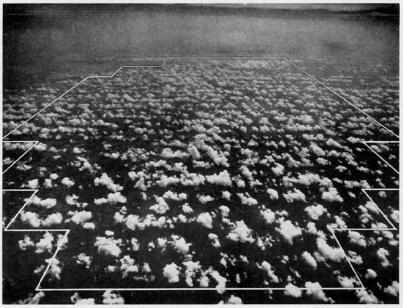
Towards scale-adaptivity and model unification in the representation of moist convection



Plank, J App Met, 1969

Roel Neggers

Entering the grey zone: The problem of scale-adaptivity

Population dynamics: Predator-prey models

A scale aware mass flux scheme based on resolved size densities

Example

Outlook

Entering the grey zone

Our computers are getting better and faster \longrightarrow Discretizations get finer

What does this imply for parameterizations of subgrid-scale processes?

For example:

- * Previously unresolved processes get partially resolved
- * PDFs of variability in nature get under-sampled in the gridbox
- * How to deal with existing closures? Adapt, or discard and start from scratch?

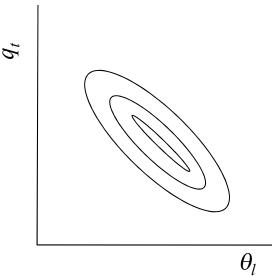
Example: Boundary-layer schemes

Common goal:

To reproduce in some way the turbulent/convective PDF in temperature, humidity, vertical velocity, etc.

Various methods have been tried:

- * Bulk
- * Joint-PDF
- * Multi-variate PDF
- * Multi-parcel
- * Higher-order closure techniques
- * ... combinations of the above



However, not many methods exist that express variability in terms of the scale / size of the processes behind it

This knowledge (or "scale-awareness") is required to make parameterizations scale-adaptive

Scale-adaptivity

What do we mean by that?

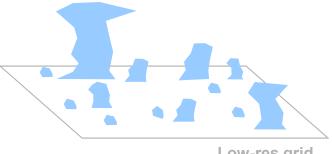
When a SGS parameterization is adaptive to the discretization-size of the 3D hostmodel in which it operates

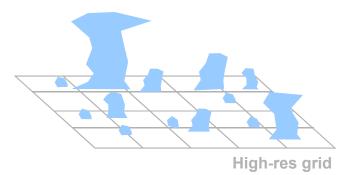
Why do we care?

The question is what SGS parameterizations should represent

A finer horizontal discretization in a GCM means that smaller-scale processes become resolved

The work done by SGS parameterizations should adjust to this to avoid "double counting" and introduce stochastic effects

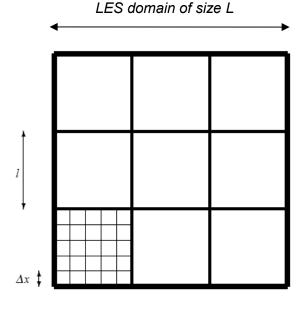




Exploring the grey zone with LES of shallow cu

Dorresteijn et al., TCFD 2012

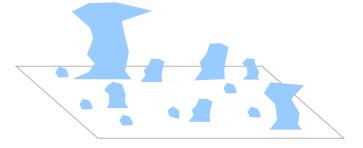
Decomposition of the heat flux as a function of the size *l* of the sampling subdomain within a 25x25km LES of shallow cumulus



$$\phi \in \{\theta_l, q_t\}.$$
$$\overline{w'\phi'}^L = K^{-1} \sum_k \overline{w'\phi'}^{l_k} + K^{-1} \sum_k (\overline{w}^{l_k} - \overline{w}^L) (\overline{\phi}^{l_k} - \overline{\phi}^L),$$

