperature (Tb)

AIREP AIREP Upper Air Wind Direction/Force (DDD/FFF )
Temperature (T )

SATOB SATOB Upper Air Wind Direction/Force (DDD/FFF )
Brightness Temperature (Tb)

SCATTEROMETER SCATTEROMETER Backscatter (σ0)
SSMI SSMI Brightness Temperature (Tb)

(i) Persistence observation error.
(ii) Prescribed observation error.
(iii) Combination of the two above called the final observation error.

9.5.1 Persistence observation error

The persistence error is formulated in such a way to reflect its dependence on the following.

(i) Season.
(ii) Actual geographical position of an observation.

Seasonal dependency is introduced by identifying three regimes.

(i) Winter hemisphere.
(ii) Summer hemisphere.
(iii) Tropics.

The positional dependency is then introduced to reflect the dependence on the precise latitude within
these three regimes.
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Table 9.5 Numbering of variables in the ODB.

No. Code Name Unit

1 3 Wind Component (u) ms−1

2 4 Wind Component (v) ms−1

3 1 Geopotential (Z) m2s−2

4 57 Thickness (DZ) m2s−2

5 29 Relative Humidity (RH) numeric

6 9 Precipitable Water Content (PWC) kgm−2

7 58 2 m Relative Humidity (RH 2m) numeric
8 2 Temperature K
9 59 Dew Point K

10 39 2 m Temperature (T2m) K
11 40 2 m Dew Point (Td2m) K
12 11 Surface Temperature (Ts) K
13 30 Pressure Tendency (Pt) Pa/3h
14 60 Past Weather (W ) WMO Code 4561
15 61 Present Weather (WW) WMO Code 4677
16 62 Visibility (V ) WMO Code 4300
17 63 Type of High Clouds (CH) WMO Code 0509
18 64 Type of Middle Clouds (CM) WMO Code 0515
19 65 Type of Low Clouds (CL) WMO Code 0513
20 66 Cloud Base Height (Nh) m
21 67 Low Cloud Amount (N) WMO Code 2700
22 68 Additional Cloud Group Height (hshs) m
23 69 Additional Cloud Group Type (C) WMO Code 0500
24 70 Additional Cloud Group Amount (Ns) WMO Code 2700
25 71 Snow Depth (Sd) m
26 72 State of Ground (E) WMO Code 0901
27 73 Ground Temperature (TgTg) K
28 74 Special Phenomena (SpSp) WMO Code 3778
29 75 Special Phenomena (spsp) WMO Code 3778
30 76 Ice Code Type (Rs) WMO Code 3551
31 77 Ice Thickness (EsEs) WMO Code 1751
32 78 Ice (Is) WMO Code 1751
33 79 Time Period of Rain Information (trtr) hour

34 80 6 Hour Rain Amount kgm−2

35 81 Maximum Temperature (JJ) K
36 82 Ship Speed (Vs) ms−1

37 83 Ship Direction (Ds) degree
38 84 Wave Height (HwHw) m
39 85 Wave Period (PwPw) s
40 86 Wave Direction (DwDw) degree
41 87 General Cloud Group WMO Code
42 88 Relative Humidity from Low Clouds numeric
43 89 Relative Humidity from Middle Clouds numeric
44 90 Relative Humidity from High Clouds numeric
45 91 Total Amount of Clouds WMO Code 20011
46 92 6 Hour Snowfall m
47 110 Surface Pressure (Ps) Pa
48 111 Wind Direction degree
49 112 Wind Force ms−1

50 119 Brightness Temperature (Tb) K
51 120 Raw Radiance K
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Table 9.5 Continued.

No. Code Name Unit

52 121 Cloud Amount from Satellite %
53 122 Backscatter (σ0) dB
54 5 Wind Shear (∂u/∂z) s−1

55 6 Wind Shear (∂v/∂z) s−1

56 41 u10m ms−1

57 42 v10m ms−1

58 19 Layer Relative Humidity numeric
59 200 Auxiliary Variable numeric

60 123 Cloud Liquid Water (Ql) kgkg−1

61 124 Ambiguous v ms−1

62 125 Ambiguous u ms−1

63 7 Specific Humidity (Q) kgkg−1

64 126 Ambiguous Wind Direction degree
65 127 Ambiguous Wind Speed ms−1

66 8 Vertical Speed ms−1

67 56 Virtual Temperature (Tv) K
68 206 Ozone Dobson
69 156 Height m

70 215 SSM/I Pseudo Variable kgm−2

71 160 Past Weather numeric
72 130 Pressure Tendency Characteristics numeric
73 12 Sea Water Temperature K
74 192 Radar Reflectivity Db
75 128 Atmospheric Path Delay in Satellite Signal m
76 162 Radio Occultation Bending Angle Rad
77 187 Horizontal line-of-sight wind component ms−1

78 174 Aerosol optical depth at 0.55 microns (AOD)
79 163 Limb Radiances
80 181 GEMS reactive gases, N02
81 182 GEMS reactive gases, S02
82 183 GEMS reactive gases, CO
83 184 GEMS reactive gases
84 185 GEMS reactive gases, G03
85 175 Cloud optical depth (COD)
86 176 Ratio of fine mode to total aerosol optical depth at 0.55 microns (RAO)
87 177 Aerosol reflectance multi-channel (RFA)
88 178 Aerosol optical depth multi-channel (ODA)
89 179 Normalized Soil Moisture 0-100%

90 180 Soil Moisture kg3kg−3

91 186 GHG
92 187 GHG
93 195 Radar doppler wind
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Table 9.6 Observation persistence errors of maximum 24-hour wind (u, v), height (Z) and
temperature (T ).

Variable (unit) 1000–700 hPa 699–250 hPa 249–0 hPa

u, v (ms−1) 6.4 12.7 19.1
Z (m) 48 60 72
T (K) 6 7 8

The persistence error calculation is split into two parts. In the first part the above dependencies are
expressed in terms of factors a and b which are defined as

a= sin

(
2π

d

365.25
+
π

2

)

and

b= 1.5 + a

{
0.5 min

[
max(θ, 20)

20

]}

where d is a day of year and θ is latitude.

The persistence error for time difference between analysis and observation ∆t is then expressed as a
function of b with a further dependence on latitude and a maximum persistence error Emaxpers for 24 hour
given by

Epers =
Emaxpers

6
[1 + 2 sin(|2θ|b∆t)]

where ∆t is expressed as a fraction of a day. The Emaxpers have the values shown in Table 9.6.

Subroutine SUPERERR is used to define all relevant points in order to carry out this calculation, and is
called only once during the general system initialization. The calculation of the actual persistence error
is dealt with by OBSPERR.

9.5.2 Prescribed observation errors

Prescribed observational errors have been derived by statistical evaluation of the performance of the
observing systems, as components of the assimilation system, over a long period of operational use. The
prescribed observational errors are given in the Tables 9.7, 9.8 and 9.9. Currently, observational errors
are defined for each observation type that carries the following quantities.

(i) Wind components.
(ii) Height.
(iii) Temperature.
(iv) Humidity.

As can be seen from the tables of prescribed observation errors, they are defined at standard pressure
levels but the ones used are interpolated to the observed pressures. The interpolation is such that the
observation error is kept constant below the lowest and above the highest levels, whereas in between it
is interpolated linearly in ln p. Several subroutines are used for working out the prescribed observation
error: SUOBSERR, OBSERR, FIXERR, THIOERR and PWCOERR.

• SUOBSERR defines observation errors for standard pressure levels.
• OBSERR and FIXERR calculate the actual values.
• THIOERR and PWCOERR are two specialised subroutines to deal with thickness and PWC errors.

Relative humidity observation error RH err is either prescribed or modelled. More will be said about the
modelled RH err in Subsection 9.5.3. RH err is prescribed only for TEMP and SYNOP data. RH err is
preset to 0.17 for TEMP and 0.13 for SYNOP. However, if RH < 0.2 it is increased to 0.23 and to 0.28
if T < 233 K for both TEMP and SYNOP.
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9.5.3 Derived observation errors

Relative humidity observation error, RH err, can also be expressed as function of temperature T so that

RH err = min[0.18,min(0.06,−0.0015T + 0.54)]

This option is currently used for assigning RH err.

Specific humidity observation error, Qerr, is a function of RH ,RH err, P, Perr, T and Terr, and formally
can be expressed as

Qerr =Qerr(RH ,RH err, P, Perr, T, Terr)

or

Qerr = RH errF1(RH , P, T ) +
RH Perr

P
F2(RH , P, T ) + RH Terr(RH , P, T )

where functions F1, F2 and F3 are given by

F1(RH , T, P ) =
A

[
1 − RH

(
Rvap

Rdry
− 1

)
A

]2

F2(RH , T, P ) =

{[
1 − RH

(
Rvap

Rdry
− 1

)
A

]
+

(
Rvap

Rdry
− 1

)
A

}

[
1 − RH

(
Rvap

Rdry
− 1

)
A

]2

F3(RH , T, P ) =
Ab(T0 − c)

(T − c)2

{[
1 −

(
Rvap

Rdry
− 1

)
A

]
RH A

(
Rvap

Rdry
− 1

)}

At present only the first term of the above expression for Qerr is taken into account (dependency on
relative humidity). Subroutine RH2Q is used to evaluate Qerr.

Surface pressure observation error Pserr is derived by multiplying the height observation error Zerr by a
constant:

Pserr = 1.225Zerr

However, the Pserr may be reduced if the pressure tendency correction is applied. For non-SHIP data the
reduction factor is 4, whereas for SHIP data the reduction factor is either 2 or 4, depending on if the Pt

is adjusted for SHIP movement or not.

The thickness observation error (DZ err) is derived from Zerr.

9.5.4 Final (combined) observation error

In addition to the prescribed observation and persistence errors, the so called final observation error is
assigned at this stage too. This is simply a combination of observation and persistence errors given by

FOE =
√
O2

E + P 2
E

where FOE, OE and PE are final, prescribed and persistence observation errors, respectively. The
subroutine used for this purpose is FINOERR.

9.5.5 Overview over METEOSAT and GEOS imager CSR in the ECMWF archives

Table 9.10 gives a short summary of the CSR data stored at ECMWF either in MARS or in ECFS,
including the BUFR subtype of the data. For more information on the actual content of the data see
BUFR templates, bearing in mind that not all data items which can be encoded according to the CSR
BUFR template are actually always provided (i.e. missing values). Incoming data from Meteosat and
GOES are currently recoded into one BUFR format being the interface to observation processing and
assimilation in IFS. This BUFR was originally designed for the Meteosat CSR. For the GOES data, not
all information from the original BUFR can be retained in this BUFR and a change may be therefore
useful once the incoming GOES data are encoded in the agreed common BUFR format, using descriptor
301023.
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Table 9.10 ECMWF METEOSAT and GEOS CSR archives.

Time
Satellite Period Data Type BUFR Subtype Location

METEOSAT-5
METEOSAT-6
METEOSAT-7

15/05/1996
To

??/05/1997

Geostationary radiances,
32 × 32 pixel segments,

4 times daily

88 MARS

METEOSAT-5
METEOSAT-6
METEOSAT-7

02/05/1997
To

14/01/2002

Geostationary radiances,
32 × 32 pixel segments,

Hourly

88 MARS

METEOSAT-5
METEOSAT-6
METEOSAT-7

Since
25/01/1999

Geostationary clear-sky radiances,
16 × 16 pixel segments, hourly
Including clear and cloudy sky

fractions

89 MARS

METEOSAT-2
METEOSAT-3

Periods for
ERA

Geostationary clear-sky radiances
(as above)

89 ECFS(1)

GEOS-8
GEOS-10

Since
24/10/2001

Clear sky brightness
temperatures,

11 × 17 pixel segments, hourly,
Including clear and cloudy sky

fractions

89
and original

BUFR formats
Several changes

ECFS(2)

GOES-8
GOES-10

Since
09/04/2002

Clear sky brightness
temperatures,

11 × 17 pixel segments, hourly,
Including clear and cloudy sky

fractions

89
And original

BUFR formats
Several changes

MARS
original
data on
ECFS(2)

ECFS(1): ec:/ERA/era40/obs/bufr/EUM reproc/$yyyy/$mm/CSR${yyyymmddhh}
ECFS(2): ec:/oparch/gicsbt/$yyyymm/$dd/gicsbt..

9.5.6 Thinning and screening prior to insertion into the assimilation

In order to reduce the data load of the hourly CSR data, the data are screened in a separate task before
insertion into assimilation (IFS). This is done by the program GEOS PRESCREEN (SATRAD library).
It decodes the BUFR and applies basic checks on latitude, longitude, time values, and on brightness
temperatures being within a physical range. Also, data points are rejected where the value for the water
vapour channel brightness temperature is missing. Based on specifications given through namelist input,
a geographical thinning may (or may not) be applied for each individual satellite. If switched on, the
thinning is performed separately for data falling into hourly timeslots. An overview of the number of
remaining valid data points per hour and satellite is printed and the remaining data are encoded into
BUFR using the same format as the input file.

9.6 DEFINITIONS

9.6.1 Observation characteristics: instrument specification and retrieval type

Tables 9.11 to 9.19 describe in details how the ODB’s instrument specification word is structured. Tables
provided are for different observation types.

In Table 9.20 the ODB’s header retrieval word codes are described.

9.6.2 Vertical coordinate: pressure, satellite ID and level ID codes

In the ODB the vertical coordinate is expressed by various codes, and Table 9.21 describes those codes.
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Table 9.11 SYNOP instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 10 32 – SYNOP Instrument Code Type
Not Defined 10–30 21 Reserved

Table 9.12 AIREP instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 10 23 – AIREP Instrument Code Type
Flight Information 10 4 BUFR Code Table 8004 – Flight Phase
Not Defined 10–30 21 Reserved

Table 9.13 SATOB instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument
Specification

0 10 60 - GOES
62 – METEOSAT
63 – Indian SATOB
68 – Japan

I1
(Country
Name)

10 4 0 – Europe
1 – Japan
2 – USA
3 – USSR
4 – India

I2I2
(Satellite
Indicator
Figure)

14 8 4 – METEOSAT
177 – Pretoria
0 – GEOS
3 – Japan
20 – India

Not Defined 22–30 8 Reserved

Table 9.14 DRIBU instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 10 Not Defined
K1 10 4 Not Defined
K2 14 4 Not Defined
K3 18 4 Not Defined
Not Defined 22–30 8 Reserved

Table 9.15 TEMP instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 10 Not Defined
Not Defined 10–30 21 Reserved

IFS Documentation – Cy37r2 109



Chapter 9: Observation processing

Table 9.16 PILOT instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 10 Not Defined
A4 10 4 Not Defined
Not Defined 14–30 17 Reserved

Table 9.17 SATEM instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 23 77 777 777B
I3 24 4 WMO Manual On Codes, vol II, section

II-4-E-8
I4 28 4 Data processing technique. WMO Manual

On Codes, vol II, section II-4-E-9
I2I2 32 7 Satellite name. WMO Manual on Codes,

vol II, section II-4-E-7
I1 39 4 Country operating satellite. WMO code

1761
IS 43 7 Instrument specification code. Research

Manual 5, Table 7.5
Not Defined 50 18 Reserved

Also, the ODB pressure code word is expressed in terms of codes which are defined in Table 9.22.

Each satellite used in the assimilation has is identification attached to it. The satellite identification codes
used are described in Table 9.23.

Upper air observations (TEMP and PILOT) have the level at which the observation was taken defined
in terms what it is and that information is stored in the ODB. Details are given in Table 9.24.

9.6.3 ODB report status: events, flags and codes

The status of each ODB report is described in terms of being active, passive, rejected or blacklisted. The
ODB report status word is packed with the 4 bits given in Table 9.25.

There is one, 31 bits packed, word for each ODB report to account for various blacklist events. Details
are given in Table 9.26.

Each ODB report has two words to store report events. Each report event word uses 31 bits. These events
are set during observation processing to describe in more details what happened with a report.

The first ODB report event word is described in Table 9.27.

