# **Workshop working groups:**

- Modelling:
  - Coupling.
  - How to deal with multi scales.
  - Dangerous sea states.
- Physics
  - Dissipation.
  - Non linear source term.
  - Wave effect on the oceans.
  - Wave/current interaction.
  - Wave under extreme winds.
  - New source terms.

- **Data** 
  - Analysis and re-analysis.
  - Future satellite missions.
  - Validations techniques.
  - Forecast products.

Slide 1



# PRESENT STATUS of WAVE FORECASTING AT E.C.M.W.F.

# Jean-Raymond Bidlot Marine Aspects Section European Centre for Medium-range Weather Forecasts



## Introduction: sustained improvement over the years

For example: global wave height forecast against buoy measurements:

#### Symmetric Slope

#### **Scatter Index**



# **ECMWF Wave Model Configurations** 1) Limited Area Wave model (LAW)

- Limited extend.
- <u>11</u> km grid spacing.
- Stand alone.
- Forced by 10m neutral wind fields.
- Use surface currents from TOPAZ4.
- Data assimilation of altimeter data.
- 2 daily forecasts extending to day 5.
- Output every hour, including spectra (\*).





TOPAZ4 surface currents



# ECMWF Wave Model Configurations 2) Global models

- Global.
- Coupled to the atmospheric model.
- Data assimilation of altimeter data.
- Part of all forecasting components (high resolution, ensemble, monthly, seasonal, re-analyses)



Global from 81°S to <u>90</u>°N

Workshop on Ocean Waves, ECMWF, June 25-27, 2012



Slide 5



# **ECMWF Wave Model Configurations**

#### **High resolution**

- 28 km grid spacing.
- 36 frequencies.
- 36 directions.
- Coupled to the TL1279 model (16km).
- Analysis every 6 hrs and 10 day forecasts from 0 and 12Z.

#### **Ensemble forecasts**

- 55 km grid spacing.
- $30 \rightarrow 25$  frequencies \*.
- 24  $\rightarrow$  12 directions \*.
- Coupled to TL639 (32 km) → TL319 model \*.
- (50+1) (10+5) day forecasts from 0 and 12Z (monthly twice a week).
  - \* Change in resolutions after 10 days

NB: also in seasonal forecast at lower resolutions



# **Ocean Wave Modelling: ECWAM**

- The ocean wave modelling at ECMWF is based on the wave mode WAM cycle 4 (Komen et al. 1994), albeit with frequent improvements.
- Wave model page on the Centre's web site:

http://www.ecmwf.int/products/forecasts/wavecharts/index.html#forecasts

General documentation:

http://www.ecmwf.int/research/ifsdocs/CY36r1/index.html

Slide 7



## Latest upgrade to operational system (CY38R1) (19 June 2012):

#### Wave model main changes:

- Sinput + Sdiss + Sbottom
- Bug fix to wave stress table.



#### Drag Coefficient versus wind speed (coupled runs):

corrected



#### **CY38R1: wave scores**

#### Compared to model analysis:



Stdev

error

N.H.

#### **Compared to altimeter data:**



**CECMWF** 

Comparison with 17 operational centres at a set of buoys as part of the activities of JCOMM Expert Team on Waves and Storm surges (ETWS):

Global systems at all buoys, February-May 2012:

Bias (model-obs)

**Scatter Index** 



Comparison with 17 operational centres at a set of buoys as part of the activities of JCOMM Expert Team on Waves and Storm surges (ETWS):

Global systems at all buoys, February-May 2012:

Bias (model-obs)

**Scatter Index** 



## **CY38R1: comparison with buoy spectra**



Slide 12

Data from NDBC (US), ISDM (Canada), CDIP (US)



# **Present status of ECWAM:**

• The 2-D spectrum  $F(f,\theta)$  follows from the energy balance equation (in its simplest form: deep water case):

$$\frac{\partial F}{\partial t} + \mathbf{V}_g \cdot \nabla F = S_{in} + S_{nl} + S_{diss}$$

where the group velocity V<sub>g</sub> is derived from the dispersion relationship which relates frequency and wave number.

S<sub>in</sub>: wind input source term (generation).

S<sub>nl</sub>: non-linear 4-wave interaction (redistribution).