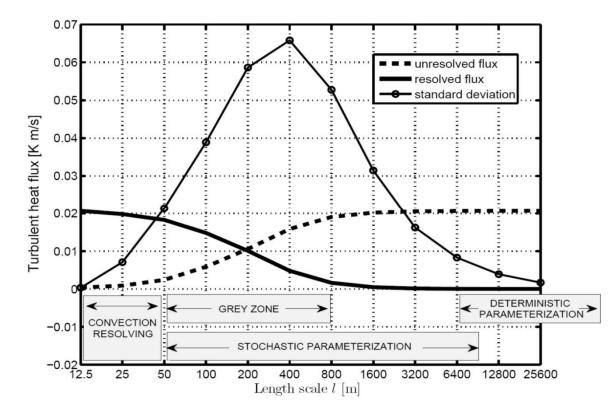
Flux by fluctuations within sub-domains

Flux by fluctuations of sub-domain means relative to mean of the total domain



Visualizing the grey zone

Defined here as the range of scales where the resolved and unresolved contributions are of the same order



Dorresteijn et al., TCFD 2012

A summary of the problem

Current SGS parameterizations in GCMs are not scale-adaptive:

- * Formulated in age (1970-present) when all types of convection were still totally unresolved
- * Parameterizations do not "know" about the size of the process they are representing

However, the discretizations in operational GCMs are ever increasing: We are getting in the danger-zone or "grey zone"

The challenge:

We have to stretch ourselves to make SGS models scale-adaptive, and thus "bridge the gap" between scales

Population dynamics

Lotka-Volterra equations

Alfred J Lotka & Vito Volterra, 1910-1926

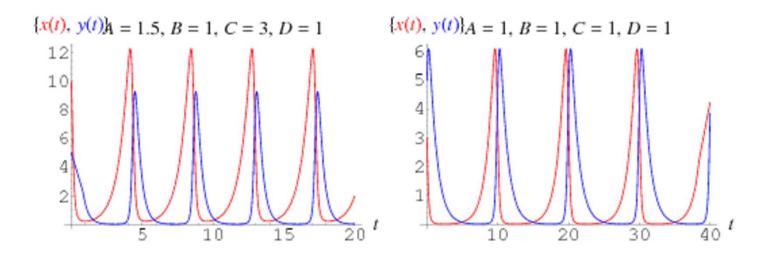
$$\frac{\partial x}{\partial t} = Ax - Bxy$$

$$\frac{\partial y}{\partial t} = -Cy + Dxy$$

x: Number of preyy: Number of predators

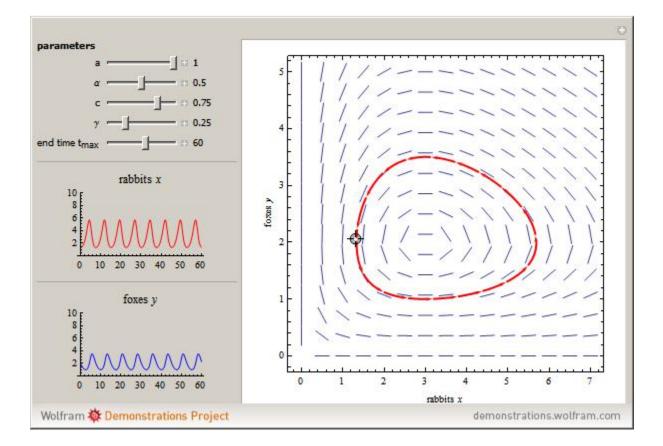
- A: The growth rate of prey (exponential)
- B: The rate at which predators destroy prey
- C: The death rate of predators (exponential)
- D: The rate at which predators increase by consuming prey

Time-dependent solutions



http://demonstrations.wolfram.com/PredatorPreyModel/

Plotting solutions in {x,y}-space:



http://demonstrations.wolfram.com/PredatorPreyModel/

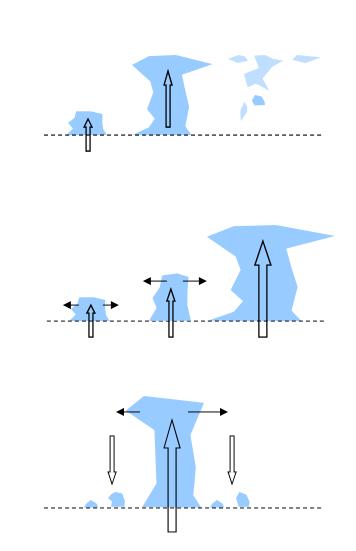
Idea: Application of LV to cloud populations

