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OUTLINE OF THE PRESENTATION

Quick review on modulational instability and
breather solutions of the NLS equation

New approach on studying the modulational
instability using Navier-Stokes equation

The case of the Louis-Majesty accident:
crossing seas conditions



MODULATIONAL INSTABILITY: Experimental result
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BREATHERS: EXACT SOLUTION OF THE NLS
N. Akhmediev,et al. (1987)

B s V2V2 cosh[Qr] —iv/26sinh[Qr)]
A(x,1) = Agexp |—iBAt] ( T3cosh ] — V3= T2 cosi(ko/ N4 1)

Two remarks:

1)  A(x,t — —oo) = Agexp(i¢)(1 + d cos[(ko/N)x])

2) The solution depends on steepness and N



MAXIMUM AMPLITUDE

Am_Hz\/l ( 1 )2
Ao 2\/§8N

1) It depends on the product eN

2) Maximum amplitude is 3 -> The Peregrine solution

Such solutions have been tested experimentally in a
number of wave tanks and fully nonlinear computations



THE AKHMEDIEV SOLUTION
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OCEAN WAVES ARE CHARACTERIZED BY
JONSWAP SPECTRUM
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Example: N=3, e= 0.1 — Wave group Is stable

> BREATHERS ARE RARE OBJECTS



BASED ON THIS BASIC IDEA OF MODULATIONAL
INSTABILITY, AFTER YEARS OF THEORETICAL
WORK, NUMERICAL SIMULATIONS AND
EXPERIMENTAL WORK, THE FOLLOWING QUANTITY
is NOW COMPUTED OPERATIONALLY AT THE
E.C.M.W.F.:

kurtosi:/=@+ +

NORMAL VALUE BOUND MODES
FREE MODES
B — BFI
P \/1 +a AO° [(Aw w,)’

a is a fitting constant (Mori et al. JPO 2011)



MODULATIONAL INSTABILITY FROM NAVIER-STOKES

SIMULATIONS
The numerical method has been developed by A. lafrati

(lafrati 2010, JFM)

Initial condition:
N (x,t =0) = Agcos(kox) +Ajcos((ko+ K)x) + A cos((kg — Kx))

Ao = 0.60 m K =ko/5

&0 = koAp 18 varied from 0.1 t0 0.18

Computational domain:
horizontal dimension of 5 Ay and vertical of 4.33 A
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DISSIPATION
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CONCLUSIONS

1) Modulational instability does not imply always rogue
waves

2) Wave breaking due to modulational instability may
result in a dissipation of energy larger in the air than
in the water

3) During the breaking process, dipoles are formed

4) Dipoles can reach the height of the wave length



Rogue waves in crossing seas:
The Louis Majesty accident

THE ACCIDENT

On March 03, 2010 at 15:20 the Louis Majesty has
been hit by a wave at deck n. 5 which is 16 m from

the undisturbed sea-level

The wave broke the glass windshields in the
forward section on deck five
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Cavaleri et al. JGR 2012




THE FORECASTING MODEL

The wave fields are the result of the forecasting
of Nettuno model from the Italian National
Meteorological Service

Resolution of the meteorological model: 7 km

Resolution of the wave model in space (WAM):
1/20°

Spectral Resolution of the wave model:
number of frequencies: 30
number of directions: 36
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Figure 1. Western Mediterranean Sea. The enclosed
area corresponds to the one considered in Figure 2. The
line in the lower-left part shows the only satellite pass at
a time close to the accident. Accident (star) and Begur
buoy (dot) positions are also shown. The dash line is an
indication of the expected route of the ship
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Figure 2. Significant wave height field at (left) 14:00 and (right) 15:00 UTC, 3 March 2010. Isolines at
1 m interval. The arrows indicate the mean wave direction, and their length 1s proportional to the signif-
icant wave height. The area, shown in Figure 1, spans 1°E-7°E, 39°N-44°N. The grid is shown at 1° inter-
vals. The star points to the ship location at the time of the accident. The dot in Figure 2 (left) indicates the
position of the Begur buoy.
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Figure 3. Significant wave heights measured on 3 March
2010 at the Begur buoy, crosses, (see Figure 2) and cor-
responding model values, circles.
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CROSSING SEAS: THE SIMPLEST CASE

K A=(k,])

B=(k,-1)



COUPLED NONLINEAR SHRODINGER EQUATION

Z.akharov equation
b,

ot - wObo t f%,1,2,3bfb2b35(ko +k1 _kz _k3)dk1dk2dk3

l

e consider the following decomposition
b(k) — A(k _ kA)e—ia)(kA )t + B(k _ kB)e—ia)(kB)t

with g (kD) k= (kD)

e suppose that both spectral distribution are narrow banded



COUPLED NLS EQUATIONS

J A 2A &2A

JdA JA JdA
2 [3’ —
dx&y
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Coefficients are a function of k and /



