A US NOPP project to stimulate wave research

Focus on operations and deep water

Hendrik L. Tolman Chief, Marine Modeling and Analysis Branch NOAA / NWS / NCEP / EMC

Hendrik.Tolman@NOAA.gov

ECMWF Workshop on Ocean Waves, 1/26

NOPP

"The National Oceanographic Partnership Program (NOPP) is a collaboration of federal agencies to provide leadership and coordination of national oceanographic research and education initiatives. "

National Oceanographic Partnership Program

http://www.nopp.org/about-nopp/

Motivation

NOPP project: Improving Wind Wave Predictions; Global and Regional Scales

- Considering progress in understanding of wave model physics, particularly dissipation and economical interaction approximations, Linwood, Don and Hendrik started pushing for this project after the 2008 Ocean Sciences meeting.
- Buy-in from:
 - > ONR, BOEM (was MMS) with funding.
 - > NOAA, USACE, NRL with in-kind contributions.
- Focus on operational modeling, basin and shelf scale.
 - > Several "surf-zone" proposals also funded.

Outline

Outline of paper:

- NOPP teams
- Validation data.
- Validation techniques.
- 30 year hindcast.
- Code management.
- Outlook.

NOPP teams

PI-s	Topics	Focus areas
Ardhuin	in+ds	Dissipation (breaking, swell, bottom) Unstructured grids in WW III.
Babanin	in+ds	Observations based + swell diss.
Banner	in+ds	Extreme conditions, explicit breaking prediction, fluxes including sea spray
Perrie	nl	Two-Scale Approximation.
Tim Janssen	nl (shal)	Combine quads & triads, field data sets.
Zakharov / Pushkarev	nl+in+ds	Advanced statistical and dynamical nonlinear models + input and dissipation
Kaihatu / Sheremet	shal	Traditional mud and vegitation models Two-layer Boussinesq mod. Field data.
Van Vledder	shal	Shallow water models and obs., including surf beats.
Hanson	shal	Duck data sets, spatial partitioning.

NOPP teams

Organization	Pls	In-kind contributions
USACE	Resio Smith	FRF + Currituck Sound data. New source terms / studies (in+nl+ds) IMEDS + Additional model metrics WAM/STWAVE + ADCIRC coupling Partitioning + tracking (with NCEP)
NOAA/NCEP	Tolman Alves Chawla V/d W.	Source terms + QS model for WW III. Code management for WW III. NOPP data server. Pre-operational testing of new ST. 30 year wave hindcasts.
NRL/Stennis	Rogers Campbell	Curvilinear grids in mosaic (WW III). ESMF wrapper (SWAN, WW III). Automated regression testing (WW III). Code management best practices.

Validation data

Two type of validation / data important for operational wave models.

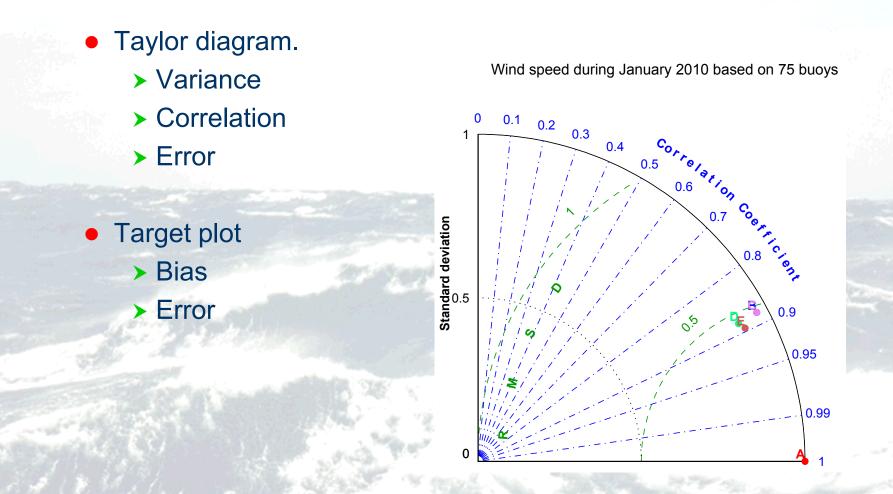
- Model needs to work all the time:
 - Bulk long term validation / development against routine observations.
 - In-situ, altimeter, SAR (?).
- Model needs to make physical sense.
 - Directed measurement campaigns focused on specific physics of waves.
 - Individual campaigns.
 - Data mining of routine observations.
- Select data set types and conditions, rather than campaigns.