Nober and Graf, 2005 Wagner and Graf, 2011

See each cloud size as a different species

Interactions between clouds of different size:

- * Big clouds die and break apart into smaller ones (energy cascade)
- * Smaller clouds feed bigger ones by 'preparing the ground' for their existence (pulsating growth)
- * Bigger clouds prey on smaller clouds, by suppressing them through their compensating subsidence field

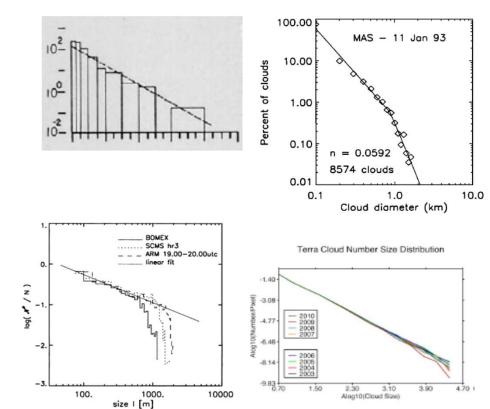


Cloud size statistics

Pretty well known from observations and LES



Plank, J App Met, 1969



Start from scratch: Reformulating EDMF

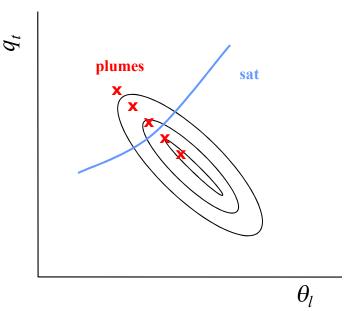
The Eddy Diffusivity – Mass Flux (EDMF) approach

Combining the best of both transport models

$$\overline{w'\phi'} = -K\frac{\partial\overline{\phi}}{\partial z} + \sum_{i=1}^{I} M_i \left(\phi_i - \overline{\phi}\right)$$

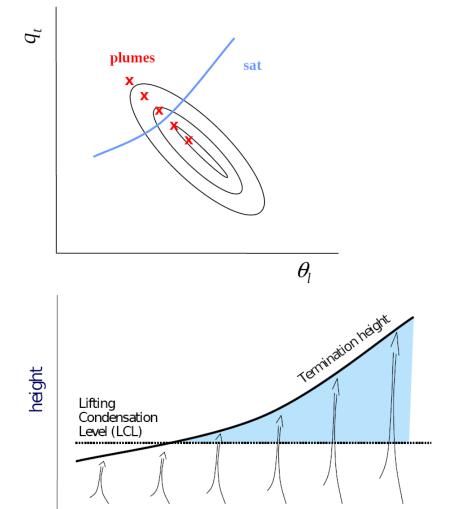
The multiple mass flux formulation can be used to reconstruct the joint-PDF, by letting each model-plume represent a separate point in its tail

Each plume will have its own unique vertical profile, yielding a PDF that is resolved and that is changing with height



Introducing scale-awareness in EDMF

Instead of defining multiple plumes in conserved variable space ...



... we now define them in "size-space":

Model formulation – Step I

Foundation: the number density as a function of size

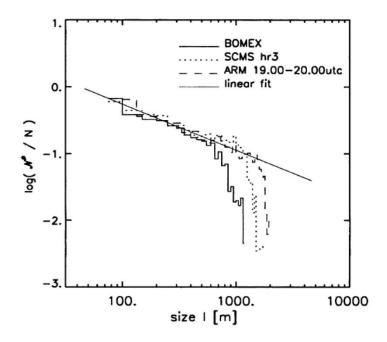
$$N = \int_{l} \mathcal{N}(l) \, dl \qquad \qquad l : \text{size} \\ N : \text{total nr}$$

Adopted shape: power-law , potentially including scale-break

$$\mathcal{N}(l) = a l^{b}$$

Observations suggest:

$$b \approx \begin{cases} -1.9 & \text{for } l < l_{break} \\ -3 & \text{for } l \ge l_{break} \end{cases}$$



