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ABSTRACT

The aim of this paper is to propose an overview of the specifications of observation errors in data assimilation
schemes. Different ways of diagnosing the statistics of those errors are in particular presented. The evidence of
correlations for a given number of observations and the way they can be represented are also discussed.

1 General framework

From a general point of view, the specification of observation errors is related to the Kalman Filter
formalism, where one wants to obtain an estimatexa of the true state, from two pieces of information: a
backgroundxb associated with an error covariance matrixB and observationsyo associated with an error
covariance matrixR. The analysis is given by the following equation

xa = xb + δx = Kd = BHT(HBHT +R)−1d (1)

and is then obtained by adding a correctionδx to the background. This correctionδx is itself given by
the application of the gain matrixK to the innovation vectord containing the differences between obser-
vations and their equivalents for the background. The gain matrix is a particular expression, whereB, H
the linear or linearized observation operator andR appear. The quality of the analysis will then depend
on the correct specification of those three ingredients and thus particularly on the correct specification of
matrix R.

It is easy to see that such a solutionxa is also the expression that minimizes the following quadratic cost
function:

J(δx) = 1/2 [δxTB−1δx+(Hδx−d)TR−1(Hδx−d)]. (2)

In the case where the observation operatorH is non-linear, the incremental formulation proposes a way
to minimize the original non-quadratic cost function, by minimizing a set of successive quadratic cost-
functions (Courtieret al, 1994):

J(x) = 1/2 [(x−xb)TB−1(x−xb)+ (H(x)−yo)TR−1(H(x−yo)]. (3)

Even in such a slightly non-linear problem, one can considerthat analysis, background, model and
observation errors are linked, at first order, by such a linear relation:

εa = (I −KH)εb +Kεo, (4)

with εa = xa−xt , εb = xb−xt andεo = yo−H(xt), wherext is the unknown true state.
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The background errorεb+
for the next assimilation is the result of the application ofthe tangent-linear

modelM to the current analysis errorεa plus an errorεm intrinsically related to the model:

εb+
= Mεa + εm. (5)

It is easy to check that the exact covariance matrix for the analysis error is given by the expression,

At = (I −KH)Bt(I −KH)T +KRtKT , (6)

whereBt and Rt are the exact covariance matrices andK is the possibly sub-optimal or inexact gain
matrix.

A correct representation of the background error covariance matrixBt+ for the next analysis is then given
by the expression

Bt+ = MAtMT +Qt , (7)

whereQt is the model error covariance matrix.

From these expressions, it is interesting to note thatRt is rather an input in these equations asQt . It is
not an output as matrixBt+. That is, it has to be specified, but cannot be documented by analgorithm
such as Ensemble Kalman Filtering.

Actually, what are called observation errors, in assimilation schemes, are the differences between ob-
servations and their equivalents for the virtual true modelstatext , obtained by the application of the
observation operatorH to this true state. These differences can be developed as

εo = yo−H(xt)
= yo−yt +yt −H(xt)
= εo

i − εo
H ,

(8)

whereyt is the true state equivalent ofyo. This expression makes appear the actual instrument observation
errorεo

i and an errorεo
H , which is a complex function of

• the type of observation (and in particular, whether they arein situ or integrated observations, like
satellite radiances),

• the resolution of the model state, which makes appear what iscalled the representativeness error,

• and also the precision of the observation operator, especially for satellite observations.

2 Methods for estimating observation error statistics

Observation errors are not explicitely known. However, an information on the statistics of those errors
can be found in the innovations, that is in the departures between observations and background. A first
method to extract an information on the observation error variance from the innovations is the so-called
Hollingsworth and Lönnberg method (Hollingsworth and Lönnberg, 1986). The principle is to calculate
an histogram of innovation covariances, stratified againstseparation. If one assumes that observation
errors are spatially uncorrelated and that observation andbackground errors are uncorrelated, one can
fit a model of background covariance to this histogram. The intercept of this covariance model at zero
separation is then the background variance and the observation variance is simply the difference between
the variance of the innovations at zero separation and the background error variance.

A second diagnostic that was proposed is a diagnostic based on the so-calledJmin diagnostics, that is the
expected value of the above-mentionned cost function at itsminimum, for the analysis. It can be shown

96 ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011



DESROZIERS, G.: OBSERVATION ERROR SPECIFICATIONS

that the statistical expection for the total cost functionJ, including theJb andJo term, should simply be
equal top, the total number of observations in an optimal assimilation (Bennett, 1993). More precisely,
it can be shown (Talagrand, 1997) that the statistical expectation of any sub-partJo

i of theJo term of the
cost-function is given by the expresssion

E[Jo
i (xa)] = pi −Tr(H iAHT

i Ri
−1), (9)

where pi is the number of observations associated with this sub-part. H i andRi respectiveley are the
corresponding observation operator and error covariance matrix. A is the analysis covariance matrix for
the resulting estimation.

