Evaluating the ECMWF model's clouds and radiation with ARM observations

Maike Ahlgrimm, Richard Forbes, Irina Sandu, Peter Bechtold
Radiation and precipitation are two big reasons why we care about clouds in models

- Evaluation products for radiation (especially TOA fluxes) and precipitation are readily available and pretty well established
- Invariably, the model will fall short in some area
Challenge: Link model errors to specific aspect of model that needs to be improved

- Under what conditions does error occur?
- Can the error be linked to a particular parameterization or aspect of model?
- Compensating errors - need to identify, then address jointly
- “Right result for the right reason”
Ground-based observations well suited to establish link with parameterized process

- Provides vertically resolved cloud macrophysical and microphysical properties in conjunction with radiative observations
- Model parameterization based on (incomplete) understanding of processes, few idealized LES cases
Example: Identify bias in TOA net SW radiation

- Cloud forcing underestimated in Sc regions, southern ocean, North American continent (ARM SGP site)
- Cloud forcing underestimated in trades
Can same biases be found in ground based observations?

- About 50Wm$^{-2}$ SW bias at noon
- Which clouds/situations/conditions contribute to the radiation bias?

Yes!
A priori guess: fair weather cumulus clouds?

Composite of 146 days with fair weather cumulus

Cloud forcing spot-on but cloud fraction low

-> identified compensating errors, but not the cause of SW bias
Can we identify a cloud type that systematically contributes to the SW bias? Instead of starting with a priori guess of cloud type, be guided by SW bias.

- Classify cloud layers based on cloud base and thickness
- **Sort sample pairs** (consisting of one hourly sample each from obs and model) **into categories based on cloud type combinations**
- Rank cloud type combinations by how much they contribute to the SW bias (using cumulative SW bias of each combination as measure)
Use radiation bias to identify regimes of interest. Subset: observed and modeled low clouds

- Not enough SW reaching surface
- Too much SW reaching surface
- Lack of cloud occurrence /fraction
- Broken clouds too reflective
- Clouds not reflective enough

Diagram: Contribution to multi-year accumulated SWDN bias from samples with observed and modeled low clouds.
Do conclusions apply at other locations?

Joint PDFs of modeled and observed total cloud cover from Graciosa

Model rarely has fractions between 50-90%.

Even for correctly forecast cloud fraction, <80% CF clouds too optically thick, >80%CF too optically thin.
Create link to model’s parameterization

- Which model routines contribute to the generation of the clouds?
- Is the scheme intended to deal with regime producing cloud? (Triggering)
- If the intended scheme is active, is it producing the clouds as observed? (No, or we wouldn’t have a problem!)
- Can we find measurements to constrain parameterized processes in parameterization?
Overview of BL/low cloud parameterizations (EDMF scheme)

- **Surface buoyancy**
 - Stable BL
 - Convective BL

- **Test parcel ascent**
 - No LCL found
 - LCL found

- **Dry convective BL**
 - Stable lower troposphere
 - Stratocumulus

- **Moist convective BL**
 - Stability criterion not met
 - Shallow convection

(independent)
SCM stratocumulus study on triggering: Which parameterization is active?

Cloud breaks up

Cloud Fraction

RH

LWP

Low LWP

“dry” BL, no cloud base found, Shallow convection active

“borderline” stratocumulus case
Parameterization trigger: SCM experiment

Parcel rises higher, finds cloud base

Stratocumulus parameterization active

Higher cloud fraction and LWP

Lower entrainment in test parcel
Impact of trigger experimentation on BL type

Test parcel reaches cloud base more frequently, stratocumulus and decoupled BL more common.
Impact of trigger experimentation on TOA SW radiation

Improved TOA radiation for stratocumulus!
Cloud microphysics: water path and radiative properties

High LWP too frequent
Low LWP too frequent
Model overestimates Reff

ARM SGP
Summary

• Example of a strategy to link model error directly to parameterization

 • Stratify observations by meteorology/regime/type that is relevant to model error and parameterization/scheme

 • Identify compensating errors

 • Address all aspects at the same time, else lack of compensation leads to worse results

• Ground-based obs from multiple instruments may provide statistics of quantities (or their distributions) parameterized in GCM based on few LES cases – over long time period and many “real life” conditions
Other observational products potentially useful to constrain model parameterizations
Doppler Radar – mass flux, higher order moments

Example of MMCR recorded Doppler spectral moments. (top) Reflectivity, (middle) Doppler velocity, and (bottom) spectrum width as observed on 25 March 2005. Also shown are the determined cloud boundaries.

BL depth normalized profiles of hourly averaged (a) reflectivity, (b) vertical velocity, (c) fraction, and (d) mass flux for all, core, and vertically coherent updraft samples. Ghate et al. 2011
Vertical motion in subcloud layer: VV statistics, plume dimensions

Example of time–height mapping of (a) MMCR reflectivity factor during a cumulus-topped event on 22 Jul 2006. Red dots indicate the cloud bases measured from a ceilometer. Black lines indicate the objectively defined hourly ILH. (b) MMCR Doppler velocity for the period 1200–1400 LST. (c) MMCR reflectivity for the period 1200–1400 LST.

Chandra et al. 2010
Drizzle retrievals

(a) Drizzle Median Diameter

(b) Drizzle Shape Parameter

(c) Drizzle Liquid Water Content

(d) Drizzle Liquid Water Flux

O’Connor et al. 2005
Question whether variability in time translates into variability in space (Johannes).

http://www.arm.gov/news/facility/post/11211
References