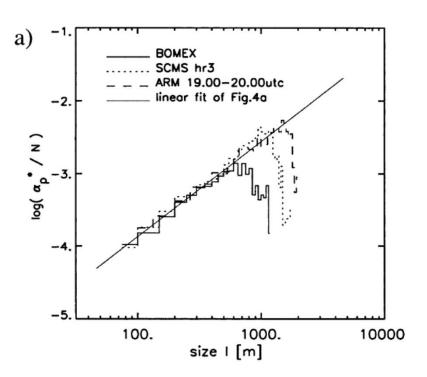
Model formulation – Step II

Related: the size density of area fraction

$$a_{MF} = \int_{l} \mathcal{A}(l) \, dl$$
$$= \frac{1}{A} \int_{l} \mathcal{N}(l) \, l^{2} \, dl$$

Basic EDMF:

$$a_{MF} = 10\%$$



Model formulation – Step III

Expand to fluxes, introduce dependence on height (z):

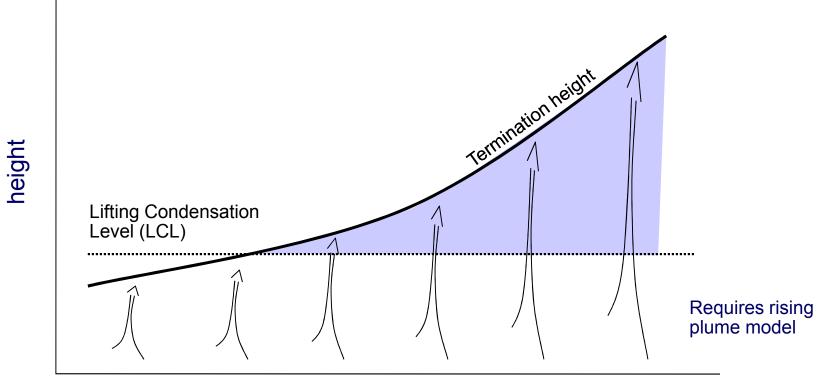
$$a_{MF}\overline{w'\phi'}^{MF}(z) = \int_{l} \underbrace{\mathcal{A}(l,z) w(l,z)}_{l} \left[\phi(l,z) - \overline{\phi}(z) \right] dl$$
$$\underbrace{\mathcal{M}(l,z)}_{l} \operatorname{Mass flux}$$
$$= \frac{1}{A} \int_{l} \underbrace{\mathcal{N}(l,z) l^{2} w(l,z)}_{l} \left[\phi(l,z) - \overline{\phi}(z) \right] dl$$

A spectral mass flux scheme (e.g. Arakawa & Schubert, 1974)

To do: come up with a method to produce (l, z) fields

Model formulation – Step IV

Resolve (l, z) fields using a limited number of plumes:



Some consequences

Integral becomes discrete:

$$\int_{l} (...) dl \rightarrow \sum_{n=1}^{N} (...) \Delta l$$

NТ

What N gives good performance?

- Introduce dependence on size in plume model components:
 - i) initialization
 - ii) entrainment

iii) microphysics

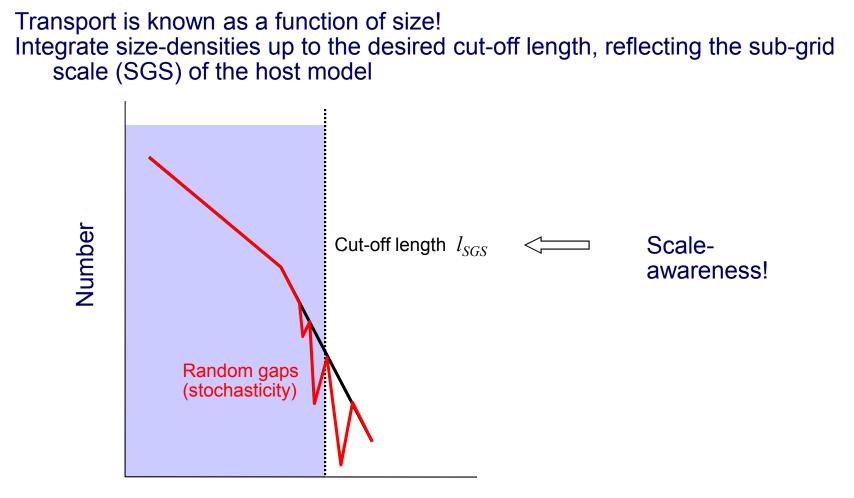
iv) ...