If the actual mean value of a sub-part ofJo deviates from the previous optimal value, it can be expected
that this may be partly due to a bad specification of observation errors for the corresponding observations.
Then, a tuning procedure of the observation error variance is to determine a normalization coefficient as
the ratio between the observed value ofJo

i (xa) and its expected value:

so
i

2 = Jo
i (xa)/E[Jo

i (xa)]
= Jo

i (xa)/[pi −Tr(H iAHT
i Ri

−1)].
(10)

This is possible, because it happens that this complicated expression can be computed, even in a vari-
ational scheme, by a randomization procedure based on a perturbation of observations (Desroziers and
Ivanov, 2001; Chapniket al, 2004).

By the way, the expressionTr(H iAHT
i Ri

−1) is nothing else that the mean sensitivity of the analysis to
the particular subset of observationsi.

It happens then that an ensemble variational assimilation,where observations are perturbed provides, as
a by-product, a way to tune the error variance of the observations and also a way to measure their mean
impact in the analysis (Desrozierset al, 2009).

It can also be shown that such a tuning procedure for the variance of observation errors is equivalent to a
maximum likelihood approach (Dee, 1998). Assuming that theinnovation vectord is a Gaussian random
vector with mean 0 and covariance matrixD and thatD is a function of the parameter vectors, then the
conditional pdf of a certain realization ofd knowings is given by the likelihood function

f (d|s) =
1

√

(2p)det(D(s))
exp(−1/2 dTD(s)d). (11)

The maximum likelihood estimate of the true coefficient vector st is the one that mimimizes the Log-
likelihood function

L(s) = − log( f (d|s)). (12)

Other diagnostics are possible. In particular, it can be shown that the statistical expectation of the cross-
products between the departures “observations - analysis”doa and the departures “observations - back-
ground”d should be equal to the observation error covariance matrixR in a consistent analysis.

A simple geometrical interpretation of these relations canfound in Figure1, which symbolizes the sim-
plified case of the construction of the analysisxa of a single parameterx, using an observationyo distant
of εo from the truthxt and a backgroundxb distant ofεb from xt . If the scalar product of two vectors of
errors is the statistical expectation, then observation error and background error are orthogonal atxt , if
one assumes that they are statistically uncorrelated. The triangle(xb,xt ,yo) is then a right triangle atxt .

By construction, the analysis is a linear combination ofxb andyo and is then on the line defined byxb

andyo. On the other hand, the analysis errorεa must be minimal and then orthogonal toyo− xb that is
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Figure 1: Geometrical representation of the analysis.

to the innovation vector. Then, the application of the Euclide theoremdoad = εo2 leads, in particular, to
this relation forR.

A main interest of this diagnostic is that it is very simple toimplement in any data assimilation scheme.
The only thing to do is to compute a posteriori cross-products between the departures “observations -
analysis” and “observations - background”. Moreover, one can also use such computations to diagnose
cross-covariances between different observations. This has been applied, in particular, at some centres
to diagnose the correlations between satellite channels orspatial correlations.

However, it has to be kept in mind that all these diagnostics are not exact procedures. They all have limi-
tations and it is important to be aware of these limitations.In particular, it appears that those diagnostics
have to rely on implicit assumptions.
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Figure 2: Function vodiag(v
o
spec), with Lb = 300 km and Lo = 0 km, and true value of observation error

variance vo = 4.
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Figure 3: Same as Fig.2, but with Lb = 300 km and Lo = 200 km.

A first assumption that is made and that has to be true to make such diagnostics work is that there is
a spatial correlation in background errors and no spatial correlation or a different spatial correlation in
observation errors. Figure2 shows the ability of the observation space diagnostic to recover the right
variance of observation in a toy analysis on a circle. It shows that if the two lengthscales are very
different, then starting from an incorrect variance of observationvo

specequal to 1, as the exact variance is
equal to 4, then the diagnosed valuevo

diag is already equal to 3 after one analysis with the incorrect value.
The diagnosed value after a new analysis with the improved value will still improve the estimation of the
variance. Then, it appears that such an algorithm will very quickly converge towards the exact value in
this case and that the value obtained after a single application of the diagnostic is already very close to
the exact one.

The behaviour of the convergence is completely different ifthe lengthscales of background and obser-
vation errors become closer. In this case (Figure3), it can be seen that the value obtained after a single
iteration is not very different from the mis-specified valueand that the process will very slowly converge
towards the exact value.

