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Abstract

In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare 

ground evaporation formulation at ECMWF. In November 2010 the bare ground evaporation used in ECMWF’s 

operational Integrated Forecasting System (IFS) was enhanced by adopting a lower stress threshold than for the 

vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in 

situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the 

evaluation. The latter are based on a fixed version of the IFS and make it possible to assess theimpact of a single 

modification while the operational analysis is based on a continuous effort to improve the analysis and modelling 

systems, resulting in frequent updates (few times a year). Considering the field sites with a fraction of bare 

ground greater than 0.2, the root mean square difference (RMSD) of soil moisture is shown to decrease from 

0.118 m3m-3 to 0.087 m3m-3 when using the new formulation in offline experiments, and from 0.110 m3m-3 to 

0.088 m3m-3 in operations. It also improves correlations. Additionally the impact of the new formulation on the 

terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of 

brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS 

data. Brightness temperature simulated from surface fields from two offline experiments with the Community 

Microwave Emission Modelling (CMEM) platform present monthly mean differences up to 7 K. Offline 

experiment with the new formulation presents drier soil moisture, hence simulated brightness temperature with 

its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.

1 Introduction

Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between the 

hydrosphere, biosphere and atmosphere because it controls both evaporation and transpiration fluxes 

from bare soil and vegetated areas, respectively. In addition, it is a key variable in hydrological 

processes ( i.e. runoff, evaporation from bare soil and transpiration from the vegetation cover) and has 

an impact on plant growth and carbon fluxes (Dirmeyer et al., 1999; Entekhabi et al, 1999). Its 

initialisation is of crucial importance for Numerical Weather Prediction (NWP) models and this topic 

has been extensively explored in the literature (e.g., Shukla and Mintz, 1982; Dirmeyer, 2002; 

Douville et al., 2001); soil moisture might play a role in meteorological forecasting (Seneviratne et al., 

2010). 

The second phase of the multi-institutional numerical modelling experiment GLACE-2 (Global Land–

Atmosphere Coupling Experiment) led to several insights about how the realistic initialisation of soil 

moisture can have a significant impact on the skill of  precipitation and air temperature forecast skill at 

the sub-seasonal scale (Koster et al., 2011). Notably, while both wet and dry land-surface-model 

initialisation are likely to generate skill in different areas of the world, dry initialisation provides more 

skill at the transition between soil-moisture and energy-availability-controlled evaporation. The first 

phase of GLACE (Koster et al., 2004) focused on the atmospheric response to soil moisture variations. 

Meteorological variables such as precipitation and air temperature, were found to be particularly 

affected by soil moisture variations in specific areas: the transition zones between arid and humid 

areas. Dry-land has recently received more attention both in literature (Wang et al 2012) and in several 

initiatives on the Drought Early Warning (DEW) information services world-wide (WMO, Drought 

monitoring and early warning, 2006). Many studies have focused on the coupled bare soil–canopy 
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processes and the ability of land surface models to simulate bare soil processes has also been of 

interest (Desborough et al., 1996). Albergel et al, (2012a, b) demonstrated the good quality of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) soil moisture products with respect 

to global-ground based in situ observations. They found good level of correlations despite the high 

values of root mean square difference (RMSD) which indicate that ECMWF products tend to 

overestimate soil moisture, particularly over dry areas. To overcome this problem an improved bare 

ground evaporation scheme over dry land (Balsamo et al., 2011) was implemented in ECMWF’s 

Integrated Forecasting System (IFS), in November 2010. It is expected that the new scheme will 

reduce the soil moisture over bare soil by enhancing evaporation, resulting in more realistic soil 

moisture when compared to in situ data. Because the improved bare ground evaporation was 

implemented in 2010 along with other modifications affecting soil moisture (e.g., an Extended Kalman 

Filter for soil moisture analysis, de Rosnay et al., 2011, 2012) it is difficult to isolate the impact of the 

new evaporation scheme. For this reason, offline experiments were carried out with and without the 

new bare ground evaporation to analyse the impact of the specific modification. This study aims at 

evaluating the impact of this new evaporation scheme on soil moisture.

In the framework of the Soil Moisture and Ocean Salinity (SMOS, Kerr, 2007; Kerr et al., 2010) 

mission, ECMWF is implementing the direct assimilation of near real time brightness temperature 

(TB) in the L-band (Sabater et al., 2012). It will only be effective if realistic and dynamically 

consistent fields of TB are simulated as a function of land-surface conditions. At ECMWF the 

Community Microwave Emission Modelling platform (CMEM, Holmes et al., 2008; Drusch et al., 

2009a, de Rosnay et al., 2009) is used to simulate TB. Surface soil moisture is, amongst other surface 

fields, coupled with CMEM to produce ECMWF’s first-guess TB. The main objective of this study is 

to evaluate the new evaporation formulation on soil moisture, however as the improved bare ground 

evaporation is expected to affect surface fields such as soil moisture, it also assesses its impact on 

simulated TB. 

After a description of the ECMWF’s analysis and soil moisture products used in this study, the new 

bare ground evaporation formulation is presented followed by a description of the in situ observations 

required to evaluate soil moisture analyses. Next the CMEM platform is briefly described along with 

the remotely-sensed SMOS TB data set. Then the impact of the improved bare ground evaporation is 

assessed using (i) two offline experiments and (ii) ECMWF’s operational IFS and in situ soil moisture 

data for the period 2010-2011 (only 2010 for the offline experiments). Finally, surface soil moisture 

and soil temperature fields, as well as snow depth and density fields from the two offline experiments, 

are coupled with the CMEM platform to simulate the TB data set at a global scale; they permit the 

study of the sensitivity of CMEM to the new bare ground evaporation. Finally the two TB data sets are 

compared to SMOS TB observations for the year 2010.