 Consider perturbations only a function of k_
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AKHMEDIEYV BREATHER SOLUTION

Look for a solution of the form:
A(x,t) =cy(x,t) B(x,t) =cy(x,t)Explio]

For the Louis Majestic case ¢, = C,

UJ(x,t) satisfies a standard NLS equation

Parameters of the solution
Y, =1.7m
Ja=1p=0.1Hz
e, =€, =007
N =4
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Figure 7. The maximum crest amplitude of the Akhmediev breather for the Louis Majesty sea state con-
ditions as a function of the angle between the two wave systems.
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Figure 8. The surface elevation corresponding to the
breather solution with 3 = 50°.



SUMMARY OF THE RESULTS

*For 6 <35.39, dispersive and both nonlinear terms have
the same sign

*The ratio between nonlinearity and dispersion becomes larger
as 0 approaches 35.3° (this is valid for both self-interaction and
cross-interaction nonlinearity)

*The cross-interaction nonlinearity is stronger than the self
Interaction one for angles between 0° and 26.7°



ANALYSIS OF THE COEFFICIENTS
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ANALYSIS OF THE COEFFICIENTS
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1 o= dispersive term
1 &= self-interaction term
1 C=cross-interaction term



ANALYSIS OF THE COEFFICIENTS

o= dispersive term
g= self-interaction term
C=cross-interaction term




DISPERSION RELATION FOR PERTURBATION

Q- \/aK2[2(§ +20)A2 + k]




AMPLIFICATION FACTOR FOR BREATHER
SOLUTIONS

1/2

A | o K’ 2
E =14+ 2(1-
A, \&+2C eN

N = number of waves under the envelope
¢ = initial steepness
k = modulus of the wave number
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SUMMARY OF THE RESULTS:

*The maximum amplification is for 6 ->35.3%and large N

*The maximum growth rate is for 6=0° and N=3

CONSIDERATIONS:

Extreme waves are the result of a maximum amplification
factor in a reasonable time scale

WE EXPECT LARGE EXTREME WAVE ACTIVITY AT
ANGLES OF 6=20°- 30°



EXPERIMENTS: MARINTEK FACILITY
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DESCRIPTION OF THE EXPERIMENT

SUM OF TWO JONSWAP SPECTRA:

E(w,0)=E (w,0)+ E,(0,0)

with
2 [ 5 ) 4 2 2 2
E\(.0) = 5 Exp __(_,,) el -6,
00 4\ w
2 5(w ! 2 22
Ey(@,0) = 5 Exp __(_,,) e e 0.4 9,)
00 4\ w




NUMERICAL SIMULATIONS

*HIGHER ORDER SPECTRAL METHOD (THIRD
ORDER IN NONLINEARITY)

*BOX PERIODIC IN x AND y COORDINATES

*INITIAL CONDITIONS PROVIDED BY TWO
JONSWAP SPECTRA TRAVELLING AT AN ANGLE



RESULTS ON MAXIMUM KURTOSIS
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PROBABILITY OF EXCEEDENCE AT THE TIME
OF THE ACCIDENT

Linear case:



PROBABILITY OF EXCEEDENCE AT THE TIME
AND PLACE OF THE ACCIDENT
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WAITING TIME AT THE TIME AND
PLACE OF THE ACCIDENT
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in standard conditions ¢ = 0.073 N m~'. In the two-fluid modelling, the densities of air and water are

the standard ones, p,, = 1000 kg m > and p, = 1.25 kg m . The values of the dynamic viscosities in

water and air are (1, = 103 kgm ! s and u, = 1.8 107> kg m~' s~!, respectively.



in standard conditions ¢ = 0.073 N m~'. In the two-fluid modelling, the densities of air and water are
the standard ones, p,, = 1000 kg m— and p, = 1.25 kg m—>. The values of the dynamic viscosities in
water and air are t,, = 10> kg m ! s7!and y, = 1.8107 kg m~! s7!, respectively.

Limitations of the computation

The present work represents the first attempt to approach the problem of modulational instability starting
from the Navier-Stokes equation. Results seems to be very encouraging. Clearly, it has a number of
limitation due to the heaviness of the computation. Probably the most important one is that we have
assumed that waves are long crested and the fluid domain is 2-dimensional. In reality we expect that
3D effect can take place and dipoles and vortices can become unstable. It will be just a matter of time
to develop the 3D version of the NS code and verify our finding in a more realistic context. A second
important limitation is the lack of wind: our simulations correspond to the propagation of a steep swell

and what would be the consequences of a turbulent wind on the generation of vorticity during breaking
event is unknown.



