

Stabilizing High-Resolution HARMONIE

Enda O'Brien enda.obrien@ichec.ie

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

EUROPEAN REGIONAL DEVELOPMENT FUND

OIDEACHAIS EDUCATION AGUS EOLAIOCHTA A N D S C I E N C E

Higher Education Authority An tÚdarás um Ard-Oideachas

Irish Centre for High-End Computing

- Irish national HPC service, founded 2005
- Active member of PRACE
- Main system (SGI): 320 nodes of Xeon E5650 2 x 6-core (Westmere) processors, 24GB mem/node. Total: 3840 cores, 7.68 TB RAM
- Second system (Bull): 64 nodes of Xeon X5560 2 x 4-core (Nehalem) processors, 48 GB mem/node. Total: 496 cores, 3 TB RAM.
 - 24 nodes have 2 x Nvidia Tesla M2090 GPUs.
- Runs operational forecasts for Met Eireann

Mission*

"A Usable** High-Resolution*** HARMONIE"

* (Thanks to support from Irish EPA grant CCRP-09-FS-5.2)

** (Able to run a ~24 hr forecast in ~1 hr wall-time)

*** (~ 0.5 km grid-size)

Simple, just edit "config_exp.h"...

Current Operational:

IRELAND25)

New High-Resolution:

IRELAND05)

TSTEP=60	# Time step	TSTEP=12	# Time step
NLON=540	# No. x points	NLON=600	# No. x points
NLAT=500	# No. y points	NLAT=600	# No. y points
LONC = -7.5	<pre># Central lon.(deg)</pre>	LONC=-9.0	<pre># Central lon.(deg)</pre>
LATC=53.50	<pre># Central lat.(deg)</pre>	LATC=52.80	<pre># Central lat.(deg)</pre>
GSIZE=2500.	# Gridsize in m (x,y)	GSIZE=500.	<pre># Gridsize in m (x,y)</pre>
LON0=5.0	<pre># Ref. lon.(deg.)</pre>	LON0 = -9.0	<pre># Ref. lon.(deg.)</pre>
LAT0=53.5	<pre># Ref. lat.(deg.)</pre>	LAT0=53.0	<pre># Ref. lat.(deg.)</pre>
BDNLON=600	# No. X intermed.pts.	BDNLON=600	<pre># No. X intermed.pts.</pre>
BDNLAT=540	# No. Y intermed. Pts	BDNLAT=600	# No. Y intermed. Pts

Allocate 6 x more nodes or system time, and run... (N.B.: HARMONIE parameterizations are scale-adaptive)

Frequently get, in Forecast.1...

• • •									
• • •									
03:29:46	STEP	3668	H=	12:13	+CPU=	2.4	60		
03:29:49	STEP	3669	H =	12:13	+CPU=	2.5	64		
03:29:51	STEP	3670	H =	12:14	+CPU=	2.3	64		
MAX V WIND=		222.8	8295	262112	51				
LEVEL=			7 P	OINT=		2	3		
PCOLON=	0.9	67007	9143	04197					
PGEMU=	0.79	35571	4470	4579					
SMILAG TRA	JECTO	RY OU	r of	ATM	1 :	TIMES	•		
03:29:53	STEP	3671	H=	12:14	+CPU=	2.1	52		
MAX V WI	ND=	355.4	4293	4565174	4 9				
LEVEL=		1	1 P	OINT=		1	1		
PCOLON=	0.9	66946	1232	80087					
PGEMU=	0.79	38928	8047	0571					
V WIND =	35	5.429	3456	51749		IS TO	O STRONG,	EXPLOSION.	
LEVEL=		1	1 P	OINT=		1	1		
PCOLON=	0.9	66946	1232	80087					
PGEMU =	0.7	93892	8804	70571					
ABORT! 1	06 !'	V WIN	D TO	O STROI	NG, EXI	PLOSI	ON!!!		
MPL_ABORT:	CALL	ED FR	OM P	ROCESS	OR 2	106 T	HRD 1		
MPL_ABORT	: THRI	D		1	IV W:	IND T	OO STRONG	, EXPLOSION!	

Schematic of some typical atmospheric spectra

Harmonie 0.5km 500mb Hgt 2011050718+23

Harmonie 0.5km (damped) 500mb Hgt 2011050718+23

Enhanced Scale-Selective Damping

For variable X, default scale-selective damping has the form:

 $\partial X / \partial t = -K_X |\nabla^r X|$

Exponent r = 4 by default.

Coefficient $K_{\chi} = 123$ by default.

To Stabilize High-resolution Harmonie, set:

r = 6, $K_{\chi} = 12,300$

Shape & Strength of Scale-Selective Damping

(Relative) Scale-selective Dissipation Strength

(Damping operates on normalized wavenumbers, between 0 and 1.

Larger exponent r reduces most values, so larger coefficient K_x is needed to compensate.)

2-d KE Spectra from Harmonie

Standard (default) damping

Enhanced scale-selective damping

Spectra Projected onto 1-D

Enhanced scale-selective damping

Both Vertically-averaged spectra, from single snapshot in time

KE from Rotational & Divergent Winds (default damping)

KE from "Vortical" winds only

KE from "Divergent" winds only

Harmonie 0.5km, Top-level Divergent KE spectrum, 2011050718+23

Numerical Stability of Harmonie

- Standard (scale adaptive) damping not strong enough to prevent spurious KE build-up at small scales in 0.5km Harmonie
- Short-wave KE build-up ("up-turned spectral tails") associated with:
 - Early adjustment phase of model spin-up
 - > Divergent flow (rather than rotational flow)
 - > Upper levels
- 0.5km Harmonie can be stabilized e.g., by enhanced scale-selective damping. (Could be even more selective...)
 - Requires changing just 2 namelist parameters
 - > Physical fields remain unchanged outside localized unstable region.
- More vertical resolution should help (though test runs with 91-level IFS boundaries were unstable too...)
- Inclusion of gravity-wave drag parameterization might be a better (more physical) solution.

KE Spectra

- Most KE spectra (integrated over all wave angles) closely follow a k⁻² power law - shallower than the k⁻³ characteristic of 2-d, geostrophic turbulence.
 - > (Domain is too small to capture the k^{-3} range).
- > A $k^{-5/3}$ inertial range (characteristic of 3-d turbulence) appears only in the divergent wind component.
- In either case, robust spectral slopes in inertial range suggest control by strong general laws.

Sensitivity to domain boundary placement:

GrADS: COLA/IGES

CL

HEC

Irish Centre for High-End Computing

High-resolution HARMONIE not all bad...

Modis Terra image vs. Harmonie 0.5km LWR at ToA:

GrADS: COLA/IGES

2012-02-23-16:36

2012-02-23-16:34

Observed (ADCP) and modelled surface currents in Galway Bay

Conclusions

- "Scale-adaptive" parameterizations in Harmonie not adaptive enough.
- "Something" is needed to remove spurious KE build-up at short scales (more scale-selective damping, more vertical resolution, gravity-wave drag...).
- Proper data assimilation and/or boundary filtering needed to damp boundary shock.
- Hi-res Harmonie has appeal even now in small domains where topography has strong influence on flow.
- Not to mention extra computational load, and need for better performance...