**S**<sub>diss</sub>: dissipation term due to whitecapping (dissipation).

Slide 13



## **Grid and Advection:**

#### Irregular lat-lon grid to keep the distance between grid points roughly constant



#### **Corner Transport Upstream scheme:**



#### **Unresolved bathymetry obstructions:**







Wind input S<sub>in</sub>:



## Wind input S<sub>in</sub>: gustiness parameterisation

 $S_{in} = \gamma F$  wind gustiness

$$\bar{\gamma}(u_*) = \frac{1}{\sigma_* \sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\frac{(u_* - \bar{u}_*)^2}{2\sigma_*^2}\right\} \gamma(u_*) du_*$$

$$\sigma_*$$
 : standard deviation of u\*

$$\bar{\gamma}(u_*) \approx 0.5 \left[ \gamma u_* + \sigma_* \right] + \gamma u_* - \sigma_*$$

$$\sigma_* = \frac{u_*}{U_{10}} \left( 1 + \frac{0.5 U_{10} \ 0.08 \ 10^{-3}}{C_d} \right) \left\{ b + 0.5 \left( \frac{z_i}{-L} \right) \right\}^{1/3}$$
$$u_* = \sqrt{C_d} \ U_{10} \qquad C_d = (0.8 + 0.08) 10^{-3} \ U_{10} \qquad \text{Slide 17}$$

from the atmospheric model :

- $Z_i$  Inversion height
- *L* Monin Obukhov length

b = 0



# Wind input S<sub>in</sub>: linear swell damping

 $S_{in} = \gamma F$ 

Following Janssen (2004), the small effect of turbulent eddies on the waves can be modelled as

$$\frac{\gamma}{\omega} = \frac{\rho_a}{\rho_w} \left\{ \beta \left( \frac{u_*}{c} \max\left( \cos(\theta - \phi), 0 \right) \right)^2 + 2\kappa \left( \frac{u_*}{c} \right)^2 \left( \cos(\theta - \phi) - \frac{c}{V} \right) \right\}$$

V : wind speed at height z = 1/k



## Sdiss

 $S_{diss}$  following Bidlot, Janssen and Abdalla (BJA) 2007, back to Komen et al. 1994 form:

$$S_{diss} = -C_{ds} \omega_{mean} \left(k_{mean}^2 m_0\right)^2 \left[ (1-\delta) \frac{k}{k_{mean}} + \delta \left(\frac{k}{k_{mean}}\right)^2 \right]$$
$$C_{ds} = 1.33 \qquad \qquad \delta = 0.5$$

$$\omega_{mean} = \frac{\int \omega F \, df d\theta}{m_0} \qquad \sqrt{k_{mean}} = \frac{\int \sqrt{k} F \, df d\theta}{m_0} \qquad m_0 = \int F \, df d\theta$$

| - 1 H |       |  | r 🗛 🛛 |  |
|-------|-------|--|-------|--|
|       | r a 1 |  |       |  |
| - I I |       |  | - v 1 |  |



## Snl:

- The calculation of the non linear source term is still based on the Discrete Interaction approximation (DIA).
- For shallow water, the transfer coefficients are re-scaled:

$$Transf_{nl}(shallow) = f(k,h) Transf_{nl}(deep)$$

• Following Janssen and Onorato (2005), using the narrow band approximation, it was shown that the scaling factor could be written as

$$f(k,h) = \frac{R^2}{T^8 \frac{\partial v_g}{\partial k}}$$
  
where  
$$\frac{\partial v_g}{\partial k} = [T - kh(1 - T^2)]^2 + 4(kh)^2 T^2 (1 - T^2)$$
  
Side 20  
$$T = \tanh(kh), \quad v_g = 0.5c(1 + \frac{2kh}{\sinh(2kh)}), \quad c = \frac{\omega}{k}, \quad c_s = \sqrt{gh}, \quad \omega^2 = gkT$$
  
Workshop on Ocean Waves, ECMWF, June 25-27, 2012

#### **Shallow water Snl**



ECMWF

## **Sbottom:**

$$S_{bottom} \text{ (see Komen et al. 1994):}$$

$$S_{bottom} = -2 C_{bot} \frac{k}{\sinh(2 k h)}$$

$$C_{bot} = \frac{0.038}{g}$$

Slide 22



#### **Bottom induced wave breaking:**

Dissipation due to bottom induced wave breaking was added to the source terms. Following Battjes, Janssen and Beji:

$$S_{dis} = -C_{BJ} \alpha Q_b \langle f \rangle F(f,\theta)$$
$$H_{max} = \gamma h \qquad \alpha = 2 \frac{H_{max}^2}{H_s^2}$$