The second ODB report event word holds an additional set of events which are now dependent on
observation type. Details are given in Tables 9.28 to 9.37.
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Table 9.18 TOVS instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument
Specification 0 10

A 10 2 0 – No HIRS/2 Data
1 – Clear Radiances are Derived from Clear Spots
2 – Clear Radiances are Derived from the N*
method

B 12 2 0 – No HIRS/2 Data
1 – All HIRS/2 channels were used
2 – Tropospheric HIRS/2 channels were unusable
due to clouds and only stratospheric channels were
used

C 14 2 0 – Statistical retrieval method used
1 – Minimum information retrieval used
2 – Minimum information retrieval attempted
but statistical retrieval used

V 16 3 0 – No retrieval
1 – HIRS+MSU
2 – HIRS

W 19 3 0 – No retrieval
1 – HIRS+MSU
2 – HIRS

X 22 3 0 – No retrieval
1 – HIRS(1, 2, 3, 8, 9, 16, 17)+MSU(4)
2 – HIRS(1, 2, 3, 8, 9, 16, 17)
3 – HIRS(1, 2, 3, 9, 17)+MSU(4)
4 – HIRS(1, 2, 3, 9, 17)

Y 25 3 0 - No retrieval
1 – HIRS+SSU+MSU(3, 4)
2 – HIRS+MSU(3, 4)
3 – SSU+MSU(3, 4)

Z 28 3 Not Defined

Not Defined 31 1 Reserved

Table 9.19 SSMI instrument specification.

Type Bit Position No. of Bits Value – Description

Instrument Specification 0 10 Not defined
Not Defined 10–31 22 Reserved

Table 9.20 Satellite retrieval codes.

Retrieval Codes Description

1 Clear
2 Partly Clear
3 Cloudy
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Table 9.21 Vertical coordinate.

Vertical Coordinate Codes Description

1 Pressure (Pa)
2 Height (GPM)
3 Satellite Channel (numeric)
4 Scatterometer Channel (numeric)

Table 9.22 Pressure codes.

Pressure Codes Description

0 Sea Level
1 Station Level
2 850 hPa Geopotential
3 700 hPa Geopotential
4 500 hPa Geopotential
5 1000 GPM Pressure
6 2000 GPM Pressure
7 3000 GPM Pressure
8 4000 GPM Pressure
9 900 hPa Geopotential

10 1000 hPa Geopotential
11 500 hPa Geopotential
12 925 hPa Geopotential

Table 9.23 Satellite IDs.

Satellite ID Codes Description

208/906 NOAA10 – TOVS
235 NOAA10 – SATEM

201/907 NOAA11 – TOVS
236 NOAA11 – SATEM

202/908 NOAA12 – TOVS
237 NOAA12 – SATEM

???/909 NOAA13 – TOVS
206/910 NOAA14 – TOVS

239 NOAA14 – SATEM
205/911 NOAA15

207 NOAA16
208 NOAA17
209 NOAA18
210 NOAA19
222 NOAA20

202/241 DMSP8
203/242 DMSP9
204/243 DMSP10
205/244 DMSP11

245 DMSP12
246 DMSP13
247 DMPS14
248 DMSP15
1022 DMSP16
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Table 9.24 Level ID.

Bit Position No. of Bits Value – Description

0 1 1 – Max Wind Level
1 1 1 – Tropopause
2 1 1 – D Part
3 1 1 – C Part
4 1 1 – B Part
5 1 1 – A Part
6 1 1 – Surface Level
7 1 1 – Significant Wind Level
8 1 1 – Significant Temperature Level

9–31 24 Not Defined

Table 9.25 Report Status.

Bit Position No. of Bits Value – Description

0 1 1 – Report Active
1 1 1 – Passive Report
2 1 1 – Rejected Report
3 1 1 – Blacklisted Report

Table 9.26 Blacklist Events.

Bit Position No. of Bits Value – Description

0 1 1 – Monthly Monitoring
1 1 1 – Constant Blacklisting
2 1 1 – Experimental Blacklisting
3 1 1 – Whitelisting
4 1 1 – Experimental Whitelisting
5 1 1 – Observation Type Blacklisting
6 1 1 – Station ID Blacklisted
7 1 1 – Code Type Blacklisted
8 1 1 – Instrument Type Blacklisted
9 1 1 – Date Blacklisted
10 1 1 – Time Blacklisted
11 1 1 – Latitude Blacklisted
12 1 1 – Longitude Blacklisted
13 1 1 – Station Altitude Blacklisted
14 1 1 – Blacklisted due to Land/Sea Mask
15 1 1 – Blacklisted due to Model Orography
16 1 1 – Blacklisted due to distance from reference point

17–30 14 Not Used
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Table 9.27 Global report events.

Bit Position No. of Bits Description (Value)

0 1 1 – No Data in Report
1 1 1 – All Data Rejected
2 1 1 – Bad Reporting Practice
3 1 1 – Rejected due to RDB Flag
4 1 1 – Activated due to RDB Flag
5 1 1 - Activated by Whitelist
6 1 1 – Horizontal Position out of Range
7 1 1 – Vertical Position out of Range
8 1 1 – Time out of Range
9 1 1 – Redundant Report
10 1 1 – Over Land
11 1 1 – Over Sea
12 1 1 – Missing Station Altitude
13 1 1 – Model Surface too far from Station level
14 1 1 – Report Rejected via Namelist
15 1 1 – Failed Q/C

16–30 15 Not Used

Table 9.28 SYNOP report events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.29 AIREP report events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.30 SATOB report events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.31 DRIBU report events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.32 TEMP report events.

Bit Position No. of Bits Value – Description

0 1 1 - Old Style Z Bias Correction Applied
1 1 1 - New Style T Bias Correction Applied
2 1 1 - RH Bias Correction Applied

3–30 28 Not Used
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Table 9.33 PILOT report events.

Bit Position No. of Bits Value – Description

0 1 1 - American Wind Profiler
1 1 1 - European Wind Profiler

2–30 29 Not Used

Table 9.34 SATEM report events.

Bit Position No. of Bits Value – Description

0 1 1 - Thinned Report
1–30 30 Not Used

Table 9.35 PAOB report events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.36 SCAT report events.

Bit Position No. of Bits Value – Description

0 1 1 - Report thinned in across-node direction
1 1 1 - Reported Wind Directions too Close
2 1 1 - Report in QuikScat outer swath
3 1 1 - Report Contaminated by Rain

4–30 29 Not Used

Table 9.37 Raw radiance report events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

The ODB report RDB flag word is 30 bits packed which contains flags for five report parameters: latitude,
longitude, date, time and altitude. Each parameter occupies 6 bits with further stratification which is
identical for every parameter as indicated in Table 9.38.

9.6.4 Datum status: events, RDB and analysis flags

The status of each datum, like report status, is described in terms of being: active, passive, rejected or
blacklisted. Table 9.39 shows that the ODB datum status is a packed word with 4 bits used to describe
its status.

There are two ODB words reserved for datum events. They both use 31 bits each to store relevant
information. The first event word has the same structure for all observation types, whereas the second
event word is observation type dependent. Tables 9.40 to 9.50 describe the event words structures.

Furthermore, each datum in the ODB has a blacklist event word. This word uses 31 bits to describe
various blacklist events as indicated in Table 9.51.
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Table 9.38 RDB report (latitude, longitude, date, time and altitude) flags.

No. of Bit
Parameter Bits Position

Bit No. of
Position Bits Value – Description

0 1 0 – No Human Monitoring Substitution
1 – Human Monitoring Substitution

Latitude 6 0+ +1 1 0 – No Q/C Substitution
Longitude 6 6+ 1 – Q/C Substitution
Date 6 12+ +2 1 0 – Override Flag not Set
Time 6 18+ 1 – Override Flag Set
Altitude 6 24+ +3 2 0 – Parameter Correct

1 – Parameter Probably Correct
2 – Parameter Probably Incorrect
3 – Parameter Incorrect

+5 1 0 – Parameter Flag Set by Q/C or not Checked
1 – Parameter Flag Set by Human Monitoring

Table 9.39 Datum status.

Bit Position No. of Bits Value – Description

0 1 1 – Report Active
1 1 1 – Passive Report
2 1 1 – Rejected Report
3 1 1 – Blacklisted Report
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Table 9.40 Global datum events.

Bit Position No. of Bits Value – Description

0 1 1 – Missing Vertical Coordinate
1 1 1 – Missing Observed Value
2 1 1 – Missing Background (First Guess) Value
3 1 1 – Rejected due to RDB Flag
4 1 1 – Activated due to RDB Flag
5 1 1 – Activated by Whitelist
6 1 1 – Bad Reporting Practice
7 1 1 – Vertical Position out of Range
8 1 1 – Reference Level Position out of Range
9 1 1 – Too Big First Guess Departure

10 1 1 – Too Big Departure in Assimilation
11 1 1 – Too Big Observation Error
12 1 1 – Redundant Datum
13 1 1 – Redundant Level
14 1 1 – Report Over Land
15 1 1 – Report Over Sea
16 1 1 – Not Analysis Variable
17 1 1 – Duplicate Datum/Level
18 1 1 – Too Many Surface Data
19 1 1 – Multi Level Check
20 1 1 – Level Selection
21 1 1 – Vertical Consistency Check
22 1 1 – Vertical Coordinate Changed from Z to P
23 1 1 – Datum Rejected via Namelist
24 1 1 – Combined Flagging
25 1 1 – Datum Rejected due to Rejected Report
26 1 1 – Variational QC Performed
27 1 1 – Observation Error Increased

28–30 3 Not Used

Table 9.41 SYNOP datum events.

Bit Position No. of Bits Value – Description

0 1 1 – Bias Corrected Ps
1–30 30 Not Used

Table 9.42 AIREP datum events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.43 SATOB datum events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used
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Table 9.44 DRIBU datum events.

Bit Position No. of Bits Value – Description

0 1 1 – Bias Corrected Ps
1–30 30 Not Used

Table 9.45 TEMP datum events.

Bit Position No. of Bits Value – Description

0 1 1 – Bias Corrected Value Used
1–30 30 Not Used

Table 9.46 PILOT datum events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.47 SATEM datum events.

Bit Position No. of Bits Value – Description

0 1 1 – Not Predefined Layer
1 1 1 – Layer Formed by Thinning
2 1 1 – Layer Formed by Summing Up
3 1 1 – Channel Not Used in Analysis
4 1 1 – Overwritten by ADVAR

5–30 26 Not Used

Table 9.48 PAOB datum events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.49 SCAT datum events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used

Table 9.50 Raw radiances datum events.

Bit Position No. of Bits Value – Description

0–30 31 Not Used
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Table 9.51 Datum blacklist events.

Bit Position No. of Bits Value – Description

0 1 1 – Pressure Blacklisted
1 1 1 – Variable Blacklisted
2 1 1 – Blacklisted due to Pressure Code
3 1 1 – Blacklisted due to Distance from Reference Point
4 1 1 – Blacklisted due to Type of Vertical Coordinate
5 1 1 – Blacklisted due to Observed Value
6 1 1 – Blacklisted due to First Guess departure

7–30 24 Not Used

Table 9.52 RDB pressure (vertical coordinate) and datum flags.

No. of Bit
Parameter Bits Position

Bit No. of
Position Bits Value – Description

0 1 0 – No Human Monitoring
Substitution
1 – Human Monitoring
Substitution

+1 1 0 – No Q/C Substitution
Pressure 15 0+ 1 – Q/C Substitution
Datum 15 15+ +2 1 0 – Override Flag not Set

1 – Override Flag Set
+3 2 0 – Correct

1 – Probably Correct
2 – Probably Incorrect
3 – Parameter Incorrect

+5 1 0 – Flag Set by Q/C or not
Checked
1 – Flag Set by Human
Monitoring

+6 2 0 – Previous Analysis judged it
correct
1 – Previous Analysis judged it
probably correct
2 – Previous Analysis judged it
probably incorrect
3 – Previous Analysis judged it
incorrect

+8 1 0 – Not used by previous
analysis
1 – Used by previous analysis

+9 5 Not Used

For each datum in ODB there is an RDB flag word which holds flags for pressure (vertical coordinate)
and the datum itself. This is packed word with 30 bits used – see Table 9.52. Pressure and datum RDB
flags use 15 bits each. Thus pressure RDB flag starts at bit position 0, whereas the datum flag starts at
bit position 15. Each 15 bits structure is further stratified in exactly the same way for both parameters:

IFS Documentation – Cy37r2 119



Chapter 9: Observation processing

Table 9.53 Analysis flags.

Flag Type Bit Position No. of Bits Value – Description

Final 0 4 0 – Correct
1 – Probably correct

2 – Probably incorrect
3 – Incorrect

First Guess 4 4 0 – Correct
1 – Probably correct

2 – Probably incorrect
3 – Incorrect

Departure 8 4 0 – Correct
1 – Probably correct

2 – Probably incorrect
3 – Incorrect

Variational Q/C 12 4 0 – Correct
1 – Probably correct

2 – Probably incorrect
3 – Incorrect

Blacklist 16 4 0 – Correct
1 – Probably correct

2 – Probably incorrect
3 – Incorrect

Not Defined 20 11 Reserved

In addition to RDB datum flags there is a word in ODB to store analysis flags. There are five types of
analysis flags: final analysis, first guess, departure, variational q/c and blacklist flags. Each flag occupies 4
bits and the exact description is given in Table 9.53.
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Chapter 10

Observation screening
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10.1 INTRODUCTION

This chapter describes the observation screening in the ECMWF 3D/4D-Var data assimilation. A more
general description can be found in Järvinen and Undén (1997). The purpose of the observation screening
is to select a clean array of observations to be used in the data assimilation. This selection involves
quality checks, removal of duplicated observations, thinning of their resolution etc.. The current selection
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algorithm has been operational since September 1996 and was to a large extent designed to reproduce
the functionalities of the corresponding codes in the ECMWF OI analysis (Lönnberg and Shaw, 1985,
1987; Lönnberg, 1989).

This chapter was prepared in September 1997 by Heikki Järvinen, Roger Saunders and Didier Lemeur.
It was updated in February 1999 by Roger Saunders for TOVS processing, by Elias Holm and Francois
Bouttier for the remainder, with further updates in October 2004 (to Cy28r1) by Erik Andersson, Drasko
Vasiljevic, Tony McNally (generalised radiance data processing) and Hans Hersbach (scatterometer).

10.2 THE STRUCTURE OF THE OBSERVATION SCREENING

10.2.1 The incoming observations

Before the first trajectory integration of the assimilation various observation processing steps take place.
The observations for the current assimilation period are extracted from the Reports Data Base (RDB) of
observations, coded in BUFR. The extracted data reside in separate BUFR files for each main observing
systems e.g. conventional (that clso ontains AMVs), ATOVS (that also contains AIRS radiances),
geostationary radiances and IASI). These data have already undergone some rudimentary quality control,
e.g. a check for the observation format and position, for the climatological and hydrostatic limits, as well
as for the internal and temporal consistency. The so-called RDB flag has been assigned according to the
outcome of such checks.

The Observation Data Base (ODB, see separate documentation) is filled from the BUFR files in a
sequence of jobs called BUFR2ODB. These jobs are multi-tasked running on parallel servers. Several
or all observation types can run synchronously. The resulting ‘raw’ ODB is processed further by the IFS,
in preparation for the main analysis tasks. These ODB and data manipulation tasks are referred to as
‘the make CMA replacement’ (for historical reasons), and are activated by the switch LMKCMARPL.
MKCMARPL entails format conversions, changes of some observed variables, such as calculation of
relative humidity from dry and wet bulb temperatures and wind components from speed and direction.
The assignment of observation error statistics is also done at this stage, at least for conventional data.

The resulting ‘extended’ ODB data base (the ECMA) contains all the observational information for
the data window as required for 3D/4D-Var as well as all data that are going to be monitored. The
next step is that the observations are compared to the model as it is integrated for the length of the
assimilation window (Chapter 2). The observation minus model differences (the departures) are computed
as described in Chapter 5 and stored in the ODB. These departures are an important input to the data
selection procedures as many quality-control decisions depend on the magnitude of the departure. The
collection of routines that perform data selection are jointly referred to as ‘the screening’. The purpose
of the observation screening is to select the best quality observations, to detect duplicates, and reduce
data redundancy through thinning.