2 Material and methods

In situ soil moisture observations are important for evaluating soil moisture products. In this study use 

was made of soil moisture data from the NCRS-SCAN network (Natural Resources Conservation 

Service - Soil Climate Analysis Network) in the United States (Schaefer and Paetzold, 2000). They 

were obtained through the International Soil Moisture Network (ISMN, Dorigo et al., 2011, 

http://www.ipf.tuwien.ac.at/insitu/), a new data hosting centre where globally available ground based 
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soil moisture measurements are collected, harmonized and made available to users. Data at 148 

stations in 2010 and 2011 were used to evaluate soil moisture from offline experiments and the 

operational IFS. The soil moisture data sets used in this study are presented in Table 1.

Table 1: The soil moisture products used in this study. NWP stands for numerical weather 
prediction and LSM for land-surface model.

Soil Moisture 

data set

Type Soil layer 

depth 

(cm)

Considered 

period

Spatial resolution Number of 

stations

Land use

ECMWF

operational

analysis

NWP

analysis

0-7 Jan. 2010 to 

Dec. 2011

Before 26-01-2010:

~25 km (T799)

from 27-01-2010:

~16 km (T1279)

Global 

product

Global 

product

ECMWF

BEVAP_OLD 

[control 

experiment]

ERA-Interim 

driven LSM run

0-7 Jan. 2010 to 

Dec. 2010

~80 km (T255) Global 

product

Global 

product

ECMWF

BEVAP_NEW 

[test]

ERA-Interim 

driven LSM run

0-7 Jan. 2010 to 

Dec. 2010

~80 km (T255) Global 

product

Global 

product

NCRS-SCAN (US) In situ

observations

5 Jan. 2010 

Dec. 2011

Local scale 148 

stations

Natural fallow 

or short grass

2.1 ECMWF’s land surface analysis

Data produced at ECMWF include a large variety of surface parameters that describe the atmosphere 

as well as ocean-wave and land-surface conditions (more information at: 

http://www.ecmwf.int/products/). The core atmospheric assimilation system at ECMWF relies on the 

four-dimensional variational (4D-Var) data assimilation scheme described in Rabier et al. (2000) and 

Mahfouf and Rabier (2000). It has an observation time window of 12 hours (Bouttier, 2001). Data 

provided by satellite sensors (from microwave and infrared radiometers) as well as conventional 

observations (e.g., radiosonde network) are ingested within the 4D-Var. Use is also made of surface 

observations such as surface pressure, humidity and wind. 

For several decades NWP initialisation has relied on data assimilation approaches which use satellite 

data to analyse atmospheric variables. Land-surface initialisation is generally independent from the 

atmospheric system and is based on ground measurements of screen-level variables as a proxy for soil 

moisture. In recent years, major upgrades have been implemented in the land-surface modelling and 

analysis systems of the IFS with respect to soil moisture: (i) an improved soil hydrology model 

(Balsamo et al., 2009), (ii) a new snow scheme (Dutra et al., 2010) and (iii) a multi-year satellite-based 

vegetation climatology (Boussetta et al., 2010) together with enhanced bare ground evaporation 

(Balsamo et al., 2011). Also a new soil moisture analysis scheme, based on a point-wise Extended 

Kalman Filter (EKF) for the global land surface, has been developed and this was implemented in the 

IFS (Drusch et al., 2009b; de Rosnay et al., 2011, 2012) in November 2010. 

The model forecast for the land surface analysis is provided by the TESSEL land surface scheme (Van 

den Hurk et al., 2000) which was then upgraded to H-TESSEL (Van den Hurk and Viterbo, 2003; 
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Balsamo et al., 2009) with an improved soil hydrology. H-TESSEL development was a response to 

weaknesses in the TESSEL hydrology; a Hortonian runoff scheme hardly producing surface runoff 

and the choice of a single global soil texture was not able to characterize different soil moisture 

regimes. So, for HTESSEL the formulation of the soil hydrological conductivity and diffusivity was 

revised to be spatially variable according to a global soil texture map (FAO/UNESCO Digital Soil 

Map of the World, DSMW, FAO, 2003). H-TESSEL was implemented in the IFS in November 2007. 

It was verified in various ways including field site comparison, data assimilation and modelling 

experiments by Balsamo et al. (2009). Also Albergel et al. (2012b) provide a detailed evaluation of 

HTESSEL soil moisture. Analyses are available at four depths (0-7, 7-28, 28-100 and 100-289 cm). 

The soil heat budget follows a Fourier diffusion law, modified to take into account soil water 

freezing/melting according to Viterbo et al. (1999). The energy equation is solved with a net ground 

heat flux as the top boundary condition and a zero flux at the bottom. The water balance at the surface 

(i.e. the change in water storage of the soil moisture, interception reservoir and accumulated 

snowpack) is computed as the difference between the precipitation and (i) the evaporation of soil, 

vegetation, interception water, (ii) surface and subsurface runoff. First precipitation is collected in the 

interception reservoir until it is saturated. Then, excess precipitation is partitioned between surface 

runoff and infiltration into the soil column. HTESSEL’s formulation of the soil hydrological 

conductivity and diffusivity is spatially variable according to a global soil texture map 

(FAO/UNESCO Digital Soil Map of the World, DSMW, FAO, 2003). Surface runoff is based on 

variable infiltration capacity. At the end of each data assimilation cycles an adjustment to the model 

forecast (e.g. soil moisture) is produced, it usually referred to analysis increment and represents the net 

response of the variational data assimilation to all observations used.

Three analysis schemes for the surface (and near-surface) variables are currently used in operations. 

They are based on: spatial Optimal Interpolation (2D-OI, for snow depth and screen-level analyses), 

column Optimal Interpolation (1D-OI, for soil and snow temperature analysis), and an EKF (for soil 

moisture analysis, Drusch et al., 2009b; de Rosnay et al., 2011, 2012). Analysis of surface parameters 

is decoupled from the main atmospheric analysis. Firstly an OI scheme produces estimates of screen-

level temperature and relative humidity by combining synoptic observations over land with 

background estimates (short-range forecasts) from the most recent analysis (Douville et al., 2000). 

