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Overview

Why are mixed-phase clouds so poorly captured in GCMs?
- These clouds are potentially a key negative feedback for climate

- Getting these clouds right requires the correct specification of
turbulent mixing, radiation, microphysics, fall speed, sub-grid
structure etc.

What is the minimum complexity capable of capturing mixed-phase?
- Do we need prognostic ice nuclei?

Vertical resolution is a key issue for representing thin liquid layers
- Can we devise a scale-independent parameterization?

Use a 1D model and long-term cloud radar and lidar observations
- Easy to perform many sensitivity studies to changed physics
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Mixed-phase cloud radiative feedback
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e Increase in polar boundary-layer and
mid-latitude mid-level clouds

Clouds more likely to be liquid phase:
lower fall speed so more persistent

Higher albedo -> negative climate
feedback (Mitchell et al. 1989)

Depends on questionable model physics!
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Important processes in altocumulus

Longwave cloud-top cooling
Supercooled droplets form

Cooling induces upside-
down convective mixing

Some droplets freeze

Ice particles grow at
expense of liquid by
Bergeron-Findeisen

Ice particles fall out of layer

Most previous studies (e.g.
Xie et al. 2008) in Arctic:
surface fluxes important

e Many models have prognostic cloud water content, and temperature-
dependent ice/liquid split, with less liquid at colder temperatures
- Impossible to represent altocumulus clouds properly!

 Newer models have separate prognostic ice and liquid mixing ratios

- Are they better at mixed-phase clouds?
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Estimate ice water content from radar
reflectivity factor and temperature

Estimate liquid water content from microwave
radiometer using scaled adiabatic method
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1D "EMPIRE" model

Single column model - Variables conserved under moist
High vertical resolution adiabatic processes:
- Default: Az = 50m »  Total water (vapour plus liquid):
Five prognostic variables _
e 4, =4 T q,

- u,v,6,q;and g,
Default: follows Met Office model | Liquid water potential femperature

- Wilson & Ballard microphysics 0 =0 _Qiq

- Smith (1990) sub-grid ¢, ! T C l

- Local and non-local mixing P

- Explicit cloud-top entrainment
Frequent radiation updates (Edwards & Slingo scheme)
Advective forcing using ERA-Interim

Flexible: very easy to try different parameterization schemes
- Coded in matlab

Each configuration compared to set of 21 Chilbolton altocumulus days



EMPIRE model simulations
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Effect of turbulent mixing scheme

e Quite a smgll effect!
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Effect of vertical resolution
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Effect of ice growth rate
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Summary of sensitivity tests

Main model sensitivities appear to be:

e Vertical resolution
- Can we parameterize the sub-grid vertical distribution to get the
same result in the high and low resolution models?
e Ice growth rate

- Is there something wrong with the size distribution assumed in
models that causes too high an ice growth rate when the ice water
content is small?

e Ice cloud fraction

- In most models this is a function of ice mixing ratio and
temperature

- We have found from Cloudnet observations that the temperature
dependence is unnecessary, and that this significantly improves the
ice cloud fraction in clouds warmer than -30°C (not shown)

Apparently less important:
e Sub-grid mixing specification, radiation timestep (surprising!)



Resolution dependence: idealised simulation
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Resolution dependence
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Effect 1: thin clouds can be missed

6, ¢ T q
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| Gridbox-mean
lliquid can be

: parameterized

e Consider a 500-m model level at the top of an altocumulus cloud

e Consider prognostic variables 6, and g, that lead to g,= 0

- But layer is well mixed which means that even though prognostic
variables are constant with height, T decreases significantly in layer

- Therefore a liguid cloud may still be present at the top of the layer




Effect 2: Ice growth too high at cloud top

Diffusional growth:
dq.
% = AD(RH, —1) o ¢**(RH, 1)
l

g; = ice mixing ratio, ice diameter D oc g
RH; = relative humidity with respect to ice

- g, zero at cloud top: growth too high d

aq;

RH; q; dt

Assume linear g;
profile to enable
gridbox-mean
growth rate to
x be estimated:

| significantly

: lower than
before

100% 0 0



Parameterization at work
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Parameterization at work

New parameterization works well over full range of model resolutions

After 2 hours
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Typically applied only at cloud top, which can be identified objectively



Standard ice particle size distribution

log(N) e “Marshall-Palmer”
1 inverse exponential
used in all situations
e Simply adjust slope
to match ice water
content

- Wilson and Ballard
scheme used by Met
N Office

S - Similar schemes in
> many other models

N, = 2x10° Increasing ice

- Wwater content

e But how does calculated growth rate versus ice water
content compare to calculations from aircraft spectra?



Ratio of parameterization to aircraft spectra

Parameterized growth rates

Calculated total growth rate
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Ice clouds with low
water content:

- Ice growth rate
too high

- Fall speed too low

Liquid clouds depleted
too quickly!



Adjusted growth rates
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Conclusions

Why are mixed-phase clouds so poorly captured in GCMs?
- Two key effects that lead to ice growth too fast at cloud top

Sub-grid structure in the vertical

- Strong resolution dependence near cloud top; can be parameterized
to allow liquid layers that only partially fill the layer vertically

- We have parameterized effect on liquid occurrence and ice growth

Error in assumed ice size distribution
- More realistic size distribution has fewer, larger crystals at cloud top
- Lower ice growth and faster fall speeds so liquid depleted more slowly
- Need to check with aircraft data free of shattering

Ground-based radar and lidar observations very useful
- Can develop GCM-type schemes without LES as an intermediary

Implications for large scale models

- NWP: Richard Forbes shown large surface temperature errors unless
cloud-top ice growth scaled back: now has physical basis

- Climate: urgent need to re-evaluate mixed-phase cloud contribution to
climate sensitivity using models with better physics
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Use "DARDAR"” CloudSat-
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How well is mean cloud
fraction modelled?

- Tend to underestimate
mid & low cloud fraction

How good are models at
forecasting cloud at right
time? (SEDI skill score)

- Winter mid to upper
troposphere: excellent

- Tropical mid to upper
troposphere: fair

- Tropical and sub-tropical
boundary layer: virtually
no skill!

Hogan, Stein, Garcon &
Delanoe (in prep)
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Pressure (hPa)

Radiative properties

e Using Edwards and Slingo (1996) radiation code
o Water content in different phase can have different radiative impact
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Cloudnet processing
e Illingworth, Hogan et al. (BAMS 2007)
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