 $Q_b$  : fraction of breaking waves

$$Q_b = \exp\left\{-\alpha(1-Q_b)\right\}$$

*breaker parameter*  $\gamma = 0.6$ 

$$C_{BJ} = 1$$
  $\langle f \rangle = mean \, frequency$ 

Slide 23



## **Coupling to the waves: Warm skin layer model**

- Following Takaya et al. (JGR 2010), a skin layer model is used to represent the Daily SST Amplitude.
- In this scheme, the temperature profile is controlled by the turbulent diffusivity K<sub>w</sub>(z):

$$K_w(z) = \frac{-\kappa z \, u_w^* f(L_a)}{\phi_h(z/L)}$$

Langmuir number

$$= \sqrt{\frac{u_{w}^{*}}{U_{Stokes}}}$$

• Following Grant and Belcher (JPO 2009), for stable condition only and for  $f(L_a) > 1$ :

$$f(L_a) = \frac{1}{L_a^{2/3}}$$



Figure 4. The average of the Langmuir number computed with forecasts starting from 1 January 1990–2007.

 $U_w$ : friction velocity in water

 $\phi_h(z/L)$ : similarity function, L: Obukhov length

**CECMWF** 

## **Data assimilation:**

- Currently only using Jason-2 wave heights.
- Resuming use of Jason-1 under evaluation.
- Still using the Optimum Interpolation scheme from Lionello et al. (1992).
- Some minor adaptations:

Slide 25



## Land recognition:

#### The model background error should recognize the presence of land

#### default

#### Land detected

Analysis increments



Hs analysis increments



0.275

0.25

0.225

0.175

0.2

1.5

0.125

0.1

0.075

0.05

0.025

0.01

-0.01

-0.025

-0.05

-0.075

-0.1

-0.125

-0.15

-0.175

0.2

#### **Shallow water spectral update:**

Windsea update relies on deep water model growth curves in order to determine an update to u\* and mean frequency:



## **Data assimilation**

#### Impact still limited:

All wave buoys: wave height scatter index from 201201 to 201203



Buoys in the Tropics: wave height scatter index from 201201 to 201203



Workshop on Ocean Waves, ECMWF, June 25-27, 2012

Jason-2 + ENVISAT Jason-2 ENVISAT No data



Buoys in the Tropics: peak period scatter index from 201201 to 201203





## **Products:**

- All "standard" wave parameters in the operational catalogue.
- Including wave spectra.
- A few 'freak wave parameter', including Hmax.
- New set of parameters to include wave effects on the ocean fluxes:

Slide 29



#### **New parameters:**

- A small portion of the stress is retained by the wave field to be released later.
- Hence, one can compute the stress that is actually acting on the oceans.



Monthly mean of the <u>normalised</u> stress into the ocean as derived from ERA-Interim data Slide 30

It is normalised by  $\rho_a \, u^2_*$ 



#### **New parameters**

- Similar consideration can be made for the energy fluxes passing first into the waves.
- It is then dissipated by the waves and transferred into the upper oceans where it will contribute to the mixing of the top of the oceans.
- Both quantities are connected to the wave model source terms.



Monthly mean of the <u>normalised</u> energyide 31 flux into the ocean as derived from ERA-Interim data.

It is normalised by  $\mathcal{P}_a \, \mathcal{U}_*$ 



## **Can we still improve ?**

# Comparison to buoy spectra, stratified by energy level:



Latest CY38R1 compared to observations, January to May 2012



Workshop on Ocean Waves, ECMWF, June 25-27, 2012

#### Comparison to altimeter wave heights :

## **Can we still improve ?**

#### Shallow water issues:



62042: UK CEFAS buoy, located on the north shore of East Anglia in 18m of water

**SECMWF** 

## **Ongoing developments:**

- Integration of the atmosphere-wave-ocean models.
- Unstructured grid option.
- Sea ice damping.
- Sbottom.
- ...
- Many more following this workshop...

Slide 34



#### **Future developments: unstructured grid**





### **Future developments: unstructured grid**



**CECMWF** 

#### **Future developments: unstructured grid**



Slide 37



## **Future developments: sea ice damping:**

 $\alpha = \operatorname{ci} \frac{a}{2\overline{D}}$ 

The non-dimensional attenuation coefficient "a" was found to depend only on wave period and sea ice thickness "h"



From Kohout and Meylan (JGR 2008), Figure 6.





#### Raw buoy data (further QC still needed!)

Model,

with wave propagation only When sea ice cover > 30%

Model, with sea ice damping up to sea ice cover of 90% (Ci<sub>block</sub>=0.9)

**SECMWF** 

# **Questions/comments?**



#### **Future developments: spectral partitioning**



#### **Operational:**

**CECMWF** 

## Verification against buoy frequency spectra