This requires more research

- Explicit closure no longer needed for
 - i) cloud base mass flux
 - ii) vertical structure of mass flux
 - iii) other buoyancy sorting effects
 - iv) cloud & condensate associated with cumulus updrafts

Can be read from resolved size density

 EDMF formulation becomes much simpler



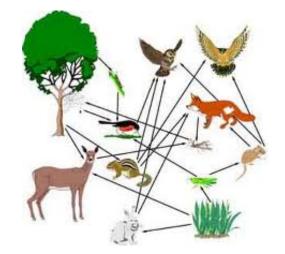
Size

Step V Closure of the number density

A multi-species version of the LV equations:

N plumes, N equations

$$\frac{\partial E_i}{\partial t} = P_i - \sum_{j=\{1,N\}\setminus\{i\}} T_{ij} + \sum_{k=\{1,N\}\setminus\{i\}} T_{ki} + D_i$$



 E_i : Total energy of all plumes of size l_i

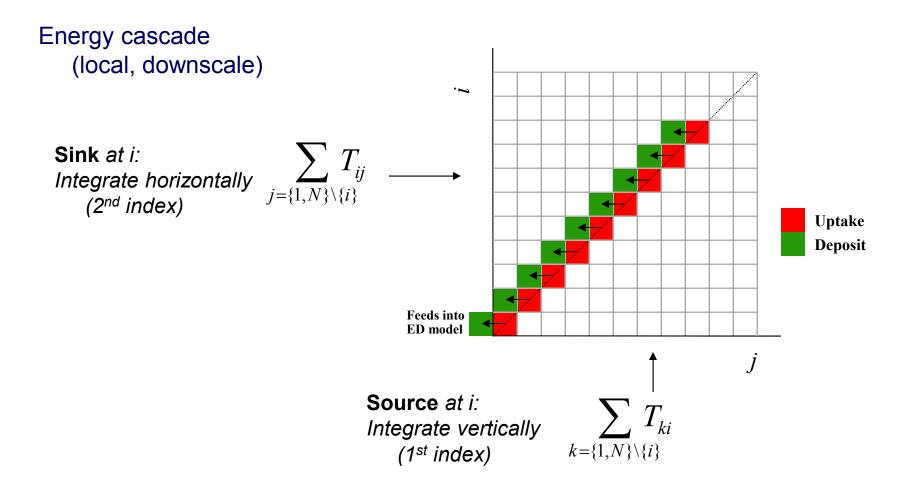
 P_i : Buoyancy-flux production by plumes of size l_i (the cloud "work-function")

 D_i : Viscous dissipation at size l_i

 T_{ij} : Energy transfer from size l_i to size l_j

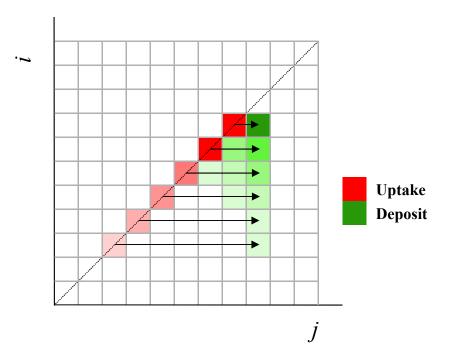
Matrix T_{ii} : describes interaction between sizes

Fingerprints of different processes



Suppression of smaller clouds by largest clouds, through compensating subsidence

(broader band, up-scale)