Analysed fields of screen level temperature and relative humidity are then used to update estimates of 

soil moisture (and soil temperature) for the layers of the model using the EKF analysis. While 

producing the forecast, the model estimates a wide variety of physical variables including 

precipitation. Even if not directly observed, the model estimates are constrained by the observations 

(in situ measurements of temperature and humidity) used to initialise the forecast and their accuracy 

relies on the quality of the model physics as well as that of the analysis.

2.1.1 Soil moisture products

In this section a description is given of the major differences between the deterministic operational 

suite and the offline experiments with respect to soil moisture.

The version of IFS used in operations at ECMWF from January 2010 to December 2011 spans from 

35r3 to 37r3 (more information at: http://www.ecmwf.int/research/ifsdocs/). There are continuous 

efforts to improve the analysis and modelling schemes (i.e. changes in spatial and vertical resolutions, 

data assimilation, parameterizations and sources of data), resulting in frequent updates of the IFS (few 
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times a year). Before the implementation of cycle 36r4 in November 2010, the assimilation technique 

used was the OI (Mahfouf, 1991; Mahfouf et al., 2000b). The EKF was implemented in operations to 

optimally combine model data with conventional observations and satellite measurements. In its 

current configuration, the EKF soil moisture analysis uses meteorological observations of screen-level 

parameters close to the surface, as with the previous OI method. However due to the flexibility of 

Kalman-based techniques, the EKF can handle different sources of observations (Mahfouf et al., 2009) 

and offers a wide range of development possibilities including the use of remotely-sensed data such as 

ASCAT (Advanced Scatterometer, Wagner et al, 2007) and SMOS (Kerr, 2007; Kerr et al., 2010).The 

operational IFS soil moisture analysis is produced four times each day (i.e. at 00:00, 06:00, 12:00 and 

18:00 UTC); it has a spatial resolution of about 25 km (T799) until 26 January 2010 and then it was 

about 16 km (T1279). Analyses at 00:00 UTC are considered in this study. 

The offline experiments used in this study are based on IFS cycle 36r4. They are produced daily at 

00:00, 06:00, 12:00 and 18:00 UTC at a spatial resolution of about 80 km (T255). Offline experiments 

are a response to reproduce the land-surface model state in between two reanalyses (e.g., the two latest 

reanalyses of ECMWF are ERA-Interim, Dee et al., 2011 and ERA-40, Uppala et al., 2005). 

Reanalysis such as ERA-Interim are produced by a fixed version of the IFS (for the main component 

of the atmospheric model and data assimilation) and have the advantage of being consistent over a 

long period. Offline experiments are based on the same principle and take into account specific 

improvements implemented in the operational IFS (e.g., the ERA-Interim reanalysis land-surface 

scheme is based on the TESSEL scheme while HTESSEL is used for offline experiments in this 

study). Offline experiments can be considered as add-on before future generations of reanalysis are 

produced at ECMWF. They are driven by ERA-Interim (Dee et al., 2011) global atmospheric 

reanalysis.The difference between the two experiments concerns only the bare ground evaporation. 

For one, the bare ground evaporation over dry land has been enhanced by adopting a lower stress 

threshold than for the vegetation, allowing a higher evaporation (BEVAP_NEW). Its control 

experiment without the new bare ground evaporation is called BEVAP_OLD. 

2.1.2 New bare ground evaporation

This section gives a description of the new bare ground formulation. It is in agreement with the 

experimental findings of Mahfouf and Noilhan (1991) and results in more realistic soil moisture values 

for dry land (Balsamo et al, 2011). Indeed the evaporation from non-vegetated areas responds to a 

different physical mechanism compared to densely vegetated areas. Over bare soil the vaporisation of 

water in the soil pores takes place in a thin layer close to the surface-atmosphere interface as a direct 

effect of incoming solar radiation providing the latent heat requirements. Atmospheric conditions such 

as air temperature, humidity, wind velocity and radiation, as well as soil conditions (e.g. water content 

and roughness length) play a role in modulating the evaporation processes (Hillel, 1980). The 

relationship between soil moisture and bare soil evaporation is generally parameterized in land-surface 

models. Mahfouf and Noilhan (1991) compared several of these formulations; in these studies, bare 

soil evaporation formulations was halted when the soil is completely dry (for soil moisture close to 

zero). In the previous TESSEL scheme linking of soil moisture and evaporation was assumed to be 

linear between the permanent wilting point and the field capacity values for soil moisture. With the 

introduction of a tiling approach, the same stress function was applied to both vegetated and non-

vegetated tiles, neglecting the fact that wilting point is a soil moisture threshold that applies uniquely 



A bare ground evaporation revision in the ECMWF land-surface scheme

6 Technical Memorandum No.685

to vegetated areas. The formulation of the bare soil evaporation has been revisited in the latest 

HTESSEL version to allow a smooth transition between vegetated and non-vegetated areas and to 

realign the formulation of bare ground evaporation with studies in the literature. Evapotranspiration 

process (E) is parameterized for each tile i accounting for canopy and soil resistance as:

 ,
a

i L sat sk i

a c

E q q T
r r


   

(1)

were a is the air density, Lq is the humidity at the lowest model level,  isksat Tq , is the saturated 

humidity for the vegetation skin temperature iskT , , ar is the aerodynamic resistance and cr is the 

canopy resistance. Eq.1 is valid for vegetated and non-vegetated tile i in the absence of snow and 

interception water.

