High-resolution winter simulations over CO Rockies Sensitivity to microphysics parameterization

Greg Thompson

Research Applications Laboratory, National Center for Atmospheric Research

High-resolution winter simulations over CO Rockies Sensitivity to microphysics parameterization

Greg Thompson

Research Applications Laboratory, National Center for Atmospheric Research

"Perhaps some day in the dim future it will be possible to advance the computations faster than the weather advances ... But that is a dream." – Lewis Fry Richardson, Weather Prediction by Numerical Process, 1922

High-resolution winter simulations over CO Rockies Sensitivity to microphysics parameterization

Greg Thompson

Research Applications Laboratory, National Center for Atmospheric Research

Collaborators

- Trude Eidhammer, Roy Rasmussen
- Stan Benjamin, John Brown (NOAA-ESRL)
- Paul Field, Ben Shipway, Adrian Hill (UK Met Office)
- Bill Hall (NCAR, retired)
- Hugh Morrison (NCAR-MMM)
- Kyoko Ikeda, Changhai Liu (NCAR-RAL)
- Yi Jin (NRL-COAMPS)
- Istvan Geresdi (Pecs Univ, Hungary)
- Bjorn Egil Nygaard (Oslo Univ)

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

Goals/Motivation

Develop an efficient and observations-based bulk microphysical parameterization:

- improves quantitative precipitation forecasts when compared to similar, existing schemes
- improves forecasts of water phase everywhere aloft=aircraft icing; surface=FZDZ/RA/SN
- incorporates recent microphysical observations AIRS / IMPROVE / ICE-L / NASA-SLDRP
- is sufficiently optimized/fast real-time needs (WRF-Rapid Refresh)
- uses clean, well-documented code can be modified rapidly to increase complexity and perform sensitivity studies

frozen drizzle drops

Cloud water

gamma distribution with shape factor dependent on droplet concentration

 $N(D) = N_0 D^{\mu} e^{-\lambda D}$

does not sediment

"autoconverts" to rain using Berry & Reinhardt (1974) formulation with **correct** diameters

Rain

gamma distribution

predicted N_r (2-moment)

accurate fallspeed relation

Snow

sum of 2 gamma distributions (Field et al, 2005)

size distribution depends on ice content and temperature

non-spherical geometry $(m = aD^2)$

variable density (1/D)

Cloud ice

gamma distribution

pristine (no riming) diameter $< 200 \ \mu m$

initiation temperature-dependent (Cooper)

predicted N_i (2-moment)

slowly sediments (10–30 cm s⁻¹)

Graupel / Hail

gamma distribution

variable y-intercept parameter depends on mixing raio (simulate both hail and snow-like graupel):

> 1 x 10⁶ m⁻⁴ (graupel) 1 x 10⁴ m⁻⁴ (hail)

Cloud water

gamma distribution with shape factor dependent on droplet concentration

 $N(D) = N_0 D^{\mu} e^{-\lambda D}$

does not sediment

"autoconverts" to rain using Berry & Reinhardt (1974) formulation with **cor** diameters

Rain

gamma distribution

predicted N_r (2-moment)

accurate fallspeed relation

Cloud water

gamma distribution with shape factor dependent on droplet concentration

 $N(D) = N_0 D^{\mu} e^{-\lambda D}$

does not sediment

"autoconverts" to rain using Berry & Reinhardt (1974) formulation with **correct** diameters

Rain

gamma distribution

predicted N_r (2-moment)

accurate fallspeed relation

Snow

sum of 2 gamma distributions (Field et al, 2005)

size distribution depends on ice content and temperature

non-spherical geometry $(m = aD^2)$

variable density (1/D)

Cloud ice

gamma distribution

pristine (no riming) diameter $< 200 \ \mu m$

initiation temperature-dependent (Cooper)

predicted N_i (2-moment)

slowly sediments (10–30 cm s⁻¹)

Graupel / Hail

gamma distribution

variable y-intercept parameter depends on mixing raio (simulate both hail and snow-like graupel):

> 1 x 10⁶ m⁻⁴ (graupel) 1 x 10⁴ m⁻⁴ (hail)

Cloud water

gamma distribution with shape factor dependent on droplet concentration

 $\overline{N(D)} = N_0 D^{\mu} e^{-\lambda D^{\mu}}$

does not sedime

New

"autoconverts" Reinhardt (197 diameters explicit CCN from aerosols (sulfates + sea salts)

predicted N_c (2-moment)

Rain

gamma distribution

predicted N_r (2-moment)

accurate fallspeed relation

Snow

sum of 2 gamma distributions (Field et al, 2005)

size distribution depends on ice content and temperature

non-spherical geometry $(m = aD^2)$

variable density (1/D)

Cloud ice

gamma distribution

pristine (no riming) diameter < 200 µm

initiation temperat

predicted N_i (2-1)

slowly sediment

homogeneous freezing of deliquesced aerosols following Koop et al (2000)

heterogeneous freezing on dust/

mineral > 0.5 microns

Graupel / Hail

gamma distribution

variable y-intercept parameter depends on mixing raio (simulate both hail and snow-like graupel):