Proof of principle

Preliminary results with the EDMF based on resolved size densities

Regional Atmospheric Climate Model (RACMO) : IFS physics cy33r2 + mods Single Column Model

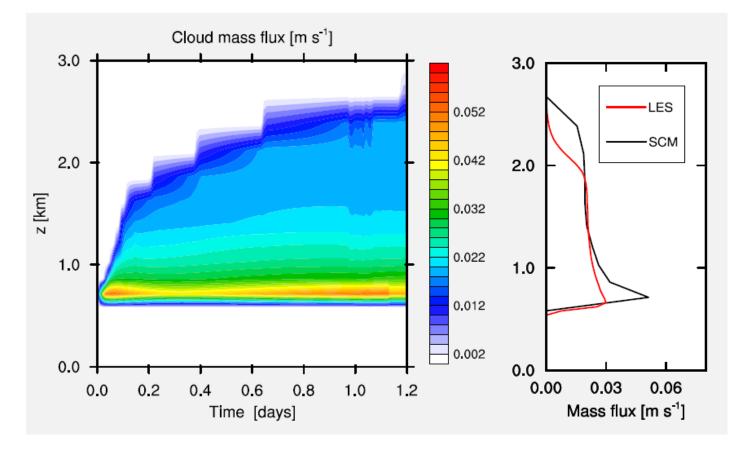
Rain in Cumulus over the Ocean (RICO) field-campaign GCSS model inter-comparison case for SCM & GCM

Model settings:

- 10 resolved plumes
- Epsilon = 1 / size
- Plume initial excesses increase linearly with size
- No plume precipitation
- Energy cascade

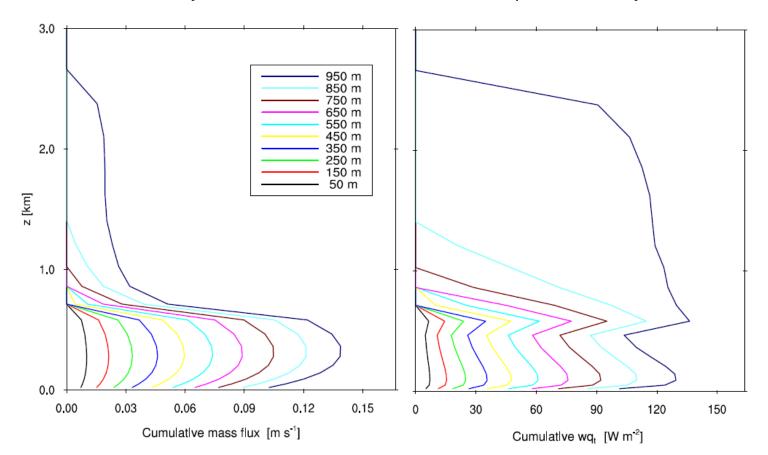
Preliminary results: bulk statistics

A numerically stable solution is obtained Realistic vertical structure of mass flux: Humidity-convection feedbacks among plumes



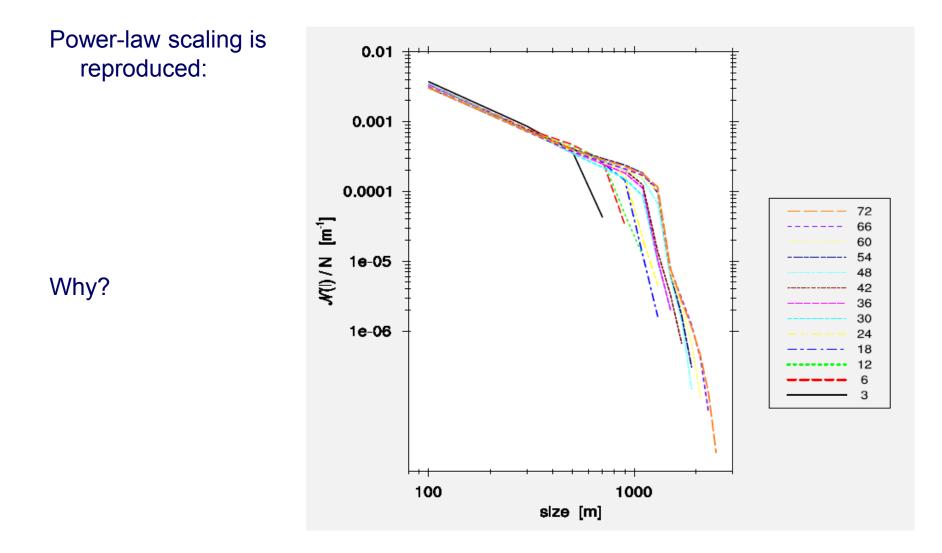
Preliminary results: scale-awareness!