For vegetated tiles the canopy resistance is formulated according to Jarvis (1976):

1 2 3

,mins

c

r
r f f f

LAI
 (2)

with LAI prescribed from a MODIS satellite-based data set as detailed in Boussetta et al. (2011). In 

the canopy resistance formulation the min,sr is the minimum stomatal resistance and 1f and 3f are 

inhibition functions expressing the shortwave radiation deficit and atmospheric humidity deficit, 

respectively. The soil moisture inhibition function, 2f , depends on the root-zone soil wetness  rootw

normalized between the wilting point  wiltw and the field capacity  fcw therefore:

2
root wilt

fc wilt

w w
f

w w





(3)

For non-vegetated tiles cr is uniquely dependent on the soil moisture of the first soil layer, so 2f is 

modified to be computed as a function of surface soil moisture )( 12 layerwf and a minimum soil 

resistance min,soilr :

2 1,min ( )c soil layerr r f w  (4)

In the new formulation the '2f for bare ground is calculated as:

2
min

min

' root

fc

w w
f

w w





(5)

Where minw is a weighted average of the wilting point and residual soil moisture content  resw . The 

weights are given by the vegetation cover fraction veg (van den Hurk et al. 2000), so that:

1min ( ).wilt resw veg w veg w    (6)

In BEVAP_OLD experiment, Eq.3 is used while it is Eq.5 in BEVAP_NEW.
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2.2 In situ soil moisture observations: the NCRS-SCAN network

The SCAN network (http://www.wcc.nrcs.usda.gov/scan/) is a comprehensive, nationwide soil 

moisture and climate information system designed to provide data to support natural resource 

assessments and conservation activities. It is administered by the United States Department of 

Agriculture (USDA) Natural Resources Conservation Service (NRCS) through the National Water and 

Climate Centre (NWCC), in cooperation with the NRCS National Soil Survey Center. The system 

focuses on agricultural areas of the U.S.A. The observing network monitors soil temperature and soil 

moisture at several depths, soil water level, air temperature, relative humidity, solar radiation, wind, 

precipitation and barometric pressure amongst others. SCAN data are used for a variety of purpose 

ranging from global climate modelling to agricultural studies. Data are collected by a dielectric 

constant measuring device; typical measurements at 2 inches (about 5 cm) are used. The vegetation 

cover at those sites consists generally of natural fallow or short grass. In this study, all the stations of 

the NCRS-SCAN network providing data in 2010 and 2011 are retained (leading to a total of 148 

stations). Stations from this network were already been used to validate SM products from ECMWF 

(Albergel et al., 2012a, b) . The location of the stations of the NCRS-SCAN network are shown on 

Figure 1.

Figure 1: Location of the different in situ soil moisture stations used in this study (blue circles); 
the stations belong to the NCRS-SCAN network (United States). Colour scale represents the 
fraction of bare ground.
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2.3 Statistical Comparison between analysis and in situ observations

A usual step for evaluating soil moisture products from model is to determine whether their behavior 

matches the observations. Hence in situ measurements of soil moisture are a highly valuable source of 

information. For all stations, correlations (R, Eq.7), bias (in situ minus analysis), root mean square 

difference (RMSD, Eq.8) and p-value (a measure of the correlation significance) are calculated. The 

latter indicates the significance of the test; the 95% confidence interval is used in this study (as in 

Rüdiger et al., 2009; Albergel et al., 2009, 2010); only configurations where the p-value is below 0.05 

(i.e. the correlation is not a coincidence) are retained.

 

 

2

2
1

products insitu

products insitu

SSM SSM
R

SSM SSM


 






(7)

 
2

products insituRMSD SSM SSM  (8)

As in situ data may contain errors (instrumental and representativeness),  they are not considered as 

‘true’ soil moisture. This is emphasised by using the RMS difference terminology instead of RMS 

error. In situ observations of soil moisture at the NCRS-SCAN stations are associated with soil 

temperature measurements. The observations of soil moisture were flagged for temperature below 4 

degrees Celsius to avoid frozen conditions. When considering TB, the standard deviation (STD) is also 

computed.

To avoid seasonal effects, monthly anomaly time-series are calculated. The difference from the mean 

is produced for a sliding window of five weeks (if there are at least five measurements in this period), 

and the difference is scaled to the standard deviation. For each surface soil moisture estimate at day 

(i), a period F is defined, with F=[i-17, i+17] (corresponding to a five-week window). If at least five 

measurements are available in this period, the average soil moisture value and the standard deviation 

are calculated. The Anomaly (Ano) is then given by:

 
   

( ( ))

SSM i SSM F
Ano i

stdev SSM F


 (9)

The same equation is used to compute in situ anomaly time-series which can be compared with that 

from ECMWF’s analyses.

2.4 The terrestrial microwave emission modelling

2.4.1 The Community Microwave Emission Modelling (CMEM) platform

The CMEM platform has been developed by ECMWF as the forward operator for low frequency 

passive microwave TB (from 1GHz to 20 GHz) of the surface in the framework of the SMOS mission. 

CMEM is one of the ESA (European Space Agency) SMOS tools and it is available to the entire 

community through the ECMWF web pages: 

http://www.ecmwf.int/research/ESA_projects/SMOS/cmem/cmem_doc.html. 



A bare ground evaporation revision in the ECMWF land-surface scheme

Technical Memorandum No.685 9

CMEM represents the top of atmosphere TB as a result of the contributions from the following 

dielectric layers: soil, vegetation and atmosphere. The physics of CMEM is based on the 

parameterizations used in the L-Band Microwave Emission of the Biosphere (L-MEB, Wigneron et 

al., 2007) and the Land Surface Microwave Emission Model (LSMEM, Drusch et al., 2001); it 

includes a modular choice of the physical parameterizations for the various dielectric layers. Multiple 

parameterizations for the dielectric constant, the effective temperature, the smooth emissivity, soil 

roughness, vegetation optical depth and the atmospheric opacity lead to 1440 combinations when 

using CMEM (de Rosnay et al., 2009). The best CMEM configuration according to the finding of de 

Rosnay et al. (2009) is retained for this study. Sabater et al. (2011) also used this configuration, 

replacing however the soil roughness parameterization of Choudhury (1979) by the one proposed by 

Wigneron et al. (2001), because the former showed little sensitivity over larger regions. 