> 1 x 10⁶ m⁻⁴ (graupel) 1 x 10⁴ m⁻⁴ (hail)

Graupel (details)

6.4~ 6.3~ 6.2~ 6.1~ 5.9~

5.8 ~ 5.7 ~ 5.6 ~

5.5~ 호 5.4~

Graupel inter 2.3 ~ 2.2 ~ 2.1 ~

5 ~ 4.9 ~ 4.8 ~ 4.7 ~ 4.6 ~ 4.5 ~

4.4~ 4.3~ 4.2~

4.1~

0.1

0.50.60.70.80.9 11.11.21.31.41.51.61.71.81.9

Graupel content

Rimed Snow

Mimics hail

converts to graupel more smoothly than other schemes

variable y-intercept parameter allows terminal velocity 15+ m/s

1.9

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

SLW content

Graupel (details)

Rimed Snow

Mimics hail

converts to graupel more smoothly than other schemes variable y-intercept parameter

variable y-intercept parameter allows terminal velocity 15+ m/s

Collection equation

Physical process and code improvements

Property or source/sink	Deficiency in prior scheme(s)	Improvement	
Cloud water	Monodisperse or exponential distribution	Generalized gamma with variable shape parameter	
Rain	Single-moment assumes exponential distrib with constant y-intercept	Double-moment (warm-rain vs. melted snow/ graupel); improve size-sorting sedimentation	
Snow	Constant density, spherical snow assumes exponential distrib with constant y-intercept	Variable density (based on size) and realistic size distributions	
Graupel/hail	Exponential with constant intercept parameter	Variable y-intercept parameter attempts to mimic graupel and hail	
Autoconversion	Simple threshold	Follows results of bin model	
Collision/collection	Oversimplified with 100% collection efficiency and improper mathematical simplification of true double-integral	Explicit size-dependent collection efficiency and explicit bin-model solution of collection equation double-integral	
Graupel production	Snow riming threshold to create all graupel	Snow riming to form graupel is less abrupt, more continuous	
Sedimentation	Melting snow/graupel mathematically correct not physically correct	Snow/graupel fall faster as they melt, not slower	
Saturation adjust	Ice nucleation RH(ice)=100% & aggressive ice production	Explicit vapor deposition, no auto-adjust & much less aggressive ice initiation	

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

Comparisons to explicit/bin model

Maritime (25 cm^{-3})

Continental (300 cm⁻³)

Bin vs. bulk rain fallspeeds

Bin vs. bulk snow fallspeeds

Bin vs. bulk graupel fallspeeds

Tests: "Hole cloud" simulation

Science magazine, July 2011

0 million based on positions of sulfate s for this es of 34 ε y experiis solved ${}^{3}\lambda$ values of Phansulfates fur cycle fig. 2B). imentary ispropor-

isotopes ed 50‰, of the cell oterozoic fide value the sulfur eflect the at fueled extent of re contrinmental-

Formation and Spread of Aircraft-Induced Holes in Clouds

Andrew J. Heymsfield,^{1*} Gregory Thompson,¹ Hugh Morrison,¹ Aaron Bansemer,¹ Roy M. Rasmussen,¹ Patrick Minnis,² Zhien Wang,³ Damao Zhang³

Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

The passage of aircraft through subfreezing, supercooled liquid water cloud can produce circular and linear voids called

¹National Center for Atmospheric Research (NCAR), Boulder, CO 80301, USA. ²NASA Langley Research Center, Hampton, VA 23681, USA. ³Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071, USA.

*To whom correspondence should be addressed. E-mail: heyms1@ncar.ucar.edu hole-punch and canal clouds on the basis of their distinctive appearance (Fig. 1A).

Ice streamers embedded within or descending from circular holes or elongated channels carved out of mid-level, subfreezing cloud layers were first reported in the meteorological literature in the 1940s (1). In correspondence titled "Man-Made Cirrus?" in *Weather* (2), a large horizontal loop sketched in a midlevel cloud was the first of

www.sciencemag.org SCIENCE VOL 333 1 JULY 2011

Science magazine, July 2011

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

Colorado Headwaters project

- Predict Colorado mountain snowfall and resulting stream runoff
- High-resolution, 2 km grid spacing, excellent terrain representation, NARR forcing
- Four seasons, 6-month duration:
 - ▶ 01 Nov 2007 30 Apr 2008 (above average)
 - ▶ 2005 2006 (average year)
 - ▶ 2003 2004 (average year)
 - ▶ 2001 2002 (below average)
- Verified against SNOTEL observations
- Sensitivity experiments:
 - ▶ 2°C warmer & constant RH (2005–2006)
 - ► CCSM year 2050
 - ▶ microphysics: Thompson et al, 2008 vs. other
- Extended 8-year run @4km spacing

WRF simulations by Changhai Liu preliminary analysis by Kyoko Ikeda

Colorado Headwaters project

Figure 1: Retrospective model domain and location of SNOTEL sites (black dots). (a) full model domain (b) sub-domain focused over the Colorado Headwaters region.