Validation data

Conditions	Data sources
Long term validation	In-situ, altimeters, SAR.
Wind Sea and Swell	"JONSWAP", Great Lakes, Lake George, SAR, Tehuantepec, Duck. Spectral partitioning of buoy data.
Non-Aligned winds	Slanting fetch, Tropical cyclones (Duck, SRA, WSRA).
Extreme conditions	TCs, data mining.
Diminishing winds	FAIRs, data mining, tradewind and monsoon data (INCOIS,)
Shallow water	Data sets provided by teams, older bottom friction data sets.

Validation techniques

Going beyond the traditional validation techniques used for wave models.


- Traditional: bulk error measures:
 - > Mean, std, SI, r², scatter/pdf, sometimes qq ...
- Event-based statistics:
 - Peak values, timing, shape of signal.
- Spectral wave model validation:
 - > Ridge plots identifying individual swell events.
 - IMEDS analysis using spectral partitioning.
- For forecasting, hit-miss statistics are very important, but rarely used in scientific papers.
- Use additional relevant physical parameters, mss, peakedness, etc

WEATHER BR

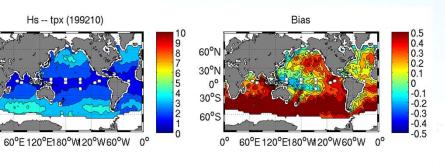
Validation techniques

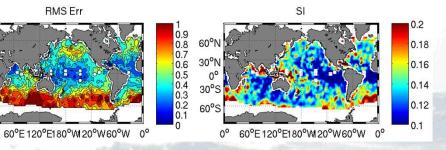
Using more concise presentations.

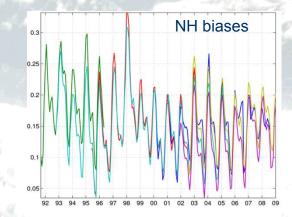
ECMWF Workshop on Ocean Waves, 10/26

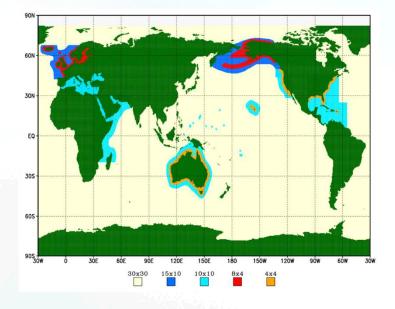
The Climate Forecast System (CFS) reanalysis and re-forecasting project (CFSRR) provides a 30+ year high resolution wind field

- 0.5° hourly wind and temperature fields.
- Associated 0.5° daily ice analyses.


This data set appears ideal to be the basis of a wave reanalysis over the same 30+ year period.


- There is insufficient data in any period to obtain a datadominated analysis, therefore
- It makes more sense to do a hindcast without assimilation, and use data possibly later for bias corrections of the hindcast only.
- Ideal as basis for long-term validation in NOPP project.