2.4.2 SMOS brightness temperature

SMOS consists in a microwave imaging radiometer with an aperture synthesis collecting top of 

atmosphere full polarized radiances coming from the scene viewed by its antennas through their power 

patterns. It is a Y-shaped instrument with several elementary antennas regularly spaced along the arms 

(69 in total) which provide, at each integrations step, a full image (circa 1000x1200 km) at either two 

polarisations or full polarisation, of the Earth’s surface (Kerr et al., 2007, 2010). The spatial resolution 

is about 40 km and the globe is fully imaged at least twice every three days (ascending and descending 

orbits). Any points at the surface are viewed frequently at different angles and polarisations. The 

angular information is used to separate the different contributions (soil-vegetation) to the signal 

(Wigneron et al., 2000). The signal measured at satellite level is a TB for the L-band consisting of four 

main contributions: (i) the up-welling atmospheric emission, (ii) the Earth’s surface emission, 

attenuated by the atmosphere, (iii) the atmospheric down-welling atmospheric emission reflected at 

the surface and attenuated along the upward path by the atmosphere, and (iv) the cosmic background 

emission attenuated by the atmosphere, reflected at the surface and attenuated again along the upward 

path by the atmosphere. SMOS Near Real Time (NRT) products are processed at the European Space 

Astronomy Centre (ESAC) and sent to ECMWF via the SMOS Data Processing Ground Segment 

(DPGS) interface. ECMWF is involved in global monitoring and data assimilation of the SMOS 

mission data. The development of a data monitoring system for the SMOS near real time product 

provides a timely quality check for the European Space Agency (ESA) and the SMOS calibration and 

validation teams. More information and comparison between SMOS data and modelled TB are 

available through ECMWF web pages: 

http://www.ecmwf.int/research/ESA_projects/SMOS/index.html.
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3 Results

3.1 Impact of the new bare ground evaporation on soil moisture

3.1.1 Using Offline experiments

Figure 2 illustrates the mean soil moisture for both BEVAP_OLD and BEVAP_NEW for August 

2010. A simple look at Figures 1 and 2 show that areas with a high fraction of bare soil are drier with 

BEVAP_NEW than with BEVAP_OLD. The statistical scores for the comparison between either 

BEVAP_OLD or BEVAP_NEW and the stations from the NCRS-SCAN network are presented in 

Table 2. As indicated in NCRS-SCAN website, data are provisional and subject to revision, very little 

control is applied to measurements from NCRS-SCAN. Dharssi et al. (2011) used a simple process to 

identify stations where sensors might be dysfunctional. Stations are rejected based on the scores 

obtained when compared to their experiments (in term of correlations, RMSDs and biases). As this 

study aims to assess the impact of the new bare ground experiment, mostly in term of RMSD, a similar 

is applied based only on the correlation level. Stations for which either BEVAP_OLD or 

BEVAP_NEW have a correlation less than 0.3 are rejected (as in Dharssi et al., 2011). 

Table 2: Statistical scores for the comparison between ECMWF surface soil moisture (offline 
experiments, BEVAP_OLD and BEVAP_NEW) and in situ data for all the stations from the NCRS-
SCAN (U.S.A.) network over the 2010 period.

Soil Moisture

data set
N stations R

R 

Anomaly
Bias (m3m-3)

RMSD 

(m3m-3)

ECMWF

BEVAP_OLD

[control experiment]

122 0.60 0.54 -0.095 0.135

ECMWF

BEVAP_NEW

[test]

122 0.62 0.55 -0.064 0.124

Table 3: Biases between BEVAP_OLD (control experiment) and in situ data from the stations of 
the NCRS-SCAN network in 2010. Fraction of bare ground is used as a filter to compute Biases.

Fraction of bare ground 

threshold considered
N stations

BEVAP_OLD

[control experiment]

Bias (m3m-3)

0.1 57 -0.079

0.2 35 -0.095

0.3 35 -0.095

0.4 33 -0.094

0.5 28 -0.100

0.6 28 -0.100

0.7 28 -0.100

0.8 24 -0.103
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This rather strict process has probably removed some good stations too (e.g. in areas where the model 

might not realistically represent soil moisture). Also, stations with a non-significant correlation are 

rejected (p-value < 0.05). This filtering of the NCRS-SCAN stations, results in 122 stations being 

available (out of 148) for the comparison of the two offline experiments. Table 3 presents the bias 

between stations of the NCRS-SCAN network and BEVAP_OLD. When biases are computed for 

stations with a fraction of bare soil greater than 0.6, bias in on average -0.100 m3m-3, it is -0.079 m3m-3

when computed for stations with a fraction of bare soil greater than 0.1. These results indicate that 

ECMWF soil moisture product negatives (wet) biases are more pronounced in areas with a high 

fraction of bare soil and comfort the modification of the wilting point in Eq.3 to a weighted average of 

the wilting point in Eq.5, taking into account the vegetation cover fraction (Eq.6). For all stations, the 

average correlations for volumetric time-series are 0.60 for BEVAP_OLD (control) and 0.62 for 

BEVAP_NEW (test). Biases (in situ minus analyses) are on average -0.095 m3m-3 and -0.064 m3m-3, 

RMSDs are 0.135 m3m-3 and 0.124 m3m-3 for BEVAP_OLD and BEVAP_NEW, respectively. Despite 

a small decrease in RMSD for BEVAP_NEW, both values are high. The new formulation (Eq.5) is 

expected to enhance evaporation over bare ground, hence for each station, the fraction of bare ground 

(according to the model) was used as a filter to evaluate the impact of the new formulation on RMSD. 

The RMSD difference between BEVAP_OLD, BEVAP_NEW and stations of the NCRS-SCAN 

network as a function of the fraction of bare ground is displayed on Fig. 3. It identifies a threshold 

value (0.2) below which the fraction of bare soil is too small for the new formulation to have an 

impact on RMSD. When scores are computed for stations with a fraction of bare ground greater than 

or equal to 0.2 (35 stations with significant R values), the correlations, biases and RMSDs are 0.63, -

0.086 m3m-3, 0.118 m3m-3 for BEVAP_OLD and 0.65, 0.0007 m3m-3, 0.087 m3m-3 for BEVAP_NEW. 

