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OUTLINE OF THE PRESENTATION 

1)  Quick review on modulational instability and 
breather solutions of the NLS equation 

2)  New approach on studying the modulational 
instability using Navier-Stokes equation 

3)  The case of the Louis-Majesty accident: 
crossing seas conditions 
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MODULATIONAL INSTABILITY: Experimental result 



BREATHERS: EXACT SOLUTION OF THE NLS 
N. Akhmediev,et al. (1987) 

Two remarks: 

The solution depends on steepness and N 

1) 

2) 



MAXIMUM AMPLITUDE 

1) It depends on the product εN 

2) Maximum amplitude is 3 -> The Peregrine solution 

Such solutions have been tested experimentally in a  
number of wave tanks and fully nonlinear computations 



N=5 
ε=0.1	



THE AKHMEDIEV SOLUTION 



OCEAN WAVES ARE CHARACTERIZED BY  
JONSWAP SPECTRUM 

Example: N=3, ε= 0.1 – Wave group is stable 

 BREATHERS ARE RARE OBJECTS 



BASED ON THIS BASIC IDEA OF MODULATIONAL 
INSTABILITY, AFTER YEARS OF THEORETICAL 
W O R K , N U M E R I C A L S I M U L AT I O N S A N D 
EXPERIMENTAL WORK, THE FOLLOWING QUANTITY 
is NOW COMPUTED OPERATIONALLY AT THE 
E.C.M.W.F.: 

€ 

kurtosis = 3+
π
3
BFI2D

2 +18ε 2

 α is a fitting constant	

 (Mori et al. JPO 2011) 

FREE MODES 

BOUND MODES NORMAL VALUE 

€ 

BFI2D =
BFI

1+α Δθ 2 /(Δω /ω 0)2



MODULATIONAL INSTABILITY FROM NAVIER-STOKES  
SIMULATIONS 
The numerical method has been developed by A. Iafrati  
(Iafrati 2010, JFM) 

Initial condition: 

Computational domain: 









DISSIPATION 





CONCLUSIONS 

1)  Modulational instability does not imply always rogue 
waves 

2)  Wave breaking due to modulational instability may 
result in a dissipation of energy larger in the air than 
in the water 

3)  During the breaking process, dipoles are formed 

4)  Dipoles can reach the height of the wave length 



THE ACCIDENT 

On March 03, 2010 at 15:20 the Louis Majesty has 
been hit by a wave at deck n. 5 which is 16 m from 
the undisturbed sea-level 

The wave broke the glass windshields in the 
forward section on deck five 

Rogue waves in crossing seas:  
The Louis Majesty accident 

Cavaleri et al. JGR 2012 



THE FORECASTING MODEL 

The wave fields are the result of the forecasting 
of Nettuno model from the Italian National 
Meteorological Service 

Resolution of the meteorological model: 7 km 

Resolution of the wave model in space (WAM): 
1/200 

Spectral Resolution of the wave model:  
   number of frequencies: 30 
   number of directions: 36  
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THE DIRECTIONAL SPECTRA  
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DIRECTIONAL SPECTRUM  
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THE DIRECTIONAL SPECTRA  
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THE DIRECTIONAL SPECTRUM  
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CROSSING SEAS: THE SIMPLEST CASE	
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A=(k,l)	



B=(k,-l)	





COUPLED NONLINEAR SHRODINGER EQUATION 

Zakharov equation 	



€ 

b(k) = A(k − kA)e
−iω(kA )t + B(k − kB)e

−iω(kB )t€ 

i∂bo
∂t

=ω obo + T0,1,2,3b1
*∫ b2b3δ ko + k1 − k2 − k3( )dk1dk2dk3

• consider the following decomposition	



• suppose that both spectral distribution are narrow banded	



with 

€ 

kA = (k, l)       k B = (k,−l)
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COUPLED NLS EQUATIONS	



Coefficients are a function of k and l	





• Consider perturbations only a function of kx	
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∂A
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AKHMEDIEV BREATHER SOLUTION	



€ 

A(x, t) = c1ψ(x, t)      B(x,t) = c2ψ(x,t)Exp[iδ]
Look for a solution of the form: 

For the Louis Majestic case  

€ 

c1 ≈ c2

€ 

ψ(x, t) satisfies a standard NLS equation 

Parameters of the solution 

€ 

ψ0 =1.7 m
fA = fB = 0.1 Hz
εA = εB = 0.07
N = 4







SUMMARY OF THE RESULTS	



For θ <35.30, dispersive and both nonlinear terms have 
 the same sign 

The ratio between nonlinearity and dispersion becomes larger  
as θ approaches 35.30 (this is valid for both self-interaction and  
cross-interaction nonlinearity) 

The cross-interaction nonlinearity is stronger than the self 
Interaction one for angles between 00 and 26.70 



ANALYSIS OF THE COEFFICIENTS	



α= dispersive term 
ξ= self-interaction term 
ζ=cross-interaction term 
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ANALYSIS OF THE COEFFICIENTS	



α= dispersive term 
ξ= self-interaction term 
ζ=cross-interaction term 



DISPERSION RELATION FOR PERTURBATION	



€ 

Ω = αK 2 2(ξ + 2ζ )A0
2 +αK 2[ ]



AMPLIFICATION FACTOR FOR BREATHER  
SOLUTIONS 

€ 
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N = number of waves under the envelope 
ε = initial steepness 
κ = modulus of the wave number 



AMPLIFICATION FACTOR 

GROWTH RATE 



SUMMARY OF THE RESULTS: 

The maximum amplification is for θ ->35.30 and large N 

The maximum growth rate is for θ=00 and N≈3 

CONSIDERATIONS: 

Extreme waves are the result of a maximum amplification  
factor in a reasonable time scale 

WE EXPECT LARGE EXTREME WAVE ACTIVITY AT  
ANGLES OF θ≈200- 300 



EXPERIMENTS: MARINTEK FACILITY 
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E(ω,θ) = E1(ω,θ) + E2(ω,θ)
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DESCRIPTION OF THE EXPERIMENT	


	

 	


SUM OF TWO JONSWAP SPECTRA:	



with 



NUMERICAL SIMULATIONS 

HIGHER ORDER SPECTRAL METHOD (THIRD 
ORDER IN NONLINEARITY) 

BOX PERIODIC IN x AND y COORDINATES 

INITIAL CONDITIONS PROVIDED BY TWO  
JONSWAP SPECTRA TRAVELLING AT AN ANGLE 



RESULTS ON MAXIMUM KURTOSIS 
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PROBABILITY OF EXCEEDENCE AT THE TIME  
OF THE ACCIDENT 

Linear case: 



PROBABILITY OF EXCEEDENCE AT THE TIME   
AND PLACE OF THE ACCIDENT 

Hs=5.11 m 
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WAITING TIME AT THE TIME  AND 
PLACE OF THE ACCIDENT 

Hs=5.11 m 
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Limitations of the computation 


