

Management system of a vast number of operational jobs at JMA

Program Section, Numerical Prediction Division, Japan Meteorological Agency (JMA)

4 OCT 2012

15TH WORKSHOP ON USE OF HPC IN METEOROLOGY

Contents

- Current computer system
- Operational suite
- Management system of operational jobs
- Summary

High performance computer

• HITACHI SR16000 model M1

- Processor: IBM POWER7 (3.83 GHz), 8 cores per chip
- One logical node: 4 processors (980.48 GFLOPS)
 - Each logical node runs AIX 7.1 operating system
- One system: 432 logical nodes (423.5 TFLOPS)
 - 412 computational nodes (403.9 TFLOPS)
 + 10 I/O nodes + 4 service nodes + 6 spare nodes
- Two independent systems with the same specifications
- In operation since 5 June 2012

4 OCT 2012

Computer system

Management system of a vast number of operational jobs at JMA

History of computers at JMA

4 OCT 2012

Contents

- Current computer system
- Operational suite
- Management system of operational jobs
- Summary

Operational suite, analysis (1)

	Global analysis (current)	Global analysis (near future)
Analysis scheme	4D-var	\leftarrow
Horizontal resolution [inner model]	TL959 (~ 20 km) [TL319 (~ 60 km)]	\leftarrow
Vertical layers	60 (up to ~ 0.1 hPa)	100 (up to ~ 0.01 hPa)
Analysis time	00, 06, 12, 18 UTC	\leftarrow
Assimilation window	T–3 ~ T+3	\leftarrow

Operational suite, analysis (2)

	Mesoscale analysis (current)	Mesoscale analysis (near future)
Analysis scheme	4D-var	\leftarrow
Horizontal resolution [inner model]	5 km (721 × 577) [15 km (241 × 193)]	5 km (817 × 661) [10 km (409 × 331)]
Vertical layers	50 (up to ~ 22 km)	75 (up to ~ 30 km)
Analysis time	00, 03, 06, 09, 12, 15, 18, 21 UTC	\leftarrow
Assimilation window	$T-3 \sim T+0$	\leftarrow

4 OCT 2012

Operational suite, analysis (3)

	Local analysis (current)	Local analysis (near future)
Analysis scheme	3D-var	\leftarrow
Horizontal resolution	5 km (633 × 521)	\leftarrow
Vertical layers	50 (up to ~ 22 km)	60 (up to ~ 20 km)
Analysis time	00, 03, 06, 09, 12, 15, 18, 21 UTC	Every hour

4 OCT 2012

Operational suite, forecast (1)

	Global forecast (current)	Global forecast (near future)
Governing equation	Primitive equation	\leftarrow
Horizontal resolution	TL959 (~ 20 km)	\leftarrow
Vertical layers	60 (up to ~ 0.1 hPa)	100 (up to ~ 0.01 hPa)
Initial time	00, 06, 12, 18 UTC	\leftarrow
Forecast time	84 hours (00, 06, 18 UTC) 216 hours (12 UTC)	84 hours (00, 06, 18 UTC) 264 hours (12 UTC)

4 OCT 2012

Operational suite, forecast (2)

	Mesoscale forecast (current)	Mesoscale forecast (near future)
Governing equation	Fully compressible nonhydrostatic equation	\leftarrow
Horizontal resolution	5 km (721 × 577)	5 km (817 × 661)
Vertical layers	50 (up to ~ 22 km)	75 (up to ~ 30 km)
Initial time	00, 03, 06, 09, 12, 15, 18, 21 UTC	\leftarrow
Forecast time	15 hours (00, 06, 12, 18 UTC) 33 hours (03, 09, 15, 21 UTC)	39 hours

4 OCT 2012

Operational suite, forecast (3)

	Local forecast (current)	Local forecast (near future)
Governing equation	Fully compressible nonhydrostatic equation	\leftarrow
Horizontal resolution	2 km (551 × 801)	2 km (1581 × 1301)
Vertical layers	60 (up to ~ 20 km)	\leftarrow
Initial time	00, 03, 06, 09, 12, 15, 18, 21 UTC	Every hour
Forecast time	9 hours	\leftarrow

Japan Meteorological Agency Daily schedule of operational suite: 12–00 UTC

Contents

- Current computer system
- Operational suite
- Management system of operational jobs
- Summary

Step, job, job group

- Step
 - The smallest unit in a management system including only one executable
 - A shell script, an awk script, or a load module
- Job
 - A step or a group of several steps that run sequentially
- Job group
 - A group of several jobs

Operational job groups

- Number of operational job groups ~ 70
 - Global analysis, global forecast, mesoscale analysis, mesoscale forecast, local analysis, local forecast, etc.
- Dependencies between job groups
 - 06 UTC analysis before 06 UTC forecast
 - 06 UTC forecast before 09 UTC analysis
 - Parent forecast model giving lateral boundary conditions before child forecast model
 - etc.

