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Ice clouds and ice supersaturation

Ice clouds form at high ice POF A o
supersaturation and persist clouds
at ice saturation.

Ice cloud coverage cannot be
inferred from relative

either cirrus or not
depending on history
of air volume
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Ice supersaturations below the
homogeneous freezing threshold are
common in observations.
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High frequencies of ice
supersaturation observed globally.
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Ice crystals and their radiative effect

Ice nucleates at high

saturation heterogeneously (> 10%)
but mostly homogeneously (~50%)
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Ice crystal number
concentrations and
radii vary at fixed
temperature by a few
orders of magnitude.

Cloud radiative forcing

ice crystal sizes.
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PDF scheme for cirrus

PDF ice saturation
mixing ratio

cirrus cloud coverage,;

total in-cloud
water Tixing ratio
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Key controlling factor of non
equilibrium ice cloud coverage is
history of relative humidity and its
subgrid scale variability.
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Total water variability described by PDF -
PDF moments can change due to
dynamical and microphysical processes.

Prognostic variable can be introduced in
PDF cloud scheme allowing estimation of
ice cloud coverage and ice water content.
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Diffusional growth versus saturation adjustment

Inside of cirrus
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Ice nucleation

Relative humidity and cooling rate are key controlling factors for ice nucleation
in cirrus clouds.

nucleation source term for ice crystal number cooling rate from synoptic motion (< 1 K/h)
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Which fluctuations are important? — microphysics

Frequency of number density
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Small scale temperature variability important for
crystal number density.

Despite increasing resolution of GCMs cooling
rates will likely stay subgrid scale in the future.



Latitude

Which fluctuations are important? — orographic forcing

Dean et al 2005
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Representation of cirrus can be significantly improved by simulating cirrus
triggered by orographic gravity waves (Dean et al 2007; Joos et al 2008)

Cirrus bias in other areas remains — temperature fluctuations significant also
in areas not directly influenced by orography (Gary 2006)



Coupling ice microphysics and cirrus coverage

Coverage
fractional coverage dependent on
PDF of g, (and T, ..)
PDF cirrus
coverage
Increases
Newly formed
cirrus coverage
— Change in cirrus coverage or

forced to be zero

Nucleation
dependent on mean RH;, mean T,
cooling rate

If oT/ot indicates warming

->no formation of new crystals
dN=0

=> crystal number density
decreasing

If coverage does not know about cooling rates (that are the main control for
N) and nucleation does not know about spatial variability of g,,, then
coverage and 2-moment microphysics not consistent.



Coupling ice microphysics and cirrus coverage

Coverage Microphysics
prognostic coverage dependent on nucleation dependent on PDF of
PDF of g,.; (and T) and cooling rate Jiorr T, COOlING rate

N dT/ot
assumption: PDE coollng
cooling rate
- - AT
uncorrelated with
S warming
J.o; Variability i
T _qnuc+aqnucIaT*AT
anC

Within area in which cirrus is formed, particles are nucleated depending on
local q,,; and dT/ot
threshold for nucleation and formation of coverage
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Variability of fluctuations important at cloud scale
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LES simulation of a cirrus
cloud:

Cirrus ice particles in very
similar locations have very
different sizes and number
concentrations after
nucleation and experience
no/many aggregation
events leading to a removal
of ice particles from the
cloud in fall streaks.

Small scale cloud
iInhomogeneities affect
microphysics and
development of whole
cloud.

So6lch and Karcher, 2011



Convection between large scale cirrus and convection

Convection can cause bimodality
in total water distribution at cirrus
levels. Bimodality cannot be
resolved by unimodal PDF.

— convective detrainment may not
increase cirrus coverage (if
qC<anC)

= ice cloud properties averaged
over all ice clouds.
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Convection changes microphysics of
all ice clouds within a grid box.
=> implications for radiation and cirrus
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Contrail cirrus

Contrall cirrus can increase cirrus

coverage by several percent over the
USA and Europe.

Contrails can replace natural cirrus or
modify the natural cirrus due to
changes in the temperature and
humidity field.
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Contrails can replace natural cirrus and have very different optical properties



Conclusions

Two-moment microphysical scheme would allow simulation of regime
dependence /synoptic variability in crystal sizes and microphysics, but cloud
iInhomogeneities still impact microphysics and radiation.

Cooling rate fluctuations due to gravity waves and turbulence controlling ice
particle nucleation not well known and not (only partly) resolved in models
down to very high resolutions.

Parameterizations of ice cloud cover and ice crystal number concentrations
iInconsistent as long as driven by independent forcings.

Convective outflow likely to change microphysics of preexisting cirrus clouds
— probably resolution dependent

Contrail cirrus modify high cloudiness directly and indirectly by changing the
upper tropospheric water budget.

HD(CP)2 — use high resolution modelling in order to improve cloud
parameterizations, study small scale cooling rates, coupling convection —
cirrus, cloud overlap.
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