
Name (change on Master slide) 1 C2SM 

Adapting Numerical Weather Prediction 
codes to heterogeneous architectures: 
porting the COSMO model to GPUs 

O. Fuhrer, T. Gysi, X. Lapillonne, C. Osuna, T. Dimanti, T. Schultess 
and the HP2C team  

Eidgenössisches Departement des Innern EDI 
Bundesamt für Meteorologie und Klimatologie MeteoSchweiz 



Xavier Lapillonne 2 HPC in Meteorology, ECMWF 2012 

The COSMO model 

• Limited-area model 
 

 
• Run operationally by several National Weather Service within the 

Consortium for Small Scale Modelling: Germany, Switzerland, Italy, 
Poland, Greece, Rumania, Russia. 

 
 

• Used for climate research in several academics institutions 



Xavier Lapillonne 3 HPC in Meteorology, ECMWF 2012 

Why using Graphical Processor Units ? 

Cores 
Freq. 
(GHz) 

Peak Perf. 
S.P. 

(GFLOPs) 

Peak Perf. 
D.P. 

(GFLOPs) 

Memory