WRF simulations by Changhai Liu preliminary analysis by Kyoko Ikeda

Colorado Headwaters project

- Predict Colorado mountain snowfall and resulting stream runoff
- High-resolution, 2 km grid spacing, excellent terrain representation, NARR forcing
- Four seasons, 6-month duration:
 - ▶ 01 Nov 2007 30 Apr 2008 (above average)
 - ▶ 2005 2006 (average year)
 - ▶ 2003 2004 (average year)
 - ▶ 2001 2002 (below average)
- Verified against SNOTEL observations
- Sensitivity experiments:
 - ▶ 2°C warmer & constant RH (2005–2006)
 - ► CCSM year 2050
 - ▶ microphysics: Thompson et al, 2008 vs. other
- Extended 8-year run @4km spacing

Figure 1: Retrospective model domain and location of SNOTEL sit sub-domain focused over the Colorado Headwaters region.

WRF simulations by Changhai Liu preliminary analysis by Kyoko Ikeda

8 year WRF simulation vs. Obs

Month

Month

Microphysics sensitivity

Resolution sensitivity

Vertical velocity (m/s)

0000 UTC 1 Dec 2007

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

Forecasting convection

NSSL Spring Experiment Program - 25 members mostly WRF (4-km)

• Thompson, Morrison, Milbrandt & Yau, WDM6 microphysics comparison

• Other ensemble members (PBL, initialization data, WRF_NMM, etc.)

Forecasting convection

Microphysics comparison, reflectivity histograms:

• Nearly same pattern seen all season long

Forecasting convection

Microphysics comparison, synthetic IR satellite:

• Nearly same pattern seen all season long

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

- Microphysics scheme
- Testing
- Applications
 - Colorado Headwaters
 - Convection
 - Icing
- Summary

- Objectives
 - •Can the model explicitly predict icing?
 - •Does model LWC and/or MVD correlate with icing PIREP severity?
- Data
 - •8.25 years WRF model simulations
 - •01 Oct 2000 31 Dec 2008
 - •Very high resolution but limited region
 - •Corresponding icing PIREPs for each PIREP, retrieve 36 neighboring WRF grid cells (3 rings, approx 20km region) match vertical level plus one WRF model level below match to nearest hour WRF time

- Objectives
 - •Can the model explicitly predict icing?
 - •Does model LWC and/or MVD correlate with icing PIREP severity?
- Data
 - •8.25 years WRF model simulations
 - •01 Oct 2000 31 Dec 2008
 - •Very high resolution but limited region
 - •Corresponding icing PIREPs for each PIREP, retrieve 36 neighboring WRF grid cells (3 rings, approx 20km region) match vertical level plus one WRF model level below match to nearest hour WRF time

Probability of Detection

Trace	Light	Moderate	Severe	All
237 / 422	2211 / 4303	1491 / 2611	64 / 94	3998 / 7430
55%	51%	57%	68%	54%

A significant increase over prior RUC & Rapid Refresh results

Dates	Model	Field	PODy	PODn
Jan Apr	RR	SLW	0.20	0.90
		TotC	0.59	0.61
	RUC	SLW	0.26	0.90
		TotC	0.47	0.76
	CIP	Ice Pot	0.90	0.62
	FIP	Ice Pot	0.79	0.70
Oct Dec	RR	SLW	0.21	0.87
		TotC	0.64	0.54
	RUC	SLW	0.25	0.86
		TotC	0.47	0.76
Table 1. PODy, PODn, and FAR statistics for the				

RR and RUC SLW and TotC fields during the periods of Jan – Apr and Oct – Dec 2009. All values were calculated using a threshold of 0.01.

Reference: Wolff and McDonough, 2010

Probability of Detection

Trace	Light	Moderate	Severe	All
237 / 422	2211 / 4303	1491 / 2611	64 / 94	3998 / 7430
55%	51%	57%	68%	54%

A significant increase over prior RUC & Rapid Refresh results

Dates	Model	Field	PODy	PODn
	RR	SLW	0.20	0.90
		TotC	0.59	0.61
Jan	RUC	SLW	0.26	/ 0.90
		TotC	0.47	0.76
		Lce Pot	0.90	0.62
	FIP	Ice Pot	0.79	0.70
Oct Dec	RR	SLW	0.21	0.87
		TotC	0.64	0.54
	RUC	SLW	0.25	0.86
		TotC	0.47	0.76
Table 1. PODy, PODn, and FAR statistics for the				

RR and RUC SLW and TotC fields during the periods of Jan – Apr and Oct – Dec 2009. All values were calculated using a threshold of 0.01.

Reference: Wolff and McDonough, 2010

Icing - ground icing case (Finland)

Mean absolute error, different microphys.

Courtesy of Bjorn Egil Nygaard

Summary

- Numerous updates/improvements from "legacy" Lin, Farley, Orville (1983) scheme(s) that keep getting duplicated
- Well-tested, flexible, documented code
- Many applications: QPF, icing, winter weather, summer convection
- First steps of aerosol-cloud-precipitation feedbacks
 - ✦ initial indications are successful primary effects working

NWP road ahead: mostly sunny or partly cloudy?

NWP road ahead: mostly sunny or partly cloudy?

Thank you!!

I del Hamile

Backup slides