This decrease in the RMSD for BEVAP_NEW (from 0.118 m3m-3 to 0.087 m3m-3), leading to a more 

realistic soil moisture product regarding the in situ data, is attributed only to the new bare ground 

evaporation formulation. Figure 4 illustrates the two offline runs as well as the in situ observations for 

one site located in Utah. Minimum values of BEVAP_OLD soil moisture are limited by the dominant 

wilting point for vegetation types, however ground data indicate much drier conditions, as is clearly 

observed from May to September 2010. The new bare ground evaporation allows the model to go 

below this wilting point so the BEVAP_NEW analysis is in much better agreement with the 

observations than that for BEVAP_OLD. Along with the decrease in RMSD, one may note an increase 

in the correlation (from 0.63 to 0.65). Also BEVAP_NEW has a more realistic decrease in soil 

moisture after a precipitation event due to its higher water holding capacity and this explains the 

slightly better correlations.

Considering the short-term variability, the average correlations for the monthly anomaly time series 

are 0.54 for BEVAP_OLD and 0.55 for BEVAP_NEW. Correlations of volumetric time series are 

larger than those for the monthly anomaly time-series. The good level of correlation of the volumetric 

time series is largely explained by seasonal variations, which are suppressed in monthly anomalies.
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Figure 2: Mean soil moisture for BEVAP_OLD (letf) and BEVAP_NEW (right) (August 2010).

Figure 3: Soil moisture RMSD between BEVAP_OLD and BEVAP_NEW as a function of the 
fraction of bare ground (black solid curve, left y-axis), the number of in situ stations used (for 
which significant correlation is obtained between observations and model time-series) is also 
presented (black dots, right y-axis). The dashed line represents a bare soil fraction threshold 
below which the sensitivity of soil moisture to the new evaporation formulation  is less 
pronounced.

Figure 4: Illustration of volumetric soil moisture time-series used in this study for one site in Utah 
(Tule Valley) for 2010. The black line is for BEVAP_OLD (control experiment without the new 
bare ground evaporation formulation), green line is for BEVAP_NEW (test with new formulation) 
and red dots are for in situ observations of soil moisture. 
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3.1.2 Using the operational product

The new bare ground evaporation formulation was implemented in operations in November 2010. Its 

impact on the operational analysis was assessed for the 2010-2011 period. Results are presented in 

Table 4 and illustrated by Figure 5. The same threshold of 0.2 for the fraction of bare ground was 

used. The correlations, bias and RMSD are 0.59, -0.076 m3m-3 and 0.110 m3m-3 for 2010 and 0.69, -

0.010 m3m-3, 0.088 m3m-3 for 2011. Figure 5 illustrates the soil moisture time-series for three stations 

with different fraction of bare ground (~0.46,~0.79 and ~0.15 from top to bottom). Compared to 2010, 

the station with a fraction of bare ground of 0.79 has a lower value of RMSD in 2011 than a station 

with a fraction of 0.15. As for BEVAP_OLD and BEVAP_NEW, the operational analysis is in much 

better agreement with the observations for 2011 (with the new bare ground evaporation) than for 2010; 

this is particularly clear for the period from May to September 2011 (see Figure 5). If the decrease in 

RMSD is associated with the new bare ground evaporation, the increase in correlation (from 0.59 to 

0.69) is mainly due to the new EKF analysis (also, in situ data are different). As demonstrated in 

Albergel et al. (2010) and de Rosnay et al. (2011, 2012) the use of the EKF permits to increase the 

quality of the soil moisture product compare to the former OI method. The higher water holding 

capacity observed for 2011 also helps in this way (more realistic decrease of soil moisture after a 

precipitation event). Correlations of anomaly time-series are 0.53 and 0.54 for 2010 and 2011, 

respectively.

Table 4: Statistical scores for the comparison between ECMWF operational soil moisture analysis 
for 2010 and 2011. The new bare ground evaporation formulation was implemented in November 
2010. Only stations where the model has a fraction of bare ground greater than or equal to 0.2 
were used.

Soil Moisture

data set
N stations R R Anomaly Bias (m3m-3)

RMSD 

(m3m-3)

ECMWF

Operational analysis 2010
35 0.59 0.53 -0.076 0.110

ECMWF

Operational analysis 2011
35 0.69 0.54 -0.010 0.088
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Figure 5: Time-series of the operational volumetric soil moisture analysis for three sites in Utah 
for the 2010-2011 period. The black solid line becomes green when the new bare ground 
evaporation formulation is implemented in November 2010. Red dots are for in situ observations 
of surface soil moisture. Fraction of bare ground (according to the model) for each site is 
indicated. The dashed line represents the model minimum soil moisture limit before the 
implementation of the new bare ground evaporation (permanent wilting point).

3.2 Impact of the new bare ground evaporation on terrestrial microwave emission 

and comparison with SMOS

The differences between the TB simulated using surface fields from BEVAP_NEW and the one from 

BEVAP_OLD are computed for each month of 2010, for both H (horizontal) and V (vertical)  

polarizations (referred to as TBH and TBV) and an incidence angle of 40º, for 06:00UTC and 

18:00UTC. It is useful to study the sensitivity of the simulated TB to the bare soil parameterization as 

a better representation of soil moisture should lead to more realistic TB, a pre-requisite for SMOS data 

assimilation. In terms of mean difference, BEVAP_NEW soil moisture is drier than BEVAP_OLD, so 

simulated TB are larger with the BEVAP_NEW surface fields. For TBH (18:00 UTC) the global 

monthly mean bias between the two data set range from 4.72 K to 7.01 K, with an annual value of 6.2 

K. For TBV (18:00 UTC), global monthly mean biases range from 2.94 K to 4.14 K, with an annual 

mean difference of 3.7 K. Statistical scores are summarized in Table 5 and Figure 6 provides a map of 
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the differences between the simulated TB for one month (August 2010 at 06 UTC) and one 

polarization (H). For this month, mean differences are 6.87 K and 3.96 K, with STD of 15.58 K and 

9.04 K, for TBH and TBV, respectively (at 06 UTC). Positive differences are found in relatively dry 

areas. A look at the North American continent shows that large differences are found in the western 

part of the United States, where there is a high fraction of bare ground (accordingly to Figure 1). 