Turbulent flux is known as a function of size



Contributions by different sizes to mass flux and total specific humidity flux

Preliminary results: population statistics



Power law scaling

- * Energy is transferred from a larger size to a smaller size
- * But individual plumes of smaller size carry less energy than big ones
- * As a result, the same energy can be shared by more plumes, yielding a higher number

Why a scale break?

- * Latent heat release by the larger plumes significantly boosts their kinetic energy
- * As a result, fewer big clouds are necessary to compose a given amount of energy

Conceptual models describing population dynamics can be applied to make SGS parameterizations scale-aware and scale-adaptive

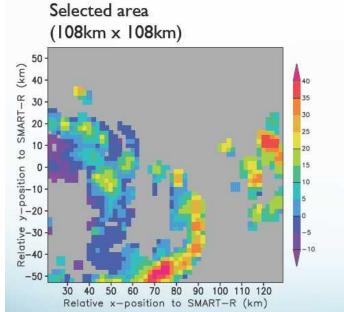
The development of such models for operational GCMs is in progress, but most implementations are still in testing-phase

Observations and high-resolution modelling results are needed to properly constrain this new type of scale-aware parameterization

Field campaigns

Measurements of the properties of cloud populations in nature

Identification of convective pixels



Convective pixels identified by modified Steiner et al. (1995) algorithm

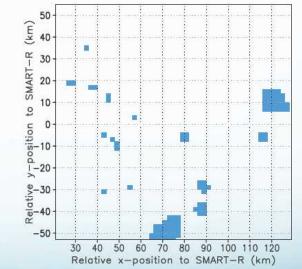
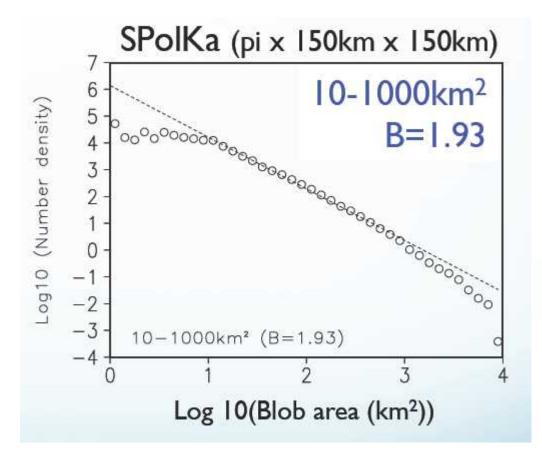


Figure courtesy of Daeyhun Kim, Columbia Univ

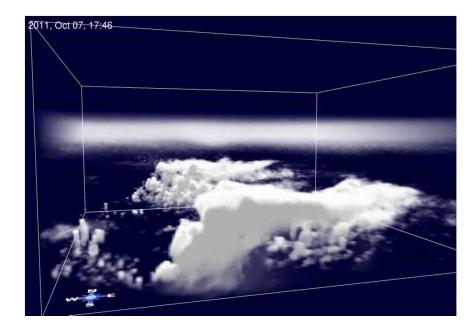
Field campaigns



Power Law $n(a) \propto a^{-B}$

Figure courtesy of Daeyhun Kim, Columbia Univ

Large-eddy simulation (LES)



GPU-based LES, run daily in forecast-mode at Cabauw (Jerome Schalkwijk, TU Delft)

3D fields of cloud, condensate, kinematic & thermodynamic state can be archived

Perfect for evaluating cloud size densities!