10.2.2 The screening run

The ECMWF 3D/4D-Var data assimilation system makes use of an incremental minimization scheme,
as described in Chapter 2. The sequence of jobs starts with the first (high resolution) trajectory run.
During this run the model counterparts for all the observations are calculated through the non-linear
observation operators, and the observation minus model difference (the departures) are calculated. As
soon as these background departures are available for all observations, the screening can be performed.
Prior to the screening the model fields are deallocated (dealmod) as most of the information necessary in
the screening is stored in the observation data base (ODB). For the observation screening, the background
errors (available as grid data in the ‘errgrib’ file, see Chapter 13) are interpolated to the observation
locations for the observed variables (INIFGER, SUFGER and GEFGER).

Technically, the final result of the observation screening is a pair of ODBs. The original ‘extended’
observation data base now contains observations complemented by the background departures, together
with quality control information for most of the observations. This ECMA ODB remains on disc for later
use in feedback creation. The compressed ODB, the CCMA, is a subset of the original observations, and
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is passed for the subsequent minimization job. The CCMA contains only those observations that are to
be used in the minimization.

10.2.3 General rationale of the observation screening

The general logic in the 3D/4D-Var observation screening algorithm is to make the independent decisions
first, i.e. the ones that do not depend on any other observations or decisions (DECIS). One example is
the background quality control for one observed variable. These can be carried out in any order without
affecting the result of any other independent decision. The rest of the decisions are considered as mutually
dependent on other observations or decisions, and they are taken next, following a certain logical order.
For instance, the horizontal thinning of radiance reports is only performed for the subset of reports that
passed the background quality control. Finally, the CCM data base is created for the minimization in
such a way that it only contains the data that will be used.

10.2.4 3D-Var versus 4D-Var screening

In the original 3D-Var assimilation system the screening rules were applied once, for the complete set of
observations spanning a six-hour period. In the early implementation of the 4D-Var assimilation system,
the same data selection approach called ‘3D-screening’ was applied over the 6-hour long 4D-Var time
window, which resulted in essentially the same screening decisions as in 3D-Var.

In summer 1997, a new screening procedure called 4D-screening was implemented that took into account
the temporal distribution of the observations. The time window is divided into time-slots of typically
half-hour length (15 minutes for the first and the last time slots). The 3D-screening algorithm was then
applied separately to observations within each time-slot. This allowed more data to be used by 4D-Var,
for instance, all messages from an hourly reporting station can now be used, whereas only one (closest to
central time) would have been allowed by the redundancy check in the 3D-screening. The 4D-screening
behaviour is activated by switch LSCRE4D; it is meant to be used in conjunction with time correlation
of observation errors where appropriate, as explained in Järvinen et al. (1999) and in Chapter 5. Also
the current 3D-FGAT configuration (Chapter 3) relies on 4D-screening (LSCRE4D = .TRUE.).

10.3 THE INDEPENDENT OBSERVATION SCREENING DECISIONS

10.3.1 Preliminary check of observations

The observation screening begins with a preliminary check of the completeness of the reports (PRECH).
None of the following values should be missing from a report: observed value, background departure,
observation error and vertical coordinate of observation. Also a check for a missing station altitude is
performed for synop, temp and pilot reports. The reporting practice for synop and temp mass observations
(surface pressure and geopotential height) is checked (REPRA), as explained in Appendix A. At this stage
also, the observation error for synop geopotential observations is inflated if the reported level is far from
the true station level (ADDOER). The inflation is defined as a proportion of the difference between the
reported level and the true station altitude by adding 2% of the height difference to the observation error.

10.3.2 Blacklisting

Next, the observations are scanned through for blacklisting (subroutine BLACK). At the set-up stage the
blacklist interface is initialized (BLINIT) to the external blacklist library. The interface between the IFS
and the blacklist described in further detail in Chapter 5, and in the full Blacklist documentation available
elsewhere. The blacklist files (Chapter 13) consist formally of two parts. Firstly, the selection of variables
for assimilation is specified in the ‘data selection’ part of the blacklist file. This controls which observation
types, variables, vertical ranges etc. will be selected for the assimilation. Some more complicated decisions
are also performed through the data selection file; for instance, an orographic rejection limit is applied
in the case of the observation being too deep inside the model orography. This part of the blacklist also
provides a handy tool for experimentation with the observing system, as well as with the assimilation
system itself. Secondly, a ‘monthly monitoring’ blacklist file is provided for discarding the stations that
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Table 10.1 The predefined limits for the background quality control, given in terms of multiples of the
expected variance of the normalized background departure.

Variable Flag 1 Flag 2 Flag 3

u, v 9.00 16.00 25.00
z, ps 12.25 25.00 36.00
dz x x x
T 9.00 16.00 25.00

rh, q 9.00 16.00 25.00

Flag values are denoted by 1 for a probably correct,
2 for a probably incorrect and 3 for an incorrect
observation. The variables are denoted by u and v
for wind components, z for geopotential height, ps for
surface pressure, dz for thickness, T for temperature,
rh for relative humidity and q for specific humidity,
respectively.

have recently been reporting in an excessively noisy or biased manner compared with the ECMWF
background field.

10.3.3 Background quality control

The background quality control (FIRST) is performed for all the variables that are intended to be used
in the assimilation. The procedure is as follows. The variance of the background departure y −H(χb)
can be estimated as a sum of observation and background-error variances σ2

o + σ2
b, assuming that the

observation and the background errors are uncorrelated. After normalizing with σb, the estimate of
variance for the normalized departure is given by 1 + σ2

o/σ
2
b. In the background quality control, the square

of the normalized background departure is considered as suspect when it exceeds its expected variance
more than by a predefined multiple (FGCHK, SUFGLIM). For the wind observations, the background
quality control is performed simultaneously for both wind components (FGWND). In practice, there is
an associated background quality-control flag with four possible values, namely 0 for a correct, 1 for a
probably correct, 2 for a probably incorrect and 3 for an incorrect observation, respectively (SUSCRE0).
Table 10.1 gives the predefined limits for the background quality control in terms of multiples of the
expected variance of the normalized background departure. These values are set in DEFRUN and can be
changed in namelist NAMJO. For SATOB winds the background error limits are modified as explained
in Appendix A.

There is also a background quality control for the observed wind direction (FGWND). The predefined
error limits of 60◦, 90◦ and 120◦ apply for flag values 1, 2 and 3, respectively. The background quality
control for the wind direction is applied only above 700 hPa for upper-air observations for wind speeds
larger than 15 ms−1. If the wind-direction background quality-control flag has been set to a value that
is greater than or equal to 2, the background quality-control flag for the wind observations is increased
by 1.

There is no first-guess check for scatterometer data. It is demanded, though, that neither scatterometer
nor model wind speed should exceed 35 ms−1, since that marks the range of validity for scatterometer
wind inversion.

10.4 SCREENING OF SATELLITE RADIANCES

10.4.1 Pre-screening

Radiance observations undergo a pre-screening process before being loaded into the OBD for input to the
main IFS screening. Firstly, this is used to reduce the data volume and thus the computational burden
of the main screening. Secondly, this rejects observations that fail to contain crucial header information
and/or the correct number of channels that could potentially cause a computational run-time failure in the
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main screening. Observations in BUFR are decoded and checked inside SCREEN 1C where, additionally,
data measured at particular scan lines and or scan positions may be removed to reduce the data volume
(by setting LINE THIN, FOV THIN in the calling script PRE 1CRAD). Observations which survive the
checking and thinning process are then re-encoded in BUFR and supplied to the ODB loader. A key
consideration for rejecting data in the pre-screening is that removed observations will NOT be passed
through the IFS screening and thus will NOT accrue feedback quality information. Currently all pre-
screening tasks are scalar (i.e. not parallel). However, for IASI (by far the largest data volume) the
process is effectively parallelized by splitting the input BUFR file and launching multiple scalar tasks
simultaneously.

10.4.2 Cloud and rain rejection

After the pre-screening, surviving observations are passed into the main IFS screening process. Here,
data contaminated by significant cloud or rain signals must be removed before being supplied to the
4D-Var minimization in the clear-sky assimilation scheme. Microwave radiances from the SSM/I(S),
TMI are checked in routine RAD1CEMIS and a flag set if significant contamination is identified. The
detection is based on a cloud liquid water regression algorithm . For other microwave radiances (AMSU-
A/B) rain contamination is detected by scene classification based on observed window channel values
inside AMSU SFC. For infrared radiances the test for clouds is done in routine CLOUD DETECT
for AIRS/IASI and routine HIRS CLD for HIRS. The former is based on the algorithm described in
McNally and Watts (2003). The latter is described in Kelly (2007). In both cases the aim is to identify
which infrared channels can be used in a particular scene and which must be rejected. For both the
microwave and infrared data, if cloud or rain is detected and the rejection flag is set - these observations
will not influence any aspects of the analysis including bias parameter evolution in the VARBC.

There is a special case of infrared cloud contamination that does not lead to channels being rejected.
In parallel to the setting of clear and cloudy flags, simplified cloud parameters (cloud top pressure
and effective cloud fraction are estimated from the infrared data (HIRS, AIRS and IASI) in routine
CLOUD ESTIMATE. In the case that a pixel is diagnosed as completely overcast and subject to some
additional restrictions placed upon the altitude of the diagnosed cloud (e.g. that it is not within 100hPa
of the surface), the rejection flags are NOT set. All channels in that pixel are then assimilated with the
estimated cloud parameters passed to the forward operator and further evolved as local extensions to the
control vector in the minimization. The additional use of overcast infrared radiances can be disabled by
setting the logical variable LCLDSINK to false.

10.4.3 Blacklisting decisions

Like any other observations decisions are made to use or not use a particular radiance observation in
the blacklist. These fall into two distinct types: The first is the usual a priori type decision which takes
no account of the actual value of the observation. Examples for radiances include the exclusion of data
measured by new instruments which we do not yet wish to use, data measured by bad/failed instruments,
data measured at extreme scan positions, exclusion of data measured over land or high orography and the
exclusion of data at certain times of year when solar intrusions may cause problems (there are others).
The second type of test is particular to radiances and is a run-time decision based on the observed values
(or more correctly the radiance departure from the background).

Depending on the magnitude of the radiance departure in key window channels, individual or
combinations of microwave and infrared channels may be rejected. In some respects this may be considered
an additional first-guess check that takes place in the blacklists. It can equally well be considered as an
additional cloud/rain detection check that takes place in the blacklist as it exclusively involves window
channels. No attempt is made here to document the particular test and threshold which are applied to
each channel on every instrument and the user is referred to the data selection blacklists files for details.
For both types of test applied in the blacklists environment, if it is failed there are two options for what
then results. The setting of a FAIL(CONSTANT) flag means that the observations will effectively be
rejected and take no further part in the analysis. The setting of a FAIL(EXPERIMENTAL) flag means
that the observation will enter the main analysis in such a way that it cannot force increments of e.g.
temperature or humidity, but it can influence the calculation and evolution of bias correction coefficients
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inside VARBC. An example of when the latter is used would be for new a satellite for which we do
not we wish to actively assimilate the data, but wish to establish an accurate bias correction. Another
application of the FAIL(EXPERIMENTAL) facility is its use for window channels used in the quality
control of other data.

10.5 SCREENING OF SCATTEROMETER DATA

The screening of scatterometer data involves the conversion of the backscatter measurements acquired
by the instrument (triplets for ERS and ASCAT and quadruplets for NSCAT and QuikSCAT) into
ambiguous u and v wind components that will actually be assimilated into the IFS (see Section 5.8.4).
The (empirical) relation between wind and backscatter is described by a geophysical model function
(GMF). Although in principle inverted wind components are provided as a level 2 product, at ECMWF
the wind inversion is performed in house. In this way any drifts in backscatter levels can be corrected in
a direct manner.

Data from the AMI instrument on ERS-2 have been used from June 1996 (with an interruption from
January 2001 till March 2004), data from the SeaWinds instrument on-board QuikSCAT was used from
January 2002 until November 2009 (when QuikSCAT failed), and data from ASCAT on MetOp have
been assimilated from June 2007 onwards. Data from NSCAT have never been used in an operational
setup, although offline assimilation experiments have been performed. From November 2010 onwards
scatterometer data is assimilated as equivalent-neutral 10-metre wind, rather than (real) 10-metre wind,
since the former model winds are closer related to scatteometer observations.

10.5.1 Wind retrieval

Since geometry and measurement principle of ERS and ASCAT are alike, data from these instruments
is processed in a similar way. The procedure for wind inversion closely follows the wind retrieval and
ambiguity removal scheme originally developed for the ERS-1 scatterometer (Stoffelen and Anderson,
1997), though the original geophysical model function CMOD4 has been replaced by CMOD5
(Hersbach et al., 2007) in March 2004, by CMOD5.4 in June 2007, and by CMOD5.n (Hersbach, 2010b)
in November 2010, after which scatterometer winds are assimilated as equivalent-neutral wind(Hersbach,
2010a).

For QuikSCAT the task of wind inversion is performed in the pre-screening (PRESCAT). Data are like
ERS and ASCAT, provided at a resolution of 25 km. Rather than data thinning (see Subsection 10.6.6),
for QuikSCAT a 50 km product is created which contains information about backscatter from the four
underlying original sub-cells. The weight of the scatterometer cost function (defined in routine HJO)
of each 50 km wind vector cell is reduced by a factor four, which effectively mimics the assimilation
of a 100 km product. It is the re-sampled 50 km product that is stored in ODB. Original backscatter
observations at 25 km are not available within the assimilation.

In general, the wind retrieval is performed by minimizing the distance between observed backscatter
values σ0

oi and modelled backscatter values σ0
mi given by

D(u) =
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p]2

kp
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j σ

0
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p
]2 (10.1)

For ERS and ASCAT data, the sum is over triplets, while for QuikSCAT the sum may extend to 16
values (four 25 km sub-cells with each four observations). The quantity p is equal to unity for NSCAT
and QuikSCAT. For ERS and ASCAT data, a value of p= 0.625 was introduced because it makes the
underlying GMF more harmonic, which helps to avoid direction-trapping effects (Stoffelen and Anderson,
1997). The noise to signal ratio kp provides an estimate for the relative accuracy of the observations.

The simulation of σ0
m is for ERS and ASCAT data based on the CMOD5.4 model function. For NSCAT

data the NSCAT-2 GMF has been utilized. For QuikSCAT data, the choice of GMF is handled by a
logical switch LQTABLE. By default LQTABLE = .TRUE. and the QSCAT-1 model function is used,
otherwise, modelled backscatter values are based on the NSCAT-2 GMF. The minimization is achieved
using a tabular form of the GMF, giving the value of the backscatter coefficient for wind speeds, direction
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and incidence angles discretized with, for ERS and ASCAT data, steps of 0.5 ms−1, 50 and 10, respectively.
For NSCAT and QuikSCAT data the corresponding values are 0.2 ms−1, 2.5◦ and 1◦. ERS and ASCAT
use the same table, which is read in the initialisation subroutine INIERSCA. For QuikSCAT, inversion
takes place in the QSCAT25TO50KM program in the PRESCAT task.

10.5.2 Quality control

The wind inversion involves some quality control. For ERS (ERS1IF), kp must for each antenna be below
10%, and a missing packet number must be less than 10 to ensure that enough individual backscatter
measurements have been averaged for estimating the value.

For ASCAT (ASCATIF) a in the product provided land fraction must be zero for each backscatter
measurement. No restriction on kp is imposed, other than that values should be non missing. It is checked
whether two other provided quality flags (‘sigma0 usability‘ and ‘kp quality‘) have acceptable values.
However, no quality control decisions are made on these two indicators for the moment, since sofar, they
have not been fully calibrated and validated by EUMETSAT.

For QuikSCAT, from 38 across-track 50 km cells, the outer 4 at either side of the swath are, due to their
known reduced quality rejected. In addition, for QuikSCAT, it is verified whether inverted winds are
well-defined, i.e. whether minima D(u) are sufficiently sharp. In practise this is mainly an issue for cells
in the central part of the swath. Data is rejected when the angle between the most likely solution and its
most anti-parallel one is less than 135◦ (routine SCAQC).

After wind inversion, a further check is done on the backscatter residual associated to the rank-1 solution
(also called ‘distance to the cone’). This misfit contains both the effects of instrumental noise and of
GMF errors. Locally, these errors can become large when the measurements are affected by geophysical
parameters not taken into account by the GMF, such as sea-state or intense rainfall. For ERS, a triplet
is rejected when the cone distance exceeds a threshold of three times its expected value. For QuikSCAT
and ASCAT data such a test is not performed.

In addition to a distance-to-cone test on single observations, a similar test is performed for averages for
data within certain time slots. If these averages exceed certain values, all data within the considered time
slot is suspected to be affected by an instrument anomaly, since geophysical fluctuations are expected to
be averaged out when grouping together large numbers of data points. For ERS and ASCAT, cell-wise
averages are calculated for the default 4D-Var observation time slot (30 minutes) in the IFS routine
SCAQC, and its rejection threshold (1.5 times average values) are defined in the IFS routine SUFGLIM.
For QuikSCAT averages are considered over six-hourly data files and are evaluated in the pre-screening
(DCONE OC), using a threshold of 1.45 for any of cells between 5 and 34.

10.5.3 Rain contamination

Thanks to the usage of C-band frequency, rain contamination is mild for ERS and ASCAT. For QuikSCAT
and NSCAT, which operate in Ku band, rain contamination is a serious issue.

For QuikSCAT the check on rain contamination occurs in the pre-screening and is imposed on the original
25 km observations. Any 25 km rejected cell is not used in the determination of the 50 km wind product.
When more than one 25 km sub-cell is rejected, the entire 50 km product is rejected (decision made in
SCAQC).

Since February 2000, the BUFR product provides a rain flag. This flag, which was developed by
NASA/JPL, is based on a multidimensional histogram (MUDH) incorporating various quantities that
may be used for the detection of rain (Huddleston and Stiles, 2000). Examples of such parameters are
mp rain probability (an empirically determined estimate for the probability of a columnar rain rate larger
than 2 m2 hr−1; typically values larger than 0.1 indicate rain contamination) and nof rain index (a
rescaled normalized objective function – values larger than 20 give a proxy for rain). Since at the time
of implementation, the quality of the JPL rain flag had not been fully confirmed, an alternative (more
aggressive) flag was established in house. Based on a study in which QuikSCAT winds were compared to
collocated ECMWF first guess winds, a quality flag was introduced. It is given by

Lrain = {nof rain index + 200 mp rain probability > 30}.
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Both mp rain probability and nof rain index are provided in the original 25 km BUFR product (for details
see Leidner et al., 2000). When one of these quantities is missing, the above mentioned condition for the
remaining quantity is used.

10.5.4 Bias corrections

For ASCAT and ERS, bias corrections are applied, both in terms of backscatter (before wind inversion)
and wind speed (after inversion), particularly to compensate for any change in the instrumental calibration
and to ensure consistency between the retrieved and model winds. The backscatter and wind-speed bias
corrections are defined by dedicated files read in the initialization subroutine INIERSCA. Files are in
principle model-cycle and date dependent. Currently for ERS-2, the appropriate files have no effect (i.e.
containing only unity correction factors and zeros), since the CMOD5.4 GMF was tuned on ERS-2.
For ASCAT, though, the usage of bias corrections is essential, since the backscatter product for this
instrument has been calibrated differently from ERS. The bias correction file for backscatter has been
updated every time a change in the calibration of ASCAT was imposed by EUMETSAT.

For QuikSCAT data no bias corrections in σ0 space is applied, though, wind-bias corrections are made.
This also takes place in the pre-screening. Corrections are performed in three steps. First of all, wind
speeds are slightly reduced according to:

v′ = 0.2 + 0.96 v.

Where v is the wind speed as obtained from inversion (10.1) The addition of 0.2 ms−1 is used in the
operational configuration, where sctaaterometer data is assimilated as equivalent neutral wind. In case
this is not desired (expressed by LSCATT NEUTRAL=false) only the rescaling factor of 0.96 is used. It
was observed that the residual bias between QuikSCAT winds and ECMWF first guess winds depends
on the value of mp rain probability. The motivation is that, for higher amounts of precipitation, a larger
part of the total backscatter is induced by rain, leaving a smaller part for the wind signal. The correction
applied is

v′′ = v′ − 20〈 mp rain probability〉,
where 〈 〉 denotes the average value over the 25 km sub-cells that were taken into account in the inversion
(i.e. over rain-free sub-cells). The maximum allowed correction is 2.5 ms−1, which is seldom reached.
Finally, for strong winds, QuikSCAT winds were found to be quite higher than their ECMWF first guess
counterparts. In order to accommodate this, for winds stronger than 19 ms−1 the following correction is
applied:

v′′′ = v′′ − 0.2(v′′ − 19.0).

10.5.5 Blacklisting decisions

In order to screen on sea-ice contamination, scatterometer data are removed (within the blacklist
mechanism) whenever the model sea-ice fraction exceeds 1% or the model sea-surface-temperature analysis
is below 273.15 K. Land is removed by imposing that the model land-sea mask should not exceed 10%.

10.6 THE DEPENDENT OBSERVATION SCREENING DECISIONS

10.6.1 Update of the observations

Just before performing the dependent screening decisions, the flag information gathered so far is converted
into a status of the reports, namely: active, passive, rejected or blacklisted, and also into a status of
the data in the reports (FLGTST). The reports with a RDB report flag value 2 (probably incorrect) or
higher for latitude, longitude, date and time are rejected. For the observed data there are RDB datum
flags for the variable and for the pressure, i.e. the pressure level of the observation. The rejection limits
for these are as follows: all data are rejected for the maximum RDB datum flag value 3 (incorrect), non-
standard-level data are rejected for the maximum RDB datum flag value 2, and for the pressure RDB
datum flag the rejection limit is 1 (probably correct). The background quality control rejection limits are
flag value 3 for all the data, and flag value 2 for the non-standard-level data.
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10.6.2 Global time–location arrays

Some of the dependent decisions require a global view to the data which is not available as the memory
is distributed. Therefore ad hoc global time–location arrays are formed and broadcast in order to provide
this view (GLOBA, DISTR).

10.6.3 Vertical consistency of multilevel reports

The first dependent decisions are the vertical-consistency check of multilevel reports (VERCO), and
the removal of duplicated levels from the reports. The vertical-consistency check of multilevel reports is
applied in such a way that if four consecutive layers are found to be of suspicious quality, even having
a flag value one, then these layers are rejected, and also all the layers above these four are rejected in
the case of geopotential observations. These decisions clearly require the quality-control information, and
they are therefore ‘dependent’ on the preceding decisions.

10.6.4 Removal of duplicated reports

The duplicated reports will be removed next. That is performed (MISCE, DUPLI, REDSL) by searching
pairs of collocated reports of the same observation types, and then checking the content of these reports.
It may, for instance, happen that an airep report is formally duplicated by having a slightly different
station identifier but with the observed variables inside these reports being exactly the same, or partially
duplicated. The pair-wise checking of duplicates results in a rejection of some or all of the content of one
of the reports.

10.6.5 Redundancy check

The redundancy check of the reports, together with the level selection of multi-level reports, is performed
next for the active reports that are collocated and that originate from the same station (REDUN).
In 3D-screening, this check applies to the whole observation time window. In 4D-screening (LSCRE4D =
.TRUE.), this check applies separately in each timeslot.

For land synop and paob reports, the report closest to the analysis time with most active data is
retained, whereas the other reports from that station are considered as redundant and are therefore
rejected from the assimilation (REDRP, REDMO). For ship synop and dribu observations the
redundancy check is done in a slightly modified fashion (REDGL). These observations are considered
as potentially redundant if the moving platforms are within a circle with a radius of 1◦ latitude. Also
in this case only the report closest to the analysis time with most active data is retained. All the data
from the multilevel temp and pilot reports from same station are considered at the same time in the
redundancy check (REDOR, SELEC). The principle is to retain the best quality data in the vicinity
of standard levels and closest to the analysis time. One such datum will, however, only be retained in
one of the reports. A wind observation, for instance, from a sounding station may therefore be retained
either in a temp or in a pilot report, depending on which one happens to be of a better quality. A synop
mass observation, if made at the same time and at the same station as the temp report, is redundant if
there are any temp geopotential height observations that are no more than 50 hPa above the synop mass
observation (REDSM).

10.6.6 Thinning

Finally, a horizontal thinning is performed for the AIREP, radiances (ATOVS,AIRS,IASI), GEOS, SSM/I,
SATOB, ERS and SCAT SCAT reports. The horizontal thinning of reports means that a predefined
minimum horizontal distance between the nearby reports from the same platform is enforced. For AIREP
reports the free distance between reports is currently enforced to about 60 km (Cardinali et al., 2003).
The thinning of the AIREP data is performed with respect to one aircraft at a time (MOVPL, THIAIR).
Reports from different aircraft may however be very close to each other. In this removal of redundant
reports the best quality data is retained as the preceding quality controls are taken into account. In
vertical, the thinning is performed for layers around model levels, thus allowing more reports for ascending
and descending flight paths.
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Thinning of radiances, GRAD, SSM/I, SATOB, ERS and ASCAT SCAT reports are each done in two
stages controlled by THINN. For radiances (THINNER), a minimum distance of about 70 km is enforced
and, thereafter, a repeat scan is performed to achieve the final separation of roughly 250 km or 120 km
between reports from one platform. This is controlled through settings in DEFRUN, that can also be
modified through namelist (NAMSCC). The thinning algorithm is the same as used for AIREPs except
that for radiances a different preference order is applied: a sea sounding is preferred over a land one, a
clear sounding is preferred over a cloudy one and, finally, the closest observation time to the analysis
time is preferred. For geostationary water vapour radiances, a similar thinning in two stages is applied
with currently about 70 km minimum distance and about 125 km final separation (THINNER). During
the thinning, preference is given to data having the largest fraction of clear sky in the clear-sky radiance
average, high infrared brightness temperature (for GOES data) and, finally, a small standard deviation
of brightness temperatures within the CSR mean. A similar thinning technique is applied to SSM/I data
and SATOB high-density data (THINNER). Note that prior to assimilation a coarser pre-thinning may
take place already during observation pre-processing in order to reduce otherwise excessive data volumes.

The screening of SATOB data has been extended for atmospheric motion wind observations, including
individual quality estimate. The quality information from the quality control performed by the producer
at extraction time is appended to each wind observation. This Quality Indicator (QI) is introduced as an
additional criterion in the thinning step; priority is given to the observation with the highest QI value.

For ERS and ASCAT scatterometer data, the above described thinning algorithm is only applied along
track. In across-track direction, backscatter data from these platforms are provided into wind-vector cells
(WVC) with a spatial resolution of 25 km. In this direction, data is thinned by selecting predefined wind-
vector cells (subroutine SCAQC). For ERS, from 19 cells, only 3, 7, 11, 15 and 19 are regarded (cells 1
and 2 are of known lower quality). For ASCAT, from 42 cells (two swaths of 21 cells each) only cells 1,
5, 9, 13, 17, 21, 22, 26, 30, 34, 38 and 42 are used. After this across-track thinning, the generic thinning
algorithm is applied to the remaining cells in along-track direction. QuikSCAT data (also provided on a
25 km grid) are not thinned. Instead, a 50 km wind product is determined from backscatter data from
four underlying 25 km cells, each given a reduced weight of one fourth (see Subsection 10.5).

Scatterometer winds are besides thinning subject to a high-wind rejection test with an upper-wind speed
limit set to 35 ms−1 to both the scatterometer and background winds (FGWND).

10.6.7 A summary of the current use of observations

A summary of the current status of use of observations in the 3D-Var data assimilation is given in
Table 10.2. For most current information we refer to the data-selection blacklist files themselves. The
history of such files as used in ECMWF operations is also available.

10.6.8 Compression of the ODB

After the observation screening roughly a fraction of 1/10 of all the observed data are active and so the
compressed observation ODB (the CCMA) for the minimization run only contains those data. The large
compression rate is mainly driven by the number of radiance data, since after the screening there are only
10–20% of theradiance reports left, whereas for the conventional observations the figure is around 40%.
As a part of the compression, the observations are re-sorted amongst the processors for the minimization
job in order to achieve a more optimal load balancing of the parallel computer.

10.7 A MASSIVELY-PARALLEL COMPUTING ENVIRONMENT

The migration of operational codes at the ECMWF to support a massively-parallel computing
environment has set a requirement for reproducibility. The observation screening needs to result in exactly
the same selection of observations when different numbers of processors are used for the computations.
As mentioned earlier, in the observation screening there are the two basic types of decision to be made.
Independent decisions, on one hand, are those where no information concerning any other observation or
decision is needed. In a parallel-computing environment these decisions can be happily made by different
processors fully in parallel. For dependent decisions, on the other hand, a global view of the observations
is needed which implies that some communication between the processors is required. The observation

130 IFS Documentation – Cy37r2



Part II: Data Assimilation

Table 10.2 A summary of the current use of observations in the 3D/4D-Var data assimilation at
ECMWF. These usage rules are subject to change. For the most current information we refer to the
data-selection blacklist files. These files are archived, so the history is preserved.

Observation type Variables used Remarks

SYNOP, SHIP u, v, ps (or z), rh u and v used only over sea, in the tropics also over low
terrain (<150 m). Orographic rejection limit 6 hPa for
rh, 100 hPa for z and 800 m for ps.

AIREP u, v, T Thinned to approximately 60 km along flight tracks.
Ascending and descending aircraft are thinned in the
vertical to the model resolution.

SATOB u, v Selected areas and levels. Thinning of high-density
winds. Strict background check to avoid slow wind-
speed bias in the data.

DRIBU u, v, ps Orographic rejection limit 800 m for ps.
TEMP u, v, T , q Used on all reported levels. q only below 300 hPa. 10 m

u and v used over land only in tropics over low terrain
(<150 m). Orographic rejection limit 10 hPa for u, v
and T , and −4 hPa for q.

PILOT u, v Used on all reported levels. 10 m u and v used over land
only in tropics over low terrain (<150 m). Orographic
rejection limit 10 hPa for u and v.

Profilers u, v Thinned to 5 hPa separation in the vertical. Data from
American, European and Japanese networks are used.

Radiance data Tb Information to be supplied by the Satellite Section.
PAOB ps Used south of 190S. Orographic rejection limit 800 m

for ps.
Scatterometer u, v Used if SST is warmer than 273 K and sea ice fraction

below 1% and only when both observed and background
wind are less than 35 ms−1.

The variables are as in Table 10.1, with the addition that Tb stands for brightness temperature.
The observation types are shortened by SYNOP for synoptic surface observations, AIREP for
aircraft reports, SATOB for satellite cloud track winds, DRIBU for drifting buoy reports, TEMP
for radiosonde soundings, PILOT for wind soundings and PAOB for pseudo observations of surface
pressure obtained from satellite images.

array is, however, far too large to be copied for each individual processor. Therefore, the implementation
of observation screening at the ECMWF is such that only the minimum necessary information concerning
the reports is communicated globally.

The global view of the observations is provided in the form of a global ‘time–location’ array for selected
observation types. That array contains compact information concerning the reports that are still active
at this stage. For instance, the observation time, location and station identifier as well as the owner
processor of that report are included. The time–location array is composed at each processor locally
and then collected for merging and redistribution to each processor. After the redistribution, the array
is sorted locally within the processors according to the unique sequence number. Thus, every processor
has exactly the same information to start with, and the dependent decisions can be performed in a
reproducible manner independently of the computer configuration.

The time–location array is just large enough for all the dependent decisions, except for the redundancy
checking of the multilevel temp and pilot reports. This is a special case, in the sense that the information
concerning each and every observed variable from each level is needed. Hence, the whole multilevel
report has to be communicated. The alternative to this would be to force the observation clusters of the
multilevel reports always into one processor without splitting them. In that case the codes responsible
for the creation of the observation arrays for assimilation would need to ensure the geographical integrity
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of the observation arrays distributed amongst the processors. This is, however, not possible in all the
cases, and the observation screening has to be able to cope with this. Currently, it is coded in such a way
that only a limited number of multilevel temp and pilot reports, based on the time–location array, are
communicated between the appropriate processors as copies of these common stations.

APPENDIX A

A.1 Bad reporting practice of synop and temp reports

The way the synoptic surface stations report mass observations (pressure or geopotential height) is
considered as bad if:

• station altitude is above 800 m and station reports mean sea level pressure
• station altitude is above 800 m and station reports 1000 hPa level
• station altitude is above 1700 m and station reports 900 hPa level
• station altitude is below 300 m and station reports 900 hPa level
• station altitude is above 2300 m and station reports 850 hPa level
• station altitude is below 800 m and station reports 850 hPa level
• station altitude is above 3700 m and station reports 700 hPa level
• station altitude is below 2300 m and station reports 700 hPa level
• station altitude is below 3700 m and station reports 500 hpa level

The reporting practice is also considered as bad if the station reports 500 gpm, 1000 gpm, 2000 gpm,
3000 gpm or 4000 gpm level pressure, respectively, and station altitude is more than 800 m different from
the reported level.

For temp geopotentials the reporting practice is considered as bad if:

• station altitude is above 800 m and station reports 1000 hPa level
• station altitude is above 2300 m and station reports 850 hPa level
• station altitude is above 3700 m and station reports 700 hPa level

A.2 Revised background quality control for selected observations

The background quality-control rejection limits are applied more strictly for some observation types than
stated in Table 10.1. The special cases are the following ones.

• AIREP wind observations with zero wind speed are rejected if the background wind exceeds 5 m s−1.
• For AIREP and DRIBU wind observations the rejection limit is multiplied by 0.5, and for pilot

wind by 0.8.
• For SATOB wind observations the rejection limit is multiplied by 0.1, except below 700 hPa level

where it is multiplied by 0.2.
• No background quality control is applied for SCAT winds.
• For DRIBU surface pressure observations the rejection limit is multiplied by 0.9, and for paob

surface pressure by 0.7.
• For AIREP temperature observations the rejection limit is multiplied by 1.6.

A.3 Use of atmospheric motion winds

This appendix describes those parts of the ECMWF assimilation system which involves some special code
for the AMW case, i.e. the data selection and the FG quality check. It refers to the operational status as
from December 1996. A thinning procedure was introduced for high-density winds in Spring 1998.

A.3.1 Data selection

There are several model independent checks which AMW data have to pass in order to be considered for
the assimilation process:.
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Check on longitude/latitude

• AMW must be within a circle of 55◦ from the sub-satellite point

Check on levels depending on the computational method

• WW CMW and WVMW must be above 400 hPa
• VIS CMW must be below 700 hPa
• IR CMW can be used at all levels.

Check on land/sea

• All AMW over sea are used.
• AMW over land is not used north of 20◦N.
• For Meteosat (0◦ mission) instead of 20◦N this threshold is 35◦N to allow usage of AMW over north

Africa.
• For Meteost (63◦ mission) the use of AMW has been extended over Asia if above 500 hPa. This is

restricted for longitudes east of 30◦E.
• AMW are blacklisted over the Himalayas as a precautionary measure.
• AMW over land south of 20◦N (35◦N for Meteosat) is used if above 500 hPa.

Check on satellite (35◦N for Meteosat) is used if above 500 hPa.

This is a temporary selection on certain channels or satellites. At present channels and satellite used are:

• METEOSAT cloud tracked winds with 90 min temporal sampling
• METEOSAT IR (not at medium level), VIS, WV
• METEOSAT HVIS, also at asynoptic times, only if QI 2 ≡ 0 (Automatic Quality Control≡

PASSED)
• GOES IR & WV (NOT at asynoptic times)
• GMS IR & VIS

A.3.2 Background quality check

The background quality check is based on a comparison of the AMW deviation from the background.
Observed wind components are checked together. The AMW is flagged with j = 1 or 2 or 3 if this deviation
squared is greater than a predetermined multiple ERRLIM * ZREJMOD of its estimated variance, as
given by the following expression:

if [D2> (sfg 2 + sobs 2) ∗ ERRLIMj ∗ ZREJMOD] then flag = j where D 2 = 1/2 (Du2 + D v2) with Du,
Dv wind component deviations from background; sfg std of the background wind component error (mean
for u and v); sobs std of the observation wind component error, 2 m s−1 for levels below 700 hPa included,
3.5 m s−1 at 500 hPa, 4.3 m s−1 at 400 hPa and 5 m s−1 for all levels above; ERRLIMj is 8 for j = 1,
18 for j = 2 and 20 for j = 3. The value of ZREJMOD depends on the level of AMW and normally its
value is:

• ZREJMOD = 0.2 for low level
• ZREJMOD = 0.1 for all others levels

A special check or asymmetric check is applied when the observed speed is more than 4 m s−1 slower
than the background speed SPDfg. This check has a more restrictive rejection limit:

• ZREJMOD = 0.15 at low level
• ZREJMOD = 0.07 in the tropics
• ZREJMOD = 0.075 − 0.00125 * SPDfg all others
• ZREJMOD = 0.0 if SPDfg > 60 m s−1 (observation gets always flag j = 3)
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When the data is passed to the following variational quality control its probability of being used depend
on the flag j. With flag j = 1 the data will be assimilated, with flag j = 2 it will be given an intermediate
probability and might be used or not and finally the analysis will reject all data with j = 3.
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Chapter 11

Land-surface analysis
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11.1 INTRODUCTION

The land-surface analysis includes the screen-level parameters analysis, the snow depth analysis, the
soil moisture analysis, the soil temperature and snow temperature analysis. The screen level parameters
analysis and the snow analysis rely on a 2-dimensional Optimum Interpolation (2D OI). The soil moisture
analysis is based on a simplified Extended Kalman Filter (EKF). The soil and snow temperature analysis
uses a 1-dimensional OI (1D OI).

The surface-analysis module includes also the sea-surface temperature, sea-ice fraction and screen-level
temperature analysis described separately in Chapter 12.

Snow water equivalent, soil temperature, snow temperature and soil water content are prognostic variables
of the forecasting system and, as a consequence, they need to be initialised at each analysis cycle. The
ECMWF soil moisture, soil temperature and snow temperature analyses rely on SYNOP relative humidity
and temperature at screen-level (2 metres) available on the GTS (around 12,000 reports over the globe
are provided every 6 hours). The snow analysis relies on SYNOP and national ground observations of
snow depth available on the GTS, as well as on the NOAA/NESDIS (National Oceanic and Atmospheric
Administration - National Environmental Satellite, Data, and Information Service) Interactive Multi-
sensor Snow and Ice Mapping System (IMS) snow cover information.

The structure of the land surface analysis components and their dependencies are shown in Fig. 11.1.
Firstly, a screen-level analysis is performed for temperature and humidity. Secondly, the snow analysis
and the soil moisture analysis are conducted. Then the soil temperature and snow temperature analysis
is performed. Analysed screen-level temperature and relative humidity are used as input of the simplified
EKF soil moisture analysis. while screen-level analysis temperature increments are used as inputs of the
1D OI soil and snow temperature analysis.

Land analysis is run separately from the upper-air analysis. It feedbacks to the upper-air analysis of the
next cycle through its influence on the short forecast that propagates information from one cycle to the
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Figure 11.1 Land surface analysis components and tasks organisation, for an example of a 12-hour
(21:00 UTC to 09:00 UTC) data assimilation window.

next. Reciprocally, the 4D-Var influences through the short forecasts the land surface analysis from one
cycle to the next. The OI analyses of screen level parameters, snow depth, snow and soil temperature are
performed at fixed times at 0000, 0600, 1200, and 1800 UTC. The simplified EKF analysis runs at the
same time as the 4D-Var windows for both the delayed cut-off and the early delivery analyses.

11.2 2D OPTIMUM INTERPOLATION SCREEN-LEVEL ANALYSIS

11.2.1 Methodology

Two independent analyses are performed for 2-metre temperature and 2-metre relative humidity. The
method used is a two-dimensional univariate Optimum Interpolation (2D OI). In a first step, the
background field (6-hour or 12-hour forecast) is interpolated horizontally to the observation locations
using a bilinear interpolation scheme and background increments ∆Xi are estimated at each observation
location i.

The analysis increments ∆Xa
p at each model grid-point p are then expressed as a linear combination of

the first-guess increments (up to N values) given by

∆Xa
p =

N∑

i=1

Wi × ∆Xi (11.1)

where Wi are optimum weights given (in matrix form) by

(B + O)W = b (11.2)

The column vector b (dimension N) represents the background error covariance between the observation
i and the model grid-point p. The (N ×N) matrix B describes the error covariances of background fields
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between pairs of observations. The horizontal correlation coefficients (structure functions) of b and B are
assumed to have the form

µ(i , j ) = exp

(
−1

2

[
rij
d

]2)
(11.3)

where rij is the horizontal separation between points i and j, and d is a parameter defined to be 300 km,
corresponding to the e-folding distance taken of 420 km.

Therefore
B(i , j ) = σ2

b × µ(i, j) (11.4)

with σb the standard deviation of background errors.

The covariance matrix of observation errors O is set to σ2
o × I where σo is the standard deviation of

observation errors and I the identity matrix.

The standard deviations of background and observation errors are set respectively to 1.5 K and 2 K for
temperature and 5% and 10% for relative humidity. The number of observations closest to a given grid
point that are considered for solving (11.1) is N = 50 (scanned within a radius of 1000 km). The analysis
is performed over land and ocean but only land (ocean) observations are used for model land (ocean)
grid points.

11.2.2 Quality controls

Gross quality checks are first applied to the observations such as RH ∈ [2, 100] and T > T d where T d is
the dew point temperature. Redundant observations are also removed by keeping only the closest (and
more recent) to the analysis time.

Observation points that differ by more than 300 m from the model orography are rejected.

For each datum a check is applied based on statistical interpolation methodology. An observation is
rejected if it satisfies

|∆Xi|> γ
√
σ2

o + σ2
b (11.5)

where γ has been set to 3, both for temperature and humidity analyses.

The number of used observations every 6 hours varies between 4,000 and 6,000 corresponding to around
40% of the available observations.

The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived product
is dew-point temperature that uses the 2-metre temperature analysis Ta to perform the conversion so
that

T d =
17.502× 273.16− 32.19 × Ψ

17.05 − Ψ
(11.6)

with

Ψ = log(RH a) + 17.502× Ta − 273.16

Ta − 32.19
(11.7)

11.2.3 Technical aspects

The screen-level analysis software is implemented as a branch of the more comprehensive surface and
screen-level analysis (SSA) package. The other branches currently include snow analysis and sea surface
temperature and sea-ice fraction analyses. The program organisation when performing screen-level
parameters analysis is roughly as shown in Fig. 11.2.

The main program SSA calls CONTROL SSA where most of the setup and namelist handling are done.
Routine INIT2M performs initialisation of the analysis of the actual screen-level parameters by sensing
the size of the observation array file (CMA-file) in SCAN DDR and generating latitudinal coordinates
that stem from the model resolution and zeros of the Bessel function.

After this, all input fields are read into memory in GETFIELDS. They consist of the 2-metre temperature,
2-metre dew point temperature, 2-metre relative humidity from the first-guess (6-hour forecast), land/sea
mask and the orography in a form of the geopotential.
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Figure 11.2 Program organisation when performing the 2D OI screen-level parameters analysis. Red
colour highlights differences with the snow analysis program organisation shown in Fig. 11.4

.

In SCAN CMA ODB observations are read into memory and a quick validity check of the non-applicable
observations for this analysis is performed.

Additional screening is done in INITIAL REJECTION and in REDUNDANT OBS. The first of these
sets up an internal table where all the observations which survived from the quick screening are placed
with a minimum amount of context information. This routine rejects some of the observations entered
into the table due to inconsistencies.

The routine REDUNDANT OBS removes time duplicates and retains the observations of the considered
station with the closest (and the most recent) to the analysis time. Slowly moving platform handling is
present in the REDUNDANT OBS for the 2-metre temperature and 2-metre relative humidity analyses.

The actual 2-metre temperature and 2-metre relative humidity analyses are performed under
T2M ANALYSIS. The analysis increments are computed in the subroutine OIUPD. Subroutines
CALC DISTANCE and OISET select and sort the N closest observations from a given grid-point.
Subroutine OIINC provides the analysis increments from (11.1) and (11.2), by first computing q =
(B + O)−1∆X (in subroutine EQUSOLVE – inversion of a linear system), which does not depend upon
the position of the analysis grid point, and then estimating bTq (in subroutine DOT PRODUCT).

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA.

(i) C SSA TYPE: ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis.
(ii) L OI : .TRUE. for statistical interpolation and .FALSE. for Cressman interpolation.
(iii) N OISET: number of observations (parameter N).
(iv) SIGMAB: standard deviation of background error (parameter σb).
(v) SIGMAO: standard deviation of observation error (parameter σo).
(vi) TOL RH: Tolerance criteria for RH observations (parameter γ in (11.5)).
(vii) TOL T: Tolerance criteria for T observations (parameter γ in (11.5)).
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(viii) SCAN RAD 2M(1): Scanning radius for available observations (set to 1000 km).

11.3 2D OPTIMUM INTERPOLATION SNOW ANALYSIS

11.3.1 Organisation

The snow analysis is a 2 Dimensional Optimum Interpolation performed every 6 hours, at 00 UTC,
06 UTC, 12 UTC and 18 UTC. The snow-depth background Sb (units: m) is estimated from the short-
range forecast of snow water equivalent SWEb

s (units: m of water equivalent) and snow density ρb
s (units:

kg m−3). It is given by

Sb =
1000 × SWEb

s

ρb
s

(11.8)

The snow analysis is performed using snow-depth observations, the snow-depth background field, and the
high resolution (4km) NOAA/NESDIS snow extent. Snow depth observations include conventional snow
depth reports from SYNOP stations as well as additional national snow depth observations reported by
several member states and available on the GTS (de Rosnay et al., 2011a). If snow-depth observations
are not available, the snow accumulation/melting is simulated from the model 6-hour forecast. The use
of the satellite derived snow extent is optional. In the current default configuration, it is used once per
day, for the 12 UTC analysis. As an alternative, snow climate can be used to ensure the stability of the
scheme and to give a seasonal snow trend in areas without any observations.

11.3.2 Methodology

The snow analysis is a two-step algorithm. In the first step, the background field Sb (as defined above)
is compared with the NOAA/NESDIS snow extent product (Drusch et al., 2004). Grid boxes, which are
“snow free” in the first guess but snow covered in the satellite derived product, are updated with a
constant snow depth of 100mm of density 100kgm−2. A relaxation threshold has been introduced so that
grid point are considered “snow free” when they have less than 1 cm of snow depth. In the second step,
the actual OI snow analysis is performed based on N observations from ground stations reports and snow
free satellite observations, which enter the analysis with a snow depth of 0 cm. Following the same 2D
OI method than for the screen level parameters analysis, the snow depth analysis increment is computed
at each model grid point p:

∆Sa
p =

N∑

i=1

Wi × ∆Si (11.9)

where ∆Si is the background increment at each observation i location, Wi are optimum weights given
(in matrix form) by:

(B + O)W = b (11.10)

The column vector b (dimension N) represents the background error covariance between the observation
i and the model grid-point p. The (N ×N) matrix B describes the error covariances of background fields
between pairs of observations (i, j).

For the snow analysis the horizontal correlation coefficients (structure functions) of b and B follow the
formulation proposed by Brasnett (1999):

µij = α(rij)β(∆zij) (11.11)

where rij and zij are the horizontal and the vertical separation between points i and j, respectively. α(rij)
and β(∆zij) are the horizontal and vertical structure functions respectively:

α(rij) = (1 +
rij
L

) exp(−rij
L

) (11.12)

L is the horizontal length parameter taken to 55000m, corresponding to an e-folding distance taken to
120 km.

β(∆zij) = exp

(
−

[
∆zij
h

]2)
(11.13)
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Figure 11.3 Horizontal structure functions used in the Optimum Interpolation scheme for the screen
level parameters and snow depth analyses.

h is the vertical length scale taken to 800 m. The two parameters L and h are controled in the namelist
NAMSSA and in the current version their value is defined in the script SSAANA. The horizontal structure
functions used in the snow analysis and in the screen level parameters analysis is represented in Fig. 11.3.

The correlation matrix B is expressed as:

B(i , j ) = σ2
b × µ(i, j) (11.14)

with σb the standard deviation of background errors.

The covariance matrix of observation errors O is set to σ2
o × I where σo is the standard deviation of

observation errors and I the identity matrix.

The standard deviations of background and observation errors are set respectively to 3 cm and 4 cm.
The number of observations closest to a given grid point that are considered is N = 50 (scanned within
a radius of 250 km).

The final snow water equivalent product SWEa
s is then calculated using the analysed snow depth Sa:

SWEa
s =

ρb
s × Sa

1000
(11.15)

The snow density is updated to ensure the consistency between the analysis and the physical
parameterisation:

• In the case of positive analysis increments on snow free areas in the first guess, the snow density
of fresh snow is applied. It accounts for compaction effects of fresh snow due to meteorological
conditions, following a function of near surface air temperature and wind speed as described in the
IFS documentation Part IV: Physical processes Chapter 8.4.2.

• In the other cases, the snow density remains unchanged.

Areas with permanent snow and ice (defined using the Global Land Cover Characterisation product) are
set to an arbitrary high value at each analysis cycle (SWEa

s = 10 m).

The snow temperature analysis is performed within the soil and snow temperature analysis as described
in Section 11.5.

140 IFS Documentation – Cy37r2



Part II: Data Assimilation

11.3.3 Quality controls

For each datum a check is applied based on statistical interpolation methodology. An observation is
rejected if it satisfies

|∆Si|> γ
√
σ2

o + σ2
b (11.16)

where γ is the tolerance, controled in the namelist NAMSSA and set to 5 for the snow analysis in the
SSAANA script.

Use of satellite data in mountainous area is switched off in the subroutine CALC DISTANCE. This
prevents from using relatively large scale information (4 km resolution of the NOAA/NESDIS product),
in areas were very local scale conditions apply.

In addition to the preliminary quality control, the following checks are applied for each grid point when
using SYNOP snow depth report.

(i) If T b
2m < 8◦C only snow-depth observations below 140 cm are accepted.

(ii) This limit is reduced to 70 cm if T b
2m > 8◦C.

(v) Snow-depth analysis is limited to 140 cm.
(vi) Snow-depth increments are set to zero when larger than (160 − 16T b

2m) mm (where T b
2m is expressed

in Celsius).

Satellite-derived snow extent is used in the analysis to replace the role of snow depth climatology in
correcting for the model bias. However, there is the option to weight the analysis of snow depth with the
climatological value Sclim so that the final analysis is provided by

Sa = (1 − α)Sa + αSclim (11.17)

The relaxation coefficient α can be changed through the namelist. Its default value is set to 0.02, which
corresponds to a time scale of 12.5 days at six-hourly cycling.

11.3.4 Technical aspects

The technical aspects are very similar to those of the screen-level parameters analysis (see Section 11.2.3).
So, the program organisation when performing snow analysis is roughly as shown in Fig. 11.4.

The routine INISNW performs initialisation of the actual snow analysis (instead of INIT2M for the
screen-level parameters analysis). Input fields read into memory in GETFIELDS consist of the snow
water equivalent and snow density from the first-guess (6-hour forecast), 2-metre temperature first guess,
snow-depth climate (varies monthly with a linear temporal interpolation), land/sea mask and finally the
orography in a form of the geopotential.

In SUB PREP NES the satellite data are retrieved from BUFR. The actual snow analysis is performed
under SNOW ANALYSIS. In a first step, the first guess field is updated with the satellite observations
(routine NESDIS FILL). The satellite observations that contain snow are retrieved from BUFR (routine
SUB PREP NES).

The analysis increments are computed in the subroutine OIUPD. Subroutines CALC DISTANCE and
OISET select and sort the N closest observations from a given grid-point. Subroutine OIINC provides the
analysis increments computed from equations (11.9) and (11.14). This increment is finally added to the
snow-depth fields at grid points producing the final snow-depth output field, which is output in routine
FDB OUTPUT. Statistics are summarised in PRINT SUMMARY.

The main logicals of the namelist NAMSSA are as follows.

(i) L SNOW ANALYSIS: When set to .TRUE., the snow analysis is performed.
(ii) L SNOW DEPTH ANA: When set to .TRUE., the snow analysis is performed in snow depth (in

opposition to snow water equivalent assuming a constant value of 250 kg m−2 for observed snow
density).
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Figure 11.4 Program organisation when performing snow analysis. Red colour highlights differences with
the snow analysis program organisation shown in Fig. 11.2

(iii) L USE SNOW CLIMATE: When set to .TRUE., a relaxation of the snow analysis towards a
monthly climatology is performed with a time scale of 12.5 days (the relaxation coefficient is passed
through NAMSSA).

(iv) L USE FG FIELD: When set to .TRUE. the snow analysis is set to the first-guess value (no use of
observations) and there is no relaxation to climatology.

(v) L USE SCOVER NESDIS: When set to .TRUE., the NOAA/NESDIS satellite product is used.

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA. In
addition to those defined in Section 11.2.3

(vi) TOL SN: Tolerance criteria for snow depth observations (parameter γ in 11.16).
(viii) RSCALE X: horizontal distance L used in the horizontal structure function in (11.12), set to

55000 m.
(ix) RSCALE Z: vertical distance h used in the vertical structure function in (11.13), set to 800 m.

11.4 SIMPLIFIED EXTENDED KALMAN FILTER SOIL MOISTURE
ANALYSIS

11.4.1 Methodology

The simplified EKF soil moisture analysis used at ECMWF is a point wise data assimilation scheme, as
described in Drusch et al. (2009); de Rosnay et al. (2011b). The analysed soil moisture state vector xa a
is computed at time ti for each grid point as:

xa(ti) = xb(ti) + Ki

[
yo(ti) −Hi(x

b)
]

(11.18)
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with superscripts a, b, o standing for background, analysis and observations, respectively, x the model
state vector, y the observation vector and H the non-linear observation operator. The Kalman gain matrix
Ki is computed at time ti as:

Ki =
[
P−1 + Hi

TR−1Hi

]−1

Hi
TR−1 (11.19)

where Hi is the linearised observation operator, P is the error covariance matrix associated with x and
R is the observation errors covariance matrix.

The background error covariance matrix P and the observation error matrix R are static, with diagonal
terms composed of error variances. These terms are based on soil moisture standard deviation σb =
0.01m3m−3 and screen levels parameters standard deviations of σT = 2K for the 2-metre temperature
and σRH = 10% for the relative humidity.

The linearisation of the observation operator is computed in finite differences, by using individual
perturbations of the model state vector by a small amount δxn of the nth component of the model
state vector. One perturbed simulation is required for each element of the control state vector. For each
perturbed simulation, initial background state vector is perturbed by a vector δxb

n
that contains δxn

for the perturbed nth element and zero for all the others elements. Using index m to represent the mth

element of the observations vector, the Jacobian elements Hmn,i of the observation operator at time ti
is written as:

Hmn,i =
Hm,i(x

b + δxb

n
) −Hm,i(x

b)

δxn
(11.20)

The model state vector evolution from time ti to time ti+1 is then controled by the equation:

xb(ti+1) = Mi [xa(ti)] (11.21)

with M the non-linear state forecast model.

In the current implementation, the state vector is soil moisture. It has dimension nmax = 3 since the first
three layers of the HTESSEL LSM are analysed. The observations vector y includes 2-metre temperature
and relative humidity analyses. When 12-hour assimilation windows are used, y has dimension mmax = 4
since 2-meter temperature and relative humidity analyses are available twice per assimilation window, at
synoptic times.

11.4.2 Quality controls

To avoid spurious corrections the soil moisture analysis is locally switched off if the Jacobians become
larger then 50K/m3m−3 or 5/m3m−3 for the T2m or RH2m component respectively. In addition, the
analysis is switched off if the soil moisture increment for any layer is larger than 0.1m3m−3.

11.4.3 Technical aspects

The simplified EKF soil moisture analysis is a configuration of the IFS (NCONF=302). It is controled by
the namelist NAMSEKF. In the current IFS cycle, a number of control parameters of this namelist are
defined in the SEKF SM script:

• Number of control variables, N SEKF CV=3, (ie number of analysed soil layers)
• Soil moisture perturbation δxn for each layer, VSM PERT INC, set to 0.01 m3m−3 in the current

configuration,
• Background soil moisture error, BACK ERR=0.0001 m6m−6, corresponds to σb = 0.01m3m−3

• Screen level analysis errors, T2M ERR=4, RH2M ERR=100, correspond to σT = 2K for the 2-
metre temperature and σRH = 10%.

• A switch is present to activate the use of the ASCAT (Advanced SCATterometer) soil moisture
data (LUSE ASCAT). It is set to false by default.
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Figure 11.5 Program organisation for the simplified EKF soil moisture analysis (NCONF=302).
.

Fig. 11.5 shows the main steps of the simplified EKF soil moisture analysis. CNT0, SEKF1 and SEKF2
are the control programs. From CSEKF2, SUSEKF does the setup of the EKF analysis. CNT3 is the main
control program of the simplified EKF analysis. It defines the perturbed soil moisture initial conditions,
by calling PERTSEKF V2. Then it does a loop on the control and the perturbed runs with one CTN4 call
for each of the control and perturbed cases. Resulting soil moisture and screen level parameters fields are
stored from the routine STORE SEKF CV which is called at lower level from CALLPAR and EC PHYS.
After this loop on CNT4 call, all the model soil moisture and screen level conditions that will enter the
equation 11.18 are stored.

OBSGEN and SEKF PREP ASCAT are the routine that prepare the observations to be used in the
simplified EKF analysis. Then CNT4 calls the simplified EKF programme SM EKF MAIN which runs
the EKF on each grid point of the model. Here the simplified EKF vectors and matrices defined in
Equations 11.18 to 11.21 are filled with model and observation values stored in the previous routines.
SEKF MAGN RH computes the relative humidity from the dew point and air temperatures. SEKF GAIN
computes the Kalman Gain.

11.5 1D OI SOIL AND SNOW TEMPERATURE ANALYSIS

The temperature of the first layer of soil (0-7cm) and the snow layer are analysed using a “local” 1-
dimentional optimum interpolation (1D OI) technique as described in Mahfouf (1991) and Douville et al.
(2001). The analysis increments from the screen-level temperature analysis are used to produce increments
for the first layer soil temperature and snow temperature:

∆T = c× (Ta − Tb) (11.22)

with Ta and Tb the analysed and model first-guess temperatures, respectively. The coefficient c providing
the analysis increments is:

c= (1 − F1)F3 (11.23)

F1 and F3 are empirical functions. F1 is function of the cosine of the mean solar zenith angle µM, averaged
over the 6-hours before the analysis time given by:

F1 =
1

2
{1 + tanh[λ(µM − 0.5)]} λ= 7 (11.24)
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The empirical function F3 reduces increments over mountainous areas so that

F3 =






0 Z > Zmax(
Z − Zmax

Zmin − Zmax

)2

Zmin < Z < Zmax

1 Z < Zmin

(11.25)

where Z is the model orography, Zmin = 500 m and Zmax = 3000 m.

The coefficient c is such that soil and snow temperatures are more effective during night and in winter,
when the temperature errors are less likely to be related to soil moisture. In the 12-hour 4D-Var
configuration, the snow and soil temperature analysis is performed twice during the assimilation window
and the sum of the increments is added to the background values at analysis time.
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Chapter 12

Analysis of sea-ice concentration and
sea surface temperature

12.1 INTRODUCTION

The analyses of sea-ice concentration (CI) and sea surface temperature (SST) are interpolations to the
model grid of daily global datasets provided by The Metoffice, with backup from NCEP in case OSTIA
is not available. The Metoffice OSTIA product is described by Stark et al. (2007) and is available in the
ECMWF archives form 20071020 onwards. Its sea ice component is taken from the Satellite Application
Facility on Ocean and Sea Ice (OSI-SAF) product. The NCEP RTG real-time global SST product is
described by http://polar.wwb.noaa.gov.sst and is available in the ECMWF archives from 20010130. The
only lake information in these two products is for the Caspian Sea, with the addition of the Great Lakes
in NCEP RTG. For other lakes, climatological values are used.

12.2 CHOICE OF PRODUCT

Both the OSTIA and the NCEP products are read in if available. If both are available, OSTIA is used
for the oceans and the Caspian Sea and the Great Lakes are taken from NCEP. If NCEP is missing, no
new information is used for the Great Lakes. If OSTIA is missing, NCEP data are used everywhere. If
both are missing, yesterdays fields will be used.

Since the OSI-SAF sea-ice product does not include ice coverage over the Caspian Sea and Sea of Azov,
the NCEP sea-ice product is used over these areas between 15 September and 1 May (from 2011).

12.3 ECMWF RE-SAMPLING TO MODEL GRID

The OSTIA product comes oversampled (i. e. at higher resolution than there is real information) at
0.05 degree resolution, which is then area averaged over the boxes of the models reduced Gaussian grid.
The NCEP RTG product comes at 0.5 degree resolution and is bi-linearly interpolated to to the models
reduced Gaussian grid. For both products checks are made that the values lie within realistic values. The
temperature can not be lower than 271.46K when sea ice is below 20%, and the temperature is set to
273.16K when sea ice is above 20%. For temperatures above 274.26K, the sea ice concentration is set to
zero.
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Chapter 13

Data flow
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13.13.3 Input observation data

13.13.4 Output GRIB fields on model grid

13.14 Soil moisture analysis

13.14.1 Input GRIB fields on model grid

13.14.2 Output GRIB fields on model grid

13.14.3 Invariant climatological fields

13.1 NOTATION

The following environment variables, which are used in the same way in the data assimilation scripts, are
referred to in this chapter.

Table 13.1 Definition of environment variables.

Variable Meaning Default value

${DATA} Data directory for invariant files
${GTYPE} Gaussian grid type l 2 (ie linear reduced Gaussian grid)
${IFS CYCLE} IFS cycle name CY36R1
${LEVELS} Number of vertical model levels 91
${MM} Month
${RESOL} Spectral truncation 1279
${starttime} Start of 4D-Var window as yyyymmddhh
${WDIR} Work directory (1 for each cycle)

In this chapter, the notation illustrated in Fig. 13.1 is used in diagrams to distinguish between computation
steps and data sets.

Computation steps

Data sets

Figure 13.1 Notation.

13.2 DATA ASSIMILATION CYCLING

Fig. 13.2 gives an overview of the data flow through the data assimilation system with the operational
early-delivery configuration. The 12-hour 4D-Var analyses are run with a delayed cut-off time, in order
to use the maximum possible number of observations. The 0000 UTC analysis uses observations from
the time window 2101–0900 UTC, while the 1200 UTC analysis uses observations in the window 0901–
2100 UTC. The extraction tasks for observations in the periods 2101–0300 UTC and 0301–0900 UTC are
run at 1345 and 1400 UTC respectively, while the extraction tasks for the observations in the periods
0901–1500 UTC and 1501–2100 UTC are run at 0145 and 0200 UTC. The 0000 UTC 12-hour 4D-Var
analysis generates two sets of analysed fields, at 0000 and 0600 UTC. A separate surface analysis is run
every 6 hours. The final analysis is a combination of the fields from 4D-Var and from the surface analysis.
The first guess for the 0000 UTC 12-hour 4D-Var analysis is the three-hour forecast from the previous
day’s 1800 UTC delayed cut-off analysis. The first guess for the 1200 UTC 12-hour 4D-Var delayed cut-off
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Figure 13.2 Data assimilation cycling with the Early Delivery configuration.

analysis is the three-hour forecast from the 0600 UTC analysis. It is these 12-hour 4D-Var delayed cut-off
analyses that propagate information forwards from day to day.

The early-delivery analyses do not propagate information from cycle to cycle. Each analysis is reinitialized
with the best available model fields from the delayed cut-off assimilation. The 0000 UTC early-delivery
analysis is a 6-hour 4D-Var analysis that uses observations in the time window 2101–0300 UTC. The cut-
off time is 0400 UTC, and any observations which arrive after this time are not used by the early-delivery
analysis. However, if they arrive by 1400 UTC, they can still be used by the delayed cut-off 12-hour
4D-Var 0000 UTC analysis. The first guess for the 0000 UTC early-delivery analysis is the three-hour
forecast from the previous day’s 1800 UTC delayed cut-off analysis.

The early-delivery 1200 UTC analysis is a 6-hour 4D-Var analysis that uses observations in the time
window 0901–1500 UTC, with a cut-off time of 1600 UTC. Its first guess is the three-hour forecast from
the 0600 UTC delayed cut-off analysis.

13.3 OVERVIEW OF 4D-VAR DATA FLOW

Fig. 13.3 gives an overview of the data input to and output from 4D-Var. There are three types of input
data.

(i) GRIB fields from the Fields Data Base (FDB). GRIB is a World Meteorological Organisation
(WMO) standard format for the representation of General Regularly-distributed Information in
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Figure 13.3 4D-Var data flow.

Binary. The GRIB code is described at http://www.ecmwf.int/products/data/software/grib.html.
The background fields, forecast errors and model errors are read from the Fields Data Base.

(ii) Observations from the Observation Data Base (ODB).
(iii) Cycling variational bias correction and emissivity files, plus other data files.

Output data from 4D-Var is in three forms.

(i) GRIB fields in the Fields Data Base, eg analysis fields, error fields.
(ii) updates to the ODB, including departures of observations from the background and the analysis

and quality control information.
(iii) updated variational bias correction and emissivity files.

13.4 INPUT GRIB FIELDS

The following files in the work directory, $WDIR, contain GRIB format fields which have been extracted
from the Fields Data Base. Fields of type ‘fc’ are taken from the forecast from the previous cycle’s analysis,
and are valid at the start of the 4D-Var window. Fields of type ‘an’ are taken from the previous analysis.
The spectral orography is taken from the climatology file of the appropriate resolution, to ensure that the
orography is not changed by encoding into and decoding from GRIB. Fields of type ‘ef’, forecast error
in radiance space, and ‘me’, model error, were output from the previous cycle’s 4D-Var analysis. Fields
of type ‘ses’, ensmeble based filtered uppera air forecast errors, are output from the attached ensemble
data assimilation run.

Files which are needed as input to the coupled wave model also have the stream defined. If stream = DA,
then the fields were output from the atmospheric model, and the GRIB codes are defined in (ECMWF
local table 2, Version 128). If stream = WAVE, then the fields were output from the wave model and the
GRIB codes are defined in (ECMWF local table 2, Version 140).
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13.4.1 reftrajshml

Table 13.2 Background, spherical harmonics, model levels.

Code Name Description Units Levels Type

129 Z Orography (geopotential) m2 s−2 1 climate
130 T Temperature K 1-$LEVELS fc
138 VO Vorticity s−1 1-$LEVELS fc
152 LNSP Logarithm of surface pressure 1 fc
155 D Divergence s−1 1-$LEVELS fc

13.4.2 reftrajggml

Table 13.3 Background, Gaussian grid, model levels.

Code Name Description Units Levels Type

133 Q Specific humidity kg kg−1 1-$LEVELS fc

203 O3 Ozone mass mixing ratio kg kg−1 1-$LEVELS fc

75 CRWC Cloud rain water content kg kg−1 1-$LEVELS fc

76 CSWC Cloud snow water content kg kg−1 1-$LEVELS fc

246 CLWC Cloud liquid water content kg kg−1 1-$LEVELS fc

247 CIWC Cloud ice water content kg kg−1 1-$LEVELS fc
248 CC Cloud cover (0-1) 1-$LEVELS fc
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13.4.3 reftrajggsfc

Table 13.4 Surface fields, Gaussian grid, background (variable fields) and analysis (invariant fields).

Code Name Description Units Type

031 CI Sea-ice cover (0-1) fc
032 ASN Snow albedo (0-1) fc

033 RSN Snow density kg m−3 fc
034 SST Sea surface temperature K fc
035 ISTL1 Ice surface temperature, layer 1 K fc
036 ISTL2 Ice surface temperature, layer 2 K fc
037 ISTL3 Ice surface temperature, layer 3 K fc
038 ISTL4 Ice surface temperature, layer 4 K fc
039 SWVL1 Volumetric soil water, layer 1 m3 m−3 fc
040 SWVL2 Volumetric soil water, layer 2 m3 m−3 fc
041 SWVL3 Volumetric soil water, layer 3 m3 m−3 fc
042 SWVL4 Volumetric soil water, layer 4 m3 m−3 fc
139 STL1 Soil temperature level 1 K fc
141 SD Snow depth m of water equivalent fc
148 CHNK Charnock parameter fc
170 STL2 Soil temperature level 2 K fc
183 STL3 Soil temperature level 3 K fc
198 SRC Skin reservoir content m of water fc
235 SKT Skin temperature K fc
236 STL4 Soil temperature level 4 K fc
238 TSN Temperature of snow layer K fc

228131 U10N Neutral wind u component at 10m m s−1 fc
228132 V10N Neutral wind v component at 10m m s−1 fc

244 FSR Surface roughness m fc
245 FLSR Logarithm of surface roughness m fc
015 ALUVP UV visible albedo for direct radiation (0-1) an
016 ALUVD UV visible albedo for diffuse radiation (0-1) an
017 ALNIP Near IR albedo for direct radiation (0-1) an
018 ALNIP Near IR albedo for diffuse radiation (0-1) an
027 CVL Low vegetation cover (0-1) an
028 CVH High vegetation cover (0-1) an
029 TVL Type of low vegetation Table index an
030 TVH Type of high vegetation Table index an
043 SLT Soil type an
066 LAI LV Leaf area index, low vegetation m2 m−2 an
067 LAI HV Leaf area index, high vegetation m2 m−2 an
074 SDFOR Standard deviation of filtered sub-gridscale orography an
160 SDOR Standard deviation of orography an
161 ISOR Anisotrophy of sub-gridscale orography an
162 ANOR Angle of sub-gridscale orography rad an
163 SLOR Slope of sub-gridscale orography an
172 LSM Land-sea mask (0, 1) an
173 SR Surface roughness m an
174 ALB Albedo (0-1) an
234 LSRH Logarithm of surface roughness an
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13.4.4 errgrib

Table 13.5 Background errors, model levels, Gaussian grid.

Code Name Description Units Levels Type

130 T Temperature K 1-$LEVELS ses
131 U u velocity m s−1 1-$LEVELS ses
132 V v velocity m s−1 1-$LEVELS ses

133 Q Specific humidity kg kg−1 1-$LEVELS ses
138 VO Vorticity s−1 1-$LEVELS ses
152 LNSP Logarithm of surface pressure 1 ses
156 GH Geopotential height m 1-$LEVELS ses
157 R Relative humidity % 1-$LEVELS ses
194 BTMP Brightness temperature K channels 1-54 ef

203 O3 Ozone mass mixing ratio kg kg−1 1-$LEVELS ses

13.4.5 spmoderr bg 01

Table 13.6 Model error, spherical harmonics, model levels.

Code Name Description Units Levels Type

130 T Temperature K 1-$LEVELS me
138 VO Vorticity s−1 1-$LEVELS me
152 LNSP Logarithm of surface pressure 1 me
155 D Divergence s−1 1-$LEVELS me

13.4.6 wam specwavein

Table 13.7 Background, surface, regular latitude/longitude grid, input for wave model.

Code Name Description Units Type Stream

251 2DFD 2D wave spectra m2 s radian−1 fc WAVE

13.4.7 wam cdwavein

Table 13.8 Background, surface, regular latitude/longitude grid, input for wave model.

Code Name Description Units Type Stream

233 CDWW Coefficient of drag with waves fc WAVE

13.4.8 wam uwavein

Table 13.9 Background, surface, regular latitude/longitude grid, input for wave model.

Code Name Description Units Type Stream

245 WIND 10 metre wind speed m s−1 fc WAVE
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13.4.9 wam sfcwindin

Table 13.10 Background, surface, Gaussian grid, input for wave model.

Code Name Description Units Type Stream

031 CI Sea-ice cover (0-1) fc DA
165 10U 10 metre U wind component m s−1 fc DA
166 10V 10 metre U wind component m s−1 fc DA

13.5 INPUT OBSERVATION DATA

Observations are read into 4D-Var from the Observation Data Base (ODB). The observation processing
is described in more detail in the ODB documentation (file:///home/rd/mps/public/ugodb.pdf).

13.6 INPUT DATA FILES

Input data files can be split into two categories, invariant and date-dependent. For the invariant files, a
single copy is used for the lifetime of the experiment or the operational suite. The file is copied or linked
into the experiment’s ${DATA} directory at start-up time in task datalinks.

Some files, such as blacklists and bias files, are date-dependent. In the operational suite, the blacklist can
be changed at short notice if, for example, a satellite channel fails or a new data source arrives which
has to be passively monitored to assess its quality before it can be used actively. Date-dependent files are
copied to the ${WDIR} directory in task vardata at the beginning of each data assimilation cycle.

13.6.1 Invariant data files

• ${DATA}/an/cmod.table.ieee – scatterometer coefficients
• ${DATA}/an/external bl mon monit.b – external blacklist file
• ${DATA}/an/moderr.cov – model error covariances for weak-constraint 4D-Var
• ${DATA}/an/neuroflux l${LEVELS} – extended linearized longwave radiation
• ${DATA}/an/radjacobian l${LEVELS} – extended linearized longwave radiation
• ${DATA}/an/rs bias T table1 – radiosonde temperature bias correction coefficients
• ${DATA}/an/rs bias T table2 – radiosonde temperature bias correction coefficients
• ${DATA}/an/rs bias T table3 – radiosonde temperature bias correction coefficients
• ${DATA}/an/rszcoef fmt – radiosonde height observation error correlation coefficients
• ${DATA}/an/ship anemometer heights – ship anemometer heights
• ${DATA}/an/stabal96.bal – background error balance parameters
• ${DATA}/an/stabal96.cv – background error correlations
• ${DATA}/an/stdev of climate/m${MM} – climatological standard deviations for use in error

growth model
• ${DATA}/an/wavelet T${RESOLINC n} L${LEVELS}.cv – wavelet Jb background

error covariances
• ${DATA}/climate/${RESOL}${GTYPE}/O3CHEM${MM} – monthly ozone chemistry climate

files
• ${DATA}/ifs/namelist ${IFS CYCLE} – an empty copy of all the IFS namelists
• ${DATA}/ifs/rtable${GTYPE}${RESOL} – namelist NAMRGRI, defining the number of points

on each row of the Gaussian grid
• ${DATA}/ifs/vtable L${LEVELS} – namelist NAMVV1, defining the hybrid vertical coordinate

level coefficients
• ${DATA}/sat/mwave error ${platform} ${instrument}.dat – microwave error files
• ${DATA}/sat/AIRS CLDDET.NL – list of channels to be used for AIRS with cloud detection
• ${DATA}/sat/amv bias info – atmospheric motion vector information
• ${DATA}/sat/bcor reo3 – ozone bias correction file
• ${DATA}/sat/chanspec noaa – noaa channel specification file
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• ${DATA}/sat/cstlim noaa – noaa cost limit file
• ${DATA}/sat/filbiaso [ssmi|tmi] – SSMI/TMI 1D-Var bias file
• ${DATA}/sat/filcmix [ssmi|tmi] – SSMI/TMI 1D-Var coefficient file
• ${DATA}/sat/filcovb – SSMI 1D-Var coefficient file
• ${DATA}/sat/filcovo [ssmi|tmi] – SSMI/TMI 1D-Var coefficient file
• ${DATA}/sat/filcwat [ssmi|tmi] – SSMI/TMI 1D-Var coefficient file
• ${DATA}/sat/iasichannels – list of channels to be used for IASI
• ${DATA}/sat/IASI CLDDET.NL – list of channels to be used for IASI with cloud detection
• ${DATA}/sat/mask asc – radiosonde mask
• ${DATA}/sat/mietable dmsp ssmi – optical properties of hydrometeors used in the scattering

calculations for 1D-Var rain
• ${DATA}/sat/rmtberr [noaa|airs|iasi] – measurement error files
• ${DATA}/sat/rttov/rtcoef ${platform} ${instrument}.dat – RTTOV radiative transfer coefficient

files, for all current and historic satellite platforms and instruments
• ${DATA}/sat/scanbias.ssmi – SSMI scan bias coefficients
• ${DATA}/sat/[sigmab|correl] – background error files
• ${DATA}/sat/ssmi tovs1c buf – ATOVS BUFR template for conversion of SSMI data to 1c-

radiances
• ${DATA}/sat/thin reo3 – ozone thinning file
• ${DATA}/scat/mle norm.dat – QuikSCAT look-up tables
• ${DATA}/scat/nscat2.noise – QuikSCAT noise look-up tables
• ${DATA}/scat/nscat2.table – QuikSCAT GMF look-up tables
• ${DATA}/scat/qscat1.table – QuikSCAT GMF look-up tables

13.6.2 Date-dependent data files

• ${WDIR}/bl data sel – data selection blacklist
• ${WDIR}/monthly bl mon monit.b – monthly monitoring blacklist
• ${WDIR}/VARBC.cycle.prev – variational bias correction file from previous cycle
• ${WDIR}/emiskf.cycle.prev.tar – emissivity file from previous cycle
• ${WDIR}/vardir/erss0 – ERS1 scatterometer sigma0 bias correction
• ${WDIR}/vardir/erssp – ERS1 scatterometer speed bias correction
• ${WDIR}/vardir/ascats0 – ASCAT scatterometer sigma0 bias correction
• ${WDIR}/vardir/ascatsp – ASCAT scatterometer speed bias correction

13.7 OUTPUT GRIB FIELDS

Fields of type ‘4v’ (4D-Var analysis), ‘an’ (analysis), ‘ea’ (analysis errors), ‘ef’ (forecast errors) and ’me’
(model error) are written in GRIB code to the Fields Data Base from 4D-Var. Fig. 13.4 illustrates the
difference between type ‘4v’ and type ‘an’ analysis fields. For type ‘4v’ fields, the analysis increment
from the final minimization is interpolated back to high resolution and added to the penultimate high
resolution trajectory at its starting point. Analysis fields output from the final high resolution non-linear
trajectory are of type ‘4v’, with a base time at the start of the trajectory and a step corresponding to
the number of hours into the trajectory. So, for example, for the 1200 UTC 12-hour 4D-Var for date
yyyymmdd, with an observation window from 0300 to 1500 UTC, the 4D-Var analysis at 1200 UTC is
stored in the Fields Data Base and MARS with parameters:

date = yyyymmdd, hour = 03, step = 9, type = 4v

For type ‘an’ fields, the increment from the final minimization is added to the penultimate high resolution
trajectory at the actual analysis time. Fields from the surface analysis are combined with fields from 4D-
Var to give the full analysis. For the 1200 UTC 12-hour 4D-Var for date yyyymmdd, with an observation
window from 0300 to 1500 UTC, the type ‘an’ analysis at 1200 UTC is stored in the Fields Data Base
and MARS with parameters:

date = yyyymmdd, hour = 12, step = 0, type = an
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Figure 13.4 Type ‘an’ and type ‘4v’ fields written from 4D-Var to the Fields Data Base.

Output analysis fields, of type ‘4v’ and ‘an’, can be generated on model levels, pressure levels and
isentropic surfaces. Namelist NAMFPC controls the content of the post-processing, and there is a wide
selection of fields that can be produced. The IFS determines internally whether fields should be generated
in spectral or grid-point form. Described below is only the list of fields that are needed as input for the
next forecast in order to cycle the data assimilation forward in time. The forecast starts from fields of
type ‘an’. Some of the surface fields are generated by the surface analysis jobs, which run at the same time
as 4D-Var. It is important that these fields are excluded from the type ‘an’ post-processing of 4D-Var, so
that they cannot overwrite the surface analysis fields.

13.7.1 Output type ‘an’ model level spectral fields

Table 13.11 Output type ‘an’ model level spectral fields.

Code Name Description Units Levels

130 T Temperature K 1-$LEVELS
135 W Vertical velocity m s−1 1-$LEVELS
138 VO Vorticity s−1 1-$LEVELS
152 LNSP Logarithm of surface pressure 1
155 D Divergence s−1 1-$LEVELS
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13.7.2 Output type ‘an’ model level Gaussian grid-point fields

Table 13.12 Output type ‘an’ model level Gaussian grid-point fields.

Code Name Description Units Levels

75 CRWC Cloud rain water content kg kg−1 1-$LEVELS

76 CSWC Cloud snow water content kg kg−1 1-$LEVELS

133 Q Specific humidity kg kg−1 1-$LEVELS

203 O3 Ozone mass mixing ratio kg kg−1 1-$LEVELS

246 CLWC Cloud liquid water content kg kg−1 1-$LEVELS

247 CIWC Cloud ice water content kg kg−1 1-$LEVELS
248 CC Cloud cover (0-1) 1-$LEVELS
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13.7.3 Output type ‘an’ surface Gaussian grid-point fields

Table 13.13 Output type ‘an’ surface Gaussian grid-point fields.

Code Name Description Units

015 ALUVP UV visible albedo for direct radiation (0-1)
016 ALUVD UV visible albedo for diffuse radiation (0-1)
017 ALNIP Near IR albedo for direct radiation (0-1)
018 ALNIP Near IR albedo for diffuse radiation (0-1)
027 CVL Low vegetation cover (0-1)
028 CVH High vegetation cover (0-1)
029 TVL Type of low vegetation Table index
030 TVH Type of high vegetation Table index
032 ASN Snow albedo (0-1)
035 ISTL1 Ice surface temperature, layer 1 K
036 ISTL2 Ice surface temperature, layer 2 K
037 ISTL3 Ice surface temperature, layer 3 K
038 ISTL4 Ice surface temperature, layer 4 K
042 SWVL4 Volumetric soil water, layer 4 m3 m−3

043 SLT Soil type
066 LAI-LV Leaf area index, low vegetation m2 m−2

067 LAI-HV Leaf area index, high vegetation m2 m−2

074 SDFOR Standard deviation of filtered subgrid orography
128 BV Budget values -
129 Z Orography (geopotential) m2 s−2

134 SP Surface pressure Pa

136 TCW Total column water kg m−2

137 TCWV Total column water vapor kg m−2

148 CHNK Charnock parameter
151 MSL Mean sea level pressure Pa
160 SDOR Standard deviation of orography
161 ISOR Anisotrophy of sub-gridscale orography
162 ANOR Angle of sub-gridscale orography rad
163 SLOR Slope of sub-gridscale orography
164 TCC Total cloud cover (0-1)
165 10U 10 metre U wind component m s−1

166 10V 10 metre V wind component m s−1

172 LSM Land-sea mask (0,1)
173 SR Surface roughness m
174 ALB Albedo (0-1)
186 LCC Low cloud cover (0-1)
187 MCC Medium cloud cover (0-1)
188 HCC High cloud cover (0-1)
198 SRC Skin reservoir content m of water

206 TCO3 Total column ozone content kg m−2

234 LSRH Logarithm of surface roughness
235 SKT Skin temperature K
236 STL4 Soil temperature level 4 K

228021 FDIR Total-sky direct solar radiation at surface J m−2

228022 CDIR Clear-sky direct solar radiation at surface J m−2

228246 100U Wind u component at 100 m m s−1

228247 100V Wind v component at 100 m m s−1
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13.7.4 Output type ‘an’ wave model fields

The output wave model fields are on a regular latitude/longitude grid. They are identified by stream
‘WAVE’ and are encoded with GRIB codes defined in ECMWF local table 2, Version 140.

Table 13.14 Output type ‘an’ wave model fields.

Code Name Description Units

251 2DFD 2D wave spectra m2 s radian−1

233 CDWW Coefficient of drag with waves
245 WIND 10 metre wind speed m s−1

13.7.5 Output error fields

The forecast errors output from one cycle are used as the background errors input to the next cycle, and
their content is described in Section 13.4.4 above. The analysis errors contain similar fields, but are of
type ‘ea’. The analysis errors are used to calculate the perturbations for the Ensemble Prediction System.

13.7.6 Output model error fields

The model error fields which are output from the analysis are input to the next forecast. Their content
is described in Section 13.4.5 above.

13.8 OUTPUT OBSERVATION DATA

Departures of observations from the background and the analysis, and quality information are written to
the Observation Data Base (ODB). The observation processing is described in more detail in Part I.

13.9 OUTPUT DATA FILES

• ${WDIR}/VARBC.cycle – updated variational bias correction file
• ${WDIR}/emiskf.cycle.tar – updated emissivity file

13.10 SEA SURFACE TEMPERATURE ANALYSIS

The sea surface temperature analysis is done every 6 hours.

13.10.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the
forecast from the previous 4D-Var analysis time. The persistence analysis, of type ‘an’, is taken from
the previous sea surface temperature analysis time, 6 hours earlier (which is not necessarily a 4D-Var
analysis time). In the table below, ‘T’ is used to denote the analysis time, and ‘T-6’ is used to denote the
persistence analysis time.

Table 13.15 Input GRIB fields on model grid.

Code Name Description Units Type Time

031 CI Sea-ice cover (0-1) fc T
034 SST Sea surface temperature K fc T
034 SST Sea surface temperature K an T-6
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13.10.2 Input OSTIA and NCEP fields

• $WDIR/surf anal/ostia – OSTIA sea surface temperature and sea ice concentration fields, encoded
as BUFR data

• $WDIR/surf anal/cfnmc – NCEP sea surface temperature analysis
• $WDIR/surf anal/icenmc – NCEP sea ice analysis

The sea surface temperature analysis and sea ice analysis from NCEP (National Center for Environmental
Prediction, Washington) are input on a 0.5 × 0.5 degree regular latitude/longitude grid. These fields are
extracted from MARS with parameters:

expver = 1, origin = kwbc

13.10.3 Input data files

• $DATA/sst/lsfil – land/sea mask for NCEP data, 0.5 × 0.5 degree regular latitude/longitude grid,
720 × 360 points

• $DATA/sst/sst clim – surface air temperature monthly climatology, reduced to mean-sea level
(0.5 × 0.5 degree regular latitude/longitude grid, 720× 361 points)

• $DATA/sst/ice clim – ice monthly climatology
• ${DATA}/climate/${RESOL}${GTYPE}/lsmoro – land/sea mask and orography on model

Gaussian grid
• ${DATA}/climate/${RESOL}${GTYPE}/clake – lake mask

13.10.4 Output GRIB fields on model grid

The following fields are written to the Fields Data Base:

Table 13.16 Output GRIB fields on model grid.

Code Name Description Units Type

031 CI Sea-ice cover (0-1) an
034 SST Sea surface temperature K an

13.11 2 METRE TEMPERATURE ANALYSIS

The 2 metre temperature analysis is done every 6 hours.

13.11.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the
forecast from the previous 4D-Var analysis time. The invariant fields, of type ‘an’, are taken from the
previous 4D-Var analysis.

Table 13.17 Input GRIB fields on model grid.

Code Name Description Units Type

129 Z Orography m2 s−2 an
172 LSM Land/sea mask (0-1) an
139 STL1 Soil temperature level 1 K fc
167 2T 2 metre temperature K fc
168 2D 2 metre dewpoint temperature K fc
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13.11.2 Input observation data

Observations are read from the Observation Data Base.

13.11.3 Output GRIB field on model grid

The analysed 2 metre temperature field is written to the Fields Data Base.

Table 13.18 Output GRIB field on model grid.

Code Name Description Units Type

167 2T 2 metre temperature K an

13.12 2 METRE RELATIVE HUMIDITY ANALYSIS

The 2 metre relative humidity analysis is done every 6 hours. Although the analysed field is 2 metre
relative humidity, the final output product is 2 metre dewpoint temperature. The 2 metre relative humidity
analysis cannot start until the 2 metre temperature analysis has completed, since the output from the 2
metre temperature analysis is needed in the computation of the 2 metre dewpoint temperature.

13.12.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the
forecast from the previous 4D-Var analysis time. The invariant fields, of type ‘an’, are taken from the
previous 4D-Var analysis.

Table 13.19 Input GRIB fields on model grid.

Code Name Description Units Type

129 Z Orography m2 s−2 an
172 LSM Land/sea mask (0-1) an
139 STL1 Soil temperature level 1 K fc
167 2T 2 metre temperature K fc
168 2D 2 metre dewpoint temperature K fc

13.12.2 Input observation data

Observations are read from the Observation Data Base.

13.12.3 Output GRIB field on model grid

The derived 2 metre dewpoint temperature field is written to the Fields Data Base.

Table 13.20 Output GRIB field on model grid.

Code Name Description Units Type

168 2D 2 metre dewpoint temperature K an

13.13 SNOW ANALYSIS

The snow analysis is done every 6 hours. It cannot start until the 2 metre temperature analysis has
completed, since the 2 metre temperature analysis field is one of the inputs to the snow analysis.
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13.13.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from
the forecast from the previous 4D-Var analysis time. The invariant fields of type ‘an’, orography and
land/sea mask, are taken from the previous 4D-Var analysis. This is denoted T4V in the table below.
The persistence snow depth analysis, of type ‘an’, is taken from the previous snow analysis time, 6 hours
earlier (which is not necessarily a 4D-Var analysis time). In the table below, ‘T’ is used to denote the
snow analysis time, and ‘T-6’ is used to denote the persistence snow analysis time.

Table 13.21 Input GRIB fields on model grid.

Code Name Description Units Type Time

129 Z Orography m2 s−2 an T4V
172 LSM Land/sea mask (0-1) an T4V

033 RSN Snow density kg m−3 fc T
141 SD Snow depth m of water equivalent fc T
141 SD Snow depth m of water equivalent an T-6
167 2T 2 metre temperature K an T

13.13.2 Input data files

• ${DATA}/climate/${RESOL}${GTYPE}/snow – snow depth climatology (m of water equivalent)
on model Gaussian grid

• ${DATA}/climate/${RESOL}${GTYPE}/cicecap – on model Gaussian grid
• $WDIR/imssnow – NESDIS snow cover field (0,1) on polar stereographic grid of approximately

25 km resolution. The data is in BUFR format, with triplets of latitude/longitude/snow cover. The
NESDIS snow cover field is only used once per day, for the 06Z snow analysis.

13.13.3 Input observation data

Observations are read from the Observation Data Base.

13.13.4 Output GRIB fields on model grid

The following fields are written to the Fields Data Base:

Table 13.22 Output GRIB fields on model grid.

Code Name Description Units Type

033 RSN Snow density kg m−3 an
141 SD Snow depth m of water equivalent an

13.14 SOIL MOISTURE ANALYSIS

The soil moisture analysis is done every 6 hours. It cannot start until the sea surface temperature analysis
and the snow analysis have completed.

13.14.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the
forecast from the previous 4D-Var analysis time. The analysed fields, of type ‘an’, are output from the
current 4D-Var analysis, the sea surface temperature analysis, the 2 metre temperature analysis, the 2
metre relative humidity analysis or the snow analysis.
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Table 13.23 Input GRIB fields on model grid.

Code Name Description Units Type Origin

039 SWVL1 Volumetric soil water, layer 1 m3 m−3 fc Forecast
040 SWVL2 Volumetric soil water, layer 2 m3 m−3 fc Forecast
041 SWVL3 Volumetric soil water, layer 3 m3 m−3 fc Forecast

133 Q Specific humidity on kg kg−1 fc Forecast
lowest model level

139 STL1 Soil temperature, level 1 K fc Forecast
142 LSP Large scale precipitation m fc Forecast
143 CP Convective precipitation m fc Forecast
167 2T 2 metre temperature K fc Forecast
168 2D 2 metre dewpoint temperature K fc Forecast
170 STL2 Soil temperature, level 2 K fc Forecast

176 SSR Surface solar radiation W m−2 s fc Forecast
183 STL3 Soil temperature level 3 K fc Forecast
238 TSN Temperature of snow layer K fc Forecast
027 CVL Low vegetation cover (0-1) an 4D-Var
028 CVH High vegetation cover (0-1) an 4D-Var
029 TVL Type of low vegetation Table index an 4D-Var
030 TVH Type of high vegetation Table index an 4D-Var
129 Z Orography m2 s−2 an 4D-Var

133 Q Specific humidity on kg kg−1 an 4D-Var
lowest model level

141 SD Snow depth m of water equivalent an Snow analysis
165 10U 10 metre U wind component m s−1 an 4D-Var
166 10V 10 metre V wind component m s−1 an 4D-Var
167 2T 2 metre temperature K an 2 metre temp. anal.
168 2D 2 metre dewpoint temperature K an 2 metre rel. hum. anal.
172 LSM Land-sea mask (0, 1) an 4D-Var
174 AL Albedo (0-1) an 4D-Var

13.14.2 Output GRIB fields on model grid

The following fields are output from the soil moisture analysis and written to the Fields Data Base. Before
being written, the STL1 (soil temperature level 1) field is manipulated as follows:

(i) land values are unchanged
(ii) over sea,

STL1 = SST × (1 − CI ) + ISTL1 × CI

where

SST = analysed sea surface temperature

CI = analysed sea ice field, which varies between 0 (open water) and 1 (full ice cover)

ISTL1 = background soil temperature level 1
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Table 13.24 Output GRIB fields on model grid.

Code Name Description Units

039 SWVL1 Volumetric soil water, layer 1 m3 m−3

040 SWVL2 Volumetric soil water, layer 2 m3 m−3

041 SWVL3 Volumetric soil water, layer 3 m3 m−3

042 SWVL4 Volumetric soil water, layer 4 m3 m−3

139 STL1 Soil temperature, level 1 K
170 STL2 Soil temperature, level 2 K
183 STL3 Soil temperature, level 3 K
238 TSN Temperature of snow layer K

13.14.3 Invariant climatological fields

The final step of the soil moisture analysis task is to copy the invariant fields from the climatology files
to the analysis, after first manipulating the GRIB headers to give values appropriate for the current data
assimilation cycle. In this way, it is ensured that invariant fields remain unchanged, without any loss of
precision due to repeatedly encoding and decoding GRIB fields.

Table 13.25 Invariant climatological fields.

Code Name Description Units

015 ALUVP UV visible albedo for direct radiation (0-1)
016 ALUVD UV visible albedo for diffuse radiation (0-1)
017 ALNIP Near IR albedo for direct radiation (0-1)
018 ALNIP Near IR albedo for diffuse radiation (0-1)
027 CVL Low vegetation cover (0-1)
028 CVH High vegetation cover (0-1)
029 TVL Type of low vegetation Table index
030 TVH Type of high vegetation Table index
043 SLT Soil type
129 Z Orography m2 s−2

160 SDOR Standard deviation of orography
161 ISOR Anisotrophy of sub-gridscale orography
162 ANOR Angle of sub-gridscale orography rad
163 SLOR Slope of sub-gridscale orography
172 LSM Land-sea mask (0,1)
173 SR Surface roughness m
174 ALB Albedo (0-1)
234 LSRH Logarithm of surface roughness
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Trémolet, Y. (2003). Model error in variational data assimilation. In Proc. ECMWF Seminar on Recent
Developments in Data Assimilation for Atmosphere and Ocean, pp. 361–367, Reading, 8–12 Sept 2003.
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