4 OCT 2012

Operational jobs

Number of operational jobs ~ 10,600 per day
 Complicated dependencies between jobs in a job group

e.g. Diagram of a job group (products of mesoscale forecast), each box indicates a job

4 OCT 2012

Datasets

- Datasets consist of directories and files
- Number of datasets
 - Constant datasets
 - Parameters, namelists, climatic average data, etc.
 - Number of datasets ~ 3,000
 - Variable datasets
 - Output from analyses, forecasts and products, etc.
 - Number of datasets ~ 8,800

Lots of files (e.g. Mesoscale forecast)

• 10 input datasets

- Namelists for model settings
- Initial conditions for atmosphere, land surface, sea surface
- Lateral boundary condition
- Topography data, ozone data, aerosol data, etc.
- 15 output datasets
 - Forecast for surface, isobars, model layers
 - Physics monitors, etc.

• Complicated dependencies between lots of files

4 OCT 2012

- To assure operational jobs run correctly by eliminating man-made errors
- To manage operational jobs systematically
 - All the information about jobs, datasets, executables is stored in a database management system (DBMS)
- Started to develop in 2004

– Started to develop some parts of the system in 2000

• Installed in the operational system in 2006

Management system of a vast number of operational jobs at JMA

New job control language (JCL)

- Similar to a JCL used for mainframe computers
- In the job management system of JMA, a JCL is converted into a Unix shell script using a utility program and DMBS for job management
 - Treatment of directory names
 - In a JCL, abstract directory names are used
 - In a shell script, abstract directory names are converted into actual directory names defined in the DBMS
 - Actual directory names differ whether the job is operational or not

Sample of a simple JCL

```
job JGNAME:JOBNAME
step step_name1
pgm jpp:/exe/Comm/program1
dd in name=INPUT data=jpp:/jgdir/Test/input1.txt
dd out name=OUTPUT data=jpp:/jgdir/Test/output1.txt
```

- Defining a job including only one step
 - One executable, one input file, one output file
- Number of lines in JCL = 5
- Statically defined action
- Written by developers

Sample of a shell script converted

Converted automatically from the JCL shown in the previous slide Number of lines in the shell script = 148 (snipped here)

test -f \${JGDIR:?}/Test/input1.txt exit 199 Added Unix test commands for test -d \${JGDIR:?}/Test exit 199 an input file, directory, executable test -x mod/Comm/Exe/program1 exit 199 PGM=mod/Comm/Exe/program1 \${JGDIR} depends on whether touch jg.Test.output1.txt this job is operational or not ln -fs \${JGDIR:?}/Test/input1.txt INPUT # in ln -fs jg.Test.output1.txt OUTPUT # out set +e \${PGM:?} < /dev/null >log.100_step_name1 RC=\$? Implemented 'atomic write': set -e The program writes to a temporary rcchk \${RC:?} 0 0 RC_EXIT=\${RC:?} file jq.Test.output1.txt rm -f INPUT OUTPUT chmod 444 jg.Test.output1.txt and rename it to a final output name \${JGDIR}/Test/output1.txt rm -f \${JGDIR:?}/Test/output1.txt mv -f jq.Test.output1.txt \${JGDIR:?}/Test/output1.txt after the program finishes exit \${RC_EXIT:?} Added utility functions (not shown)

operation

Management system of a vast number of operational jobs at JMA

Contents

- Current computer system
- Operational suite
- Management system of operational jobs
- Summary

Summary

- Installed a new computer system on 5 June 2012
 HITACHI SR16000 model M1, 423.5 TFLOPS × 2
- Implemented a job management system
 - Operational suite consists of about 10,600 jobs per day
 - Total number of datasets is larger than 10,000
 - A comprehensive job management system using a database management system was implemented
 - Number of man-made errors was reduced to ~ 1 / 6

Thank you

4 OCT 2012