Figure 7 shows, (i) the global monthly mean sensitivity between the two TB and (ii) the spatial 

correlations between each TB data sets and the fraction of bare ground. As expected, there is a slight 

annual cycle due to the larger distribution of the continental areas in the northern hemisphere. Spatial 

correlations between bare ground and TB mean sensitivity are on average 0.66 and 0.65 for TBH (06 

UTC and 18 UTC), and 0.61 and 0.61 for TBV (06 UTC and 18 UTC). 

Figure 6: Map of differences between TB (horizontal polarisation, 40º incidence angle in K) 
simulated using model fields from BEVAP_NEW and BEVAP_OLD for August 2010 (06 UTC).

Figure 7: (left) Brightness temperature global monthly mean sensitivity to the new bare soil 
parameterization for 2010 (solid and dashed lines), (right) spatial correlation between the fraction 
of bare ground and the brightness temperature global monthly difference (stars and diamonds). 
Both horizontal and vertical polarizations (40º incidence angle) are represented for 06 UTC and 
18 UTC.



A bare ground evaporation revision in the ECMWF land-surface scheme

16 Technical Memorandum No.685

Table 5: Monthly mean statistics of the difference between simulated TB in BEVAP_NEW and 
BEVAP_OLD. Statistics are given for both horizontal and vertical polarizations, at 06 UTC and 
18 UTC, based on 40º incidence angle simulated TB.

2010 TBH (BEVAP_NEW) - TBH (BEVAP_OLD) TBV (BEVAP_NEW) - TBV (BEVAP_OLD)

06UTC 18UTC 06UTC 18UTC

Mean 

Bias (K)

SD

(K)

Mean 

Bias (K)

SD

(K)

Mean 

Bias (K)

SD

(K)

Mean 

Bias (K)

SD

(K)

January 5.01 13.03 4.88 12.75 3.17 8.05 3.06 7.85

February 4.93 12.79 4.72 12.49 3.06 7.82 2.94 7.62

March 5.57 13.76 5.37 13.56 3.37 8.22 3.27 8.18

April 6.19 15.07 6.13 15.05 3.68 9.00 3.70 9.15

May 6.59 15.46 6.66 15.69 3.90 9.19 4.01 9.50

June 6.84 15.77 6.97 16.08 3.94 9.12 4.11 9.50

July 6.64 15.31 6.77 15.64 3.85 8.86 4.01 9.26

August 6.87 15.58 7.01 15.95 3.96 9.04 4.14 9.47

September 6.74 15.38 6.86 15.69 3.97 9.11 4.12 9.47

October 6.77 15.63 6.80 15.82 4.03 9.40 4.12 9.66

November 6.63 15.49 6.50 15.40 4.04 9.52 3.99 9.55

December 5.98 14.71 5.75 14.32 3.67 9.09 3.54 8.84

Table 6: Monthly mean statistics of the difference between SMOS TB observations and simulated 
TB. Results are given at 06 UTC, for both BEVAP_OLD and BEVAP_NEW, at both horizontal and 
vertical polarizations, based on 40º incidence angle observed and simulated TB.

2010

TB (BEVAP_OLD) 06UTC TB (BEVAP_NEW) 06UTC

TBH TBV TBH TBV

Mean 

Bias (K)

SD

(K)

Mean 

Bias (K)

SD

(K)

Mean 

Bias (K)

SD

(K)

Mean 

Bias (K)

SD

(K)

January 28.6 28.6 12.8 21.0 22.4 27.6 9.0 20.7

February 28.9 28.1 12.7 20.8 22.9 27.1 9.3 20.6

March 29.5 29.7 12.7 24.3 23.2 28.8 8.9 21.6

April 29.8 29.1 13.7 20.4 23.4 28.6 9.9 20.9

May 31.5 28.0 14.4 20.0 24.4 27.7 10.2 20.7

June 32.6 28.9 14.8 21.1 25.5 28.7 10.6 21.7

July 31.7 28.2 14.1 20.4 24.8 28.3 9.9 21.0

August 33.4 28.8 15.4 20.5 58.8 29.8 11.1 21.4

September 34.2 29.1 16.5 20.7 26.6 30.3 12.1 21.8

October 33.5 28.7 15.4 20.0 25.65 29.6 10.8 20.9

November 32.4 28.2 14.3 19.8 24.4 28.6 9.5 20.4

December 30.0 28.2 14.5 20.4 23.8 28.1 10.8 20.4
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Both TB data sets are compared to SMOS TB observations at 06 UTC, at an incidence angle of 40 

degrees (more data available). Radio frequency interference (RFI) disturbs the natural microwave 

emission observed by SMOS (Zribi et al., 2011). At an acquisition time of 06 UTC SMOS data are 

mainly observed over Western Europe and Africa, areas known to be less affected by RFI than others 

(such as Central Europe for instance). Results are presented in Table 6, it shows that BEVAP_NEW 

TB are in better agreement with SMOS than BEVAP_OLD TB, with large differences however.  The 

mean difference (for 2010) between SMOS and BEVAP_NEW TBH is 10.2 K (STD of 21 K) and 

14.5 K (STD of 20.8 K) when considering BEVAP_OLD TBH. Values are higher for TBV than for 

TBH.