ECMWF Workshop on Ocean Waves, 11/26

60°N

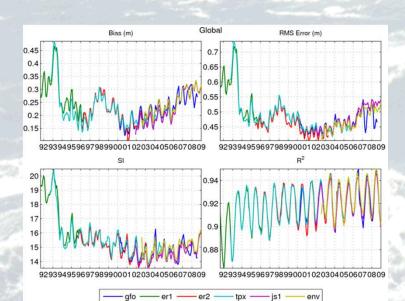
30°N

0° 30°S

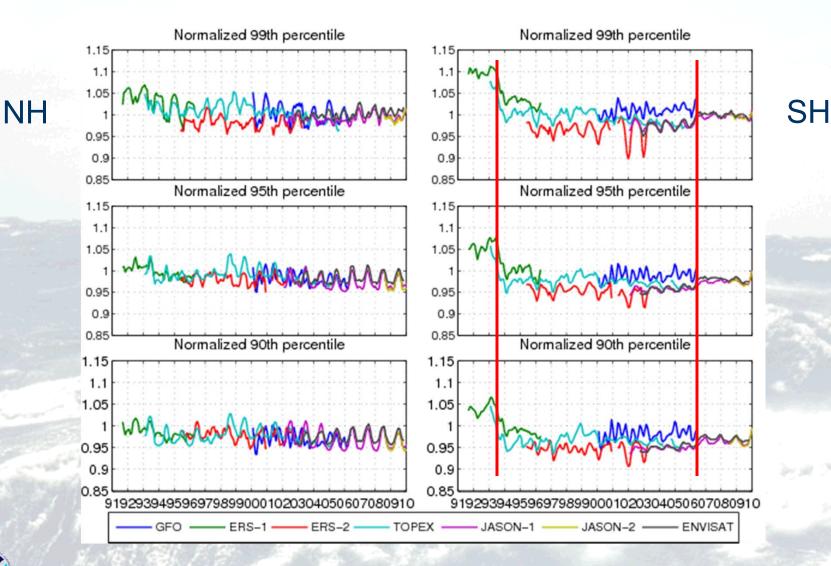
60°S

60°N

30°N


30°S

60°S


00

0°

0°

High wind speed issues with CFSR in SH

Tolman, 6/25/2012

ECMWF Workshop on Ocean Waves, 13/26

Annual mean biases against altimeter data

2008, Jason 1

2002, Envisat

Annual signal, After 2005

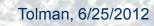
Persistent signal Seasonal (djf)

ECMWF Workshop on Ocean Waves, 14/26

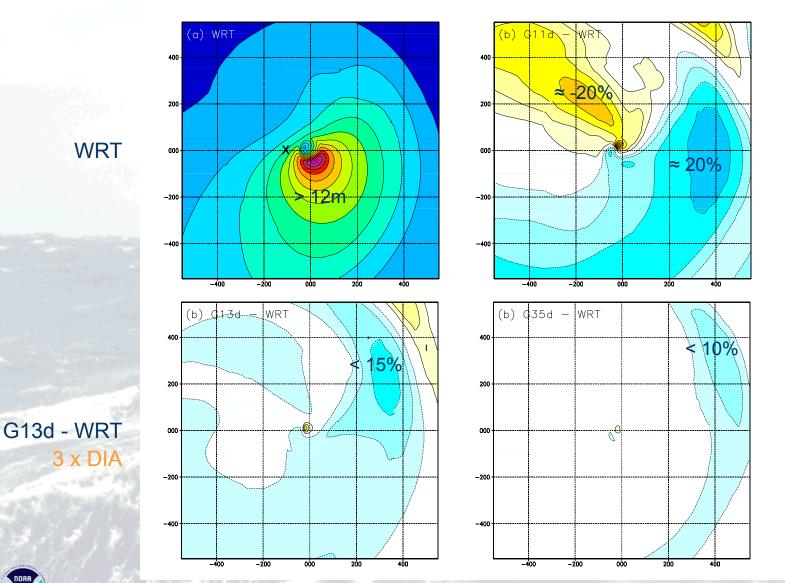
Code management

WAVEWATCH III community modeling

code management environment


- Traditionally code distributed as "tarball", code delivered back to NCEP the same way.
- Does not work with many teams working on same code
 - > Subversion (svn) server for version control.
 - Each team has code manager with access to server and latest developmental model versions thereon.
 - Code managers at NCEP merge individual contribution into "trunk" version of code.
 - Henrique, Arun, (Andre, Hendrik).
- Best practices guide for community model development of WAVEWATCH III as deliverable for NOPP project. NCEP intends to maintain this environment after project is finished.