3 Diagnostic of observation error variances

Figure4 shows an example of the application of the diagnostics basedon theJmin diagnostics for the
French 4D-Var assimilation scheme. The figure shows the diagnosed reduction factor that should be ap-
plied to the different observation errors. Indeed, one can see that theσo values are rather over-estimated
in the assimilation scheme. This is especially the case for the SATWIND or the radiance observations
where the diagnostics indicate that the sigmao are overestimated by a factor 2. Of course, it is known that
the overestimation of the errors in the assimilation is quite often done on purpose in order to compensate
the lack of correlations in the specified matrixR.

Figure5 shows another example, provided by Niels Bormann et al (2011), of the application of different
kinds of diagnostics of theσo values for AMSUA channels. This figure shows that all diagnostics give
similar values and that these values are much lower than the specified values in the ECMWF system. So,
it also appears that theσo values were rather overestimated in the ECMWF 4D-Var.

ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011 99



DESROZIERS, G.: OBSERVATION ERROR SPECIFICATIONS

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

SYNO
P

AIR
CRAFT

SATW
IN

D

D
RIF

TBUOY

RAD
IO

S

PRO
FIL

ERS

BRIG
HT T

EM
P

SCATT

GPSRO

Figure 4: Normalization coefficients of theσo values in the French Arpege 4D-Var.
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4 Diagnostic of observation error correlations

Bormann and Bauer at ECMWF (2010) have also produced different diagnostics to measure the inter-
channel correlations for AMSUA errors (Figure6). The three diagnostics applied actually show that
there is no inter-channel correlations for this specific instrument. They also showed that there is no
spatial correlations in those observations and then that their variances could be reduced according to
the previous diagnostic on the variances. Indeed, ECMWF obtained a very nice positive impact on the
forecast skills by just giving more confidence to the AMSUA data.

A different situation is found for IASI channels (Bormannet al, 2010), since in this case channels sen-
sitive to water vapor or with strong surface contributions show considerable inter-channel correlations
(Figure7).

The same kind of results were obtained by Stewart (2009) at the University of Reading, since she also
found strong correlations for specific IASI channels (Figure 8).

Similarly, this was also obtained by Garandet al (2007), at Environment Canada, for AIRS channels,
who used a Hollingsworth and Lonnberg like method to diagnose these inter-channel correlations (Figure
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Figure 6: AMSU-A inter-channel error correlations (from Bormann et al, ECMWF, 2010).
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Figure 7: IASI inter-channel error correlations (from Bormann et al, ECMWF, 2010).

9).

Then, there are evidences of inter-channel correlations for satellite observations, but there are also ev-
idences of spatial correlations for some observations. In particular, Bormannet al (2003) showed that
there are large spatial correlations in the SATWIND observations (Figure10).

As they found no spatial correlations for the AMSUA data, Bormannet al (2011) diagnosed, on the con-
trary, significant spatial correlations in microwave imager radiances, especially for cloudy observations
(Figure11).

Similarly, spatial observation error correlations can be found in Doppler radar winds as shown by Xuet
al (2007), at the NOAA (Figure12).

5 Observation error correlation specification in the assimilation

Other observation errors show temporal correlations as theSYNOP ground stations. Since they espe-
cially need to be taken into account in a 4D-Var scheme, Järvinenet al (1999), at ECMWF, proposed to
represent them by a simple exponential correlation function:

c(t1, t2) = aexp(−((t1− t2)/b)2), (13)
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Figure 8: IASI inter-channel error correlations (from Stewart, University of Reading, 2010).

with b = 6h.

In the 4D-Var minimization used at ECMWF and at Météo-France, the current departures between ob-
servations and the state are normalized by the observation error standard-deviations:

zi = S−1
i (yo

i −Hi(x
b)−H iδx), (14)

whereSi is the diagonal matrix containing the error variances for the observation subseti. Then, theJo

term for a subset of observations is written as a simple scalar product of these normalized departures.
The way time-correlated observations are taken into account is then to compute what is called effective
departuresze f f

i by solving a linear system,ze f f
i C = zi implying the above temporal correlation, and to

use these effective departures as for the uncorrelated observations.

Inter-channel correlations can also be relatively easily taken into account in an analysis scheme at least
in a 1D-Var scheme. This has been done, for instance, by Garand et al (2007) at Environment Canada.
Figure13shows the mean temperature and humidity increments for an ensemble of 1D-Var analyses and
proves that taking into account those correlations really makes a difference. The right pannel shows those
increments in observation space and it logically appears that increments are smaller when inter-channel
correlations are represented for the water vapor channels affected by those correlations.

The representation of spatial observation error correlations is more complicated, especially in a varia-
tional formulation. Fisher and Radnoti (2006) proposed andimplemented an elegant representation of
such spatial correlations. It relies on a construction of a square-root correlation model of correlations:

Ri = Σ−1
i CiΣ−T

i , (15)

and
Ci = U iU

T
i . (16)

The square-rootU i of the correlation matrixCi is constructed as a sequence of operators

U i = T iS
−1
i G1/2

i , (17)
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Figure 9: AIRS inter-channel error correlations (from Garand et al, Environment Canada, 2007).

whereGi is the spectral (Hankel) transformation of the correlationfunction,S−1
i is the inverse spectral

transformation andT i is an interpolation operator at observation locations.

It has to be pointed out that such a formulation is already very useful at this stage to represent realistic
observation perturbations in ensemble assimilation, as for instance for SATWIND observations and even
if those correlations are not taken into account in the assimilation scheme itself. The code developed at
ECMWF is thus used in ensemble assimilation as it has been implemented at Météo-France (Berreet al
2007) and at ECMWF (Isaksenet al2010).

The representation of spatial correlations inR−1 is a next step, again proposed by Fisher and Radnoti at
ECMWF (2006). It relies on an eigenpair decomposition of matrix Ci, using a Lanczos algorithm, and
on the use of a limited number of eigenpairs in the construction of the inverse ofCi :

Ci = ΣK
1 (1/λi,k−1)vi,kv

T
i,k. (18)

As for the time-correlated observations the practical implementation of those spatially correlated obser-
vations relies on the computation of so-called effective departures.

It is also interesting to introduce a discussion on the use ofobservations with correlated errors. Figure
14, produced by Liu and Rabier (2003), shows the impact of observation density on the quality of the
retrieved analysis. It shows that, if observation errors are uncorrelated, then the use of denser and denser
observations always improves the precision of the analysis. On the contrary, if there is observation
correlation and if this correlation is not represented in the analysis then the analysis will be degraded if the
observations are too dense and this degradation will start when using observations with an interdistance
roughly equal to twice the lengthscale of observation correlation. Another interesting and striking point
is that even if observation error correlation is well represented in matrixR, then the precision of the
analysis will very quickly saturate when augmenting the density of observations.

Figures15 and16 show an illustration of such a behaviour, for a very simple analysis framework, on
a circle, and this for two observation densities, 200 km and 50 km. In Figure15, where there is no
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Figure 10: SATWIND spatial error correlations (from Bormann et al, ECMWF, 2003).

correlation in observation errors, it appears that the increase of the density of observations brings the
analyis closer to the true state. This is also clear in the large reduction of the root mean square error of
the analysis when compared to the truth.

A different behaviour is found when there is correlation in observation errors (Figure16). On the left
pannel, the interdistance between observations is roughlyequal to twice the lengthscale of the correlation,
which is here equal to 100 km. In this case, there is no difference between the errors of the optimal and
of the suboptimal analyses. On the contrary, if the density of observations is increased, then the error in
the suboptimal analysis will be much increased, but actually the precision of the optimal analysis will
not be improved when compared to the precision of the analysis with 4 times less observations. This
confirms the findings of Liu and Rabier (2002), at least in thissimple case.

6 Conclusion

Observation errors are not explicitely known. They can be inferred by a comparison with other observa-
tions or with the background, using innovations.

There are diagnostics of observation errors (variances andcorrelations), but relying on explicit or implicit
hypotheses.

Correlation of observation errors can be found in many datasets: SYNOP time-correlations, AIRS, IASI
inter-channel correlations, SATWIND, SSM/I, radar spatial correlations. Those correlations are often
neglected, but with an empirical thinning and/or an inflation of error variance. Correlations can be more
or less easily taken into account. A relevant formulation for spatial error correlation has been proposed
and implemented in a real size system at ECMWF.

In any case, one has to keep in mind that correlated observations are less informative than uncorrelated
observations, even ifR is well specified. It may thus appear inefficient to add too many correlated

104 ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011



DESROZIERS, G.: OBSERVATION ERROR SPECIFICATIONS

Distance [km]

C
o

rr
e

la
ti

o
n

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1
19V

Clear R
Cloudy R
Clear B
Cloudy B

Distance [km]

C
o

rr
e

la
ti

o
n

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1
19H

Distance [km]

C
o

rr
e

la
ti

o
n

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1
22V

Distance [km]

C
o

rr
e

la
ti

o
n

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1
37V

Distance [km]

C
o

rr
e

la
ti

o
n

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1
85V

Distance [km]

N
u

m
b

e
r 

[x
1

0
3
]

0 200 400 600 800
0

200
400
600
800

1000
1200
1400

Number of observation pairs

Figure 11: SSM/I spatial error correlations (from Bormann et al, ECMWF, 2011).
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Figure 12: Doppler radar wind spatial error correlations (from Xu et al, NOAA, 2007).

observations.

Finally, the tuning ofR must be consistent with the tuning ofB, in order to avoid inconsistencies in
assimilation schemes.
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