4 Discussion

While previous studies (Albergel et al., 2012a, b) have demonstrated the good ability of ECMWF 

analyses to represent the soil moisture annual cycle as well as its short-term variability, they have also 

shown an overestimation of soil moisture. The modification of the soil moisture inhibition function 

(Eq.5) in the new bare ground evaporation formulation allows a much lower level of soil moisture to 

be reached over bare soil areas as a consequence of direct bare ground evaporation under strong 

insulation. Results are more realistic when compared to in situ soil moisture values observed over dry 

areas; they have a smaller RMSD but also a slightly better correlation. The larger water holding 

capacity induced by the new bare ground evaporation provides a more realistic decrease in soil 

moisture after a precipitation event. This explains the slightly better correlations obtained with the new 

formulation for the offline experiments for both the volumetric and the monthly anomaly time-series. 

Indeed, the latter reflects the time-integrated impact of antecedent meteorological forcing (e.g., 

precipitation). ECMWF analyses do not assimilate ground-based observation of precipitation. Over 

land the information used by the model to generate rain is strongly constrained by in situ 

measurements of temperature and humidity. The use of precipitation data in the analysis continues to 

be studied at ECMWF. Lopez (2011) has demonstrated a positive impact on model performance of the 

direct 4D-Var assimilation of 6-hourly radar and rain-gauge rainfall accumulations. Considering all 

the stations (122) the differences in RMSDs between the two offline experiments is not very 

important, 0.135 m3m-3 and 0.124 m3m-3 for BEVAP_OLD and BEVAP_NEW, respectively. 

However, if a threshold of 0.2 for the fraction bare ground is set this difference increases to 0.118 

m3m-3 and 0.087 m3m-3. At the spatial resolution of BEVAP_NEW and BEVAP_OLD ECMWF 

considers that about 46% of the land is covered by a fraction of bare ground more than or equal to 0.2. 

Similar RMSDs are obtained with the operational IFS soil moisture product; in 2010, the RMSD is 

0.110 m3m-3 and 0.088 m3m-3 in 2011 (new bare ground evaporation implemented in November 2010). 

Results from the recent land surface model developments at ECMWF were evaluated using a land 

surface benchmarking database gathered for this purpose. Those included field sites from the 

FLUXNET (http://www.fluxdata.org/) and CEOP (http://www.ceop.net/) observing networks where 

latent heat, sensible heat and carbon dioxide fluxes measurements are available. For instance, The land 

surface fluxes results from offline-runs indicated an average improvement of 8%, when adopting the 

HTESSEL (BEVAP_NEW) scheme in replacement of the former TESSEL scheme evaluated as 

RMSD reduction on both the latent and sensible heat fluxes measured over 36 FLUXNET and CEOP 

flux-towers for 2004 (Balsamo et al., 2012). In the same way, future activities will concern the 

evaluation of the impact of BEVAP_NEW with respect to BEVAP_OLD in term of surface fluxes. 
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The new bare ground parameterization also shows a consistent signal with the L-band microwave 

emission. Changes in TB with respect to changes in soil moisture as a result of the new bare ground 

evaporation is found to be close to 15 K and 10K in H and V polarizations, respectively. As the 

BEVAP_NEW soil moisture is drier than BEVAP_OLD, the simulated TB are larger with 

BEVAP_NEW surface fields. The latter are closer to SMOS observations but with still large global 

mean differences and standard deviation  (about 10 K and 20 K, respectively). These residual biases 

are also related to other factors such as the SMOS instrument or input parameters of the radiative 

transfer model, which are not straightforward to assess. Radio frequency interferences affecting the 

SMOS measurements could also be responsible of the bias. CMEM configuration used in this study is 

based on de Rosnay et al., 2009 and Sabater et al, 2011 using AMSR-E C-band data and local L-band 

data, respectively. Results presented in this study are very preliminary and a full calibration of the 

CMEM platform, underway at ECMWF for SMOS activities, should lead to more realistic simulated 

TB, in better agreement with SMOS data. 

5 Conclusions 

This study investigated the new bare ground evaporation formulation implemented in operations at 

ECMWF in November 2010. Bare ground evaporation over dry lands has been increased by adopting 

a lower stress threshold than for the vegetation, allowing a higher evaporation. Its impact on soil 

moisture is assessed as well as on the representation of terrestrial microwave emission. The latter is of 

particular interest for the planned use of SMOS brightness temperature within the new land-surface 

analyses; it will be effective only if realistic and dynamically consistent fields of brightness 

temperature are simulated as a function of the land-surface conditions. ECMWF has developed offline 

experiments to assess the impact of model changes. They are produced by a fixed version of the IFS 

(and used atmospheric forcing from ERA-Interim) while the operational product is based on a 

continuous effort to improve the analysis and modelling schemes, resulting in frequent updates of the 

system (few times a year). So offline experiments make it possible to study the impact of a single 

modification in the land surface modelling. Even if they are at a coarser spatial resolution than the 

operational product, they have the benefit of being less time-consuming and are very useful between 

the completion of future reanalyses of ECMWF. 

In situ soil moisture from 122 stations (over 148 available) of the NCRS-SCAN network from all over 

the United States are used to evaluate the new bare ground evaporation formulation over two periods, 

2010 and 2010-2011. It was first assessed using offline experiments to isolate its impact (2010 only) 

and then using the IFS operational product (2010-2011). The new scheme results in more realistic soil 

moisture values, particularly for dry areas; a decrease of about 26% in RMSD is obtained between the 

two offline experiments when considering the fraction of bare ground that has a threshold greater than 

or equal to 0.2 (from 0.118 m3m-3 to 0.087 m3m-3). Slightly higher levels of correlations were also 

obtained. The same conclusion is reached with the IFS operational analysis where a better agreement 

with in situ data was found in 2011 than in 2010. More realistic soil moisture also lead to better initial 

fields for simulating brightness temperature with the CMEM platform, a pre-requisite for SMOS data 

assimilation. This preliminary study demonstrated a better agreement between SMOS data and 

simulated brightness temperature with surface fields from the new bare ground evaporation. Future 
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improvments of the land-surface physics will focus on evaporation from free water surface such as 

intercepted water on leaves.
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