WAVEWATCH III added capabilities:

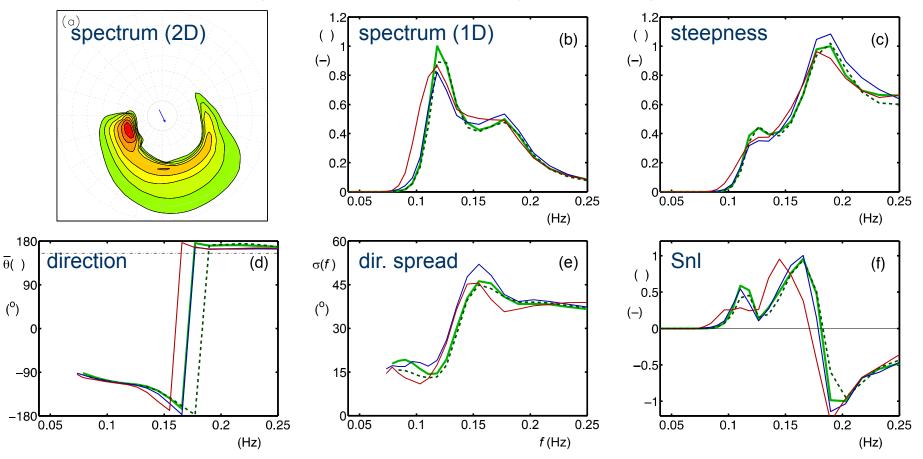

- Curvilinear and unstructured grids.
- Quasi-stationary model version.
- New source terms.
 - > GMD and nonlinear filter.
 - Two moveable bed bottom friction terms.
 - Ifremer physics packages.
- Massively expanded output options (coupling).
- Wave system tracking.
- Post-processing tools:
 - > Re-gridding.
 - NetCDF output.
- Coupling interfaces:
 - > ESMF.
 - > PALM.

S_{nl} in hurricanes

Wave height and relative error(%)

G11d - WRT optimum DIA

G35d - WRT 5 x new quad


es, 17/26

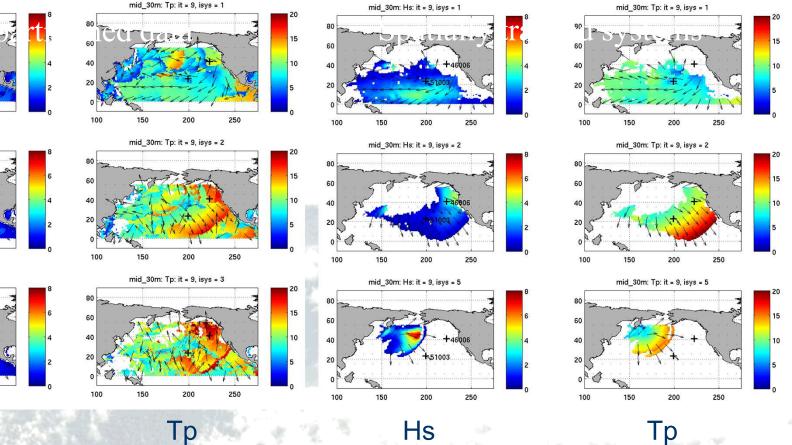
Tolman, 6/25/2012

ECMWF Workshop on Ocean Waves, 17/26

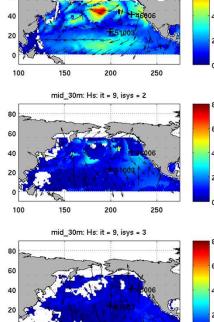
S_{nl} in hurricanes

Spectral parameters 100km behind eye (minimal wave height errors)

green: WRT dashed green: G35d blue: G13d red G11d



Tolman (2011, 2013) ECMWF Workshop on Ocean Waves, 18/26



Wave system tracking

wave system tracking

raw partitioning

mid_30m: Hs: it = 9, isys = 1

80

60

100

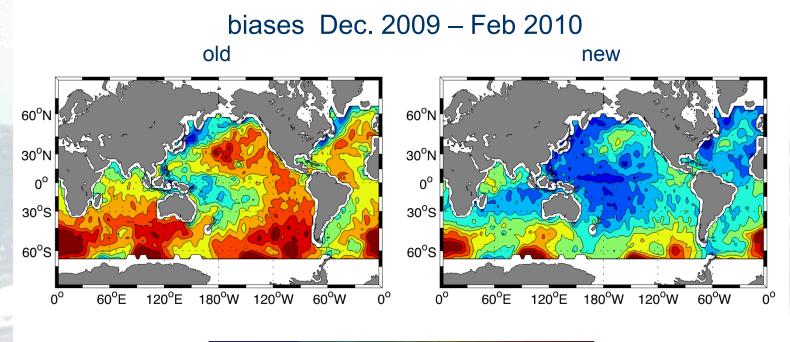
200

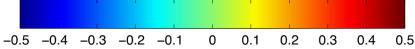
150

250

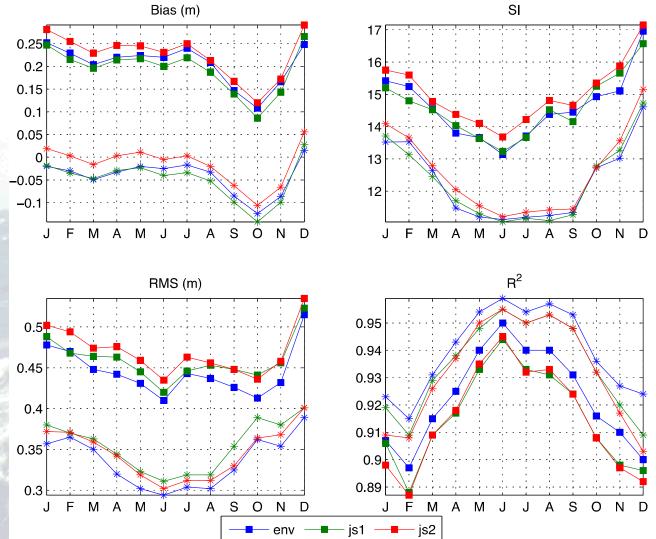
Van der Westhuysen, Hanson and Devaliere (2013)

ECMWF Workshop on Ocean Waves, 19/26


In the pipeline:


- Spatial and temporal tracking of wave fields:
 - Porting internal partitioning to SWAN.
 - > Space-time tracking (external / internal).
- NCEP planning first physics upgrade in operational wave models based on NOPP project in 2012 (following slides).
- NCEP planning NOPP "consensus" upgrade in 2014/5.
 - Replacing DIA and other "deep" source terms.
 - > New products for SOLAS, specifically wave breaking.
 - > Full polar coverage (tri-polar / curvilinear Artic grid).
 - > Unstructured coastal grids (2-3 km resolution)
 - > Upgrades shelf physics.
- Multiple well performing physics packages ...
 - > Multi-physics ensembles.
 - > Estimate of uncertainty in wave model physics.

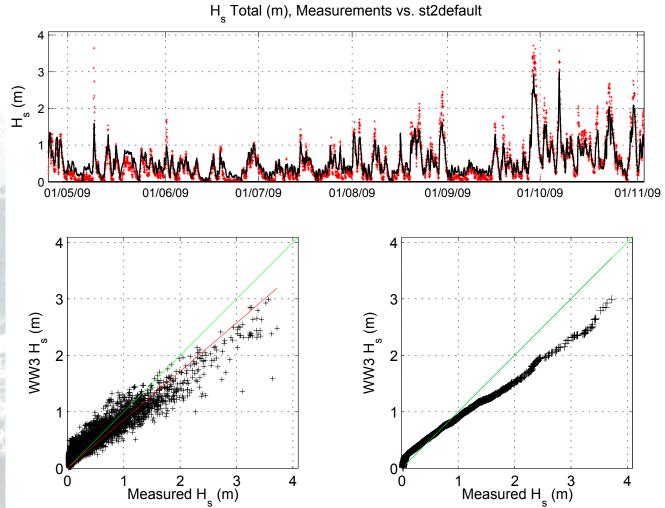
NCEP physics upgrade based on Ifremer results, tested with NCEP global and Great Lakes winds.



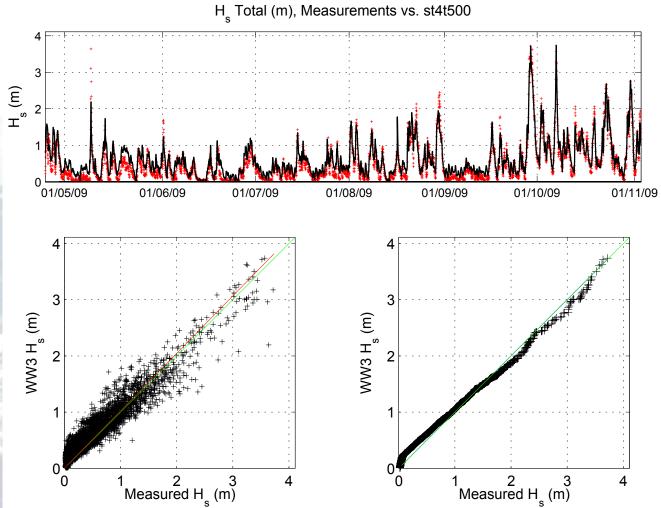
WEATHER SE

ECMWF Workshop on Ocean Waves, 21/26

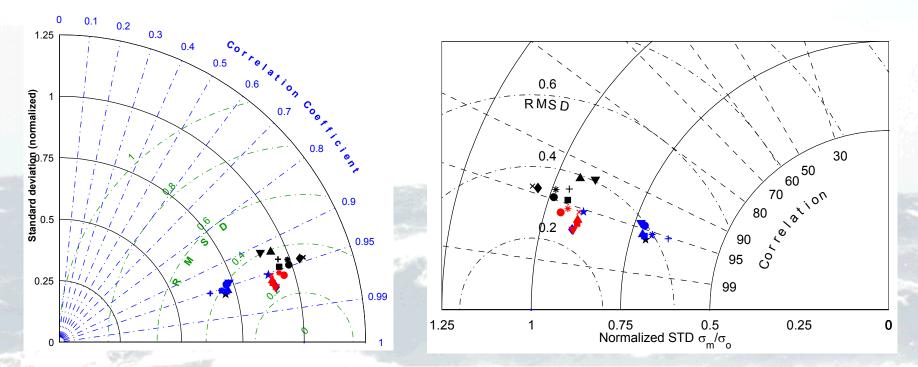
Monthly global errors 2009



ECMWF Workshop on Ocean Waves, 22/26


Great Lakes buoy 45007, 2009 old physics

Great Lakes buoy 45007, 2009 new physics



ECMWF Workshop on Ocean Waves, 24/26

Taylor diagram and alternative version for several GL buoys for 2009

GLERL-Donelan (1-G) WW III Tolman and Chalikov (1996) WW III Ardhuin et al. (2010)

ECMWF Workshop on Ocean Waves, 25/26

Conclusion

Conclusion:

- Making great progress toward improved operational models.
- Laying ground work for community model development and modeling environment.

ECMWF Workshop on Ocean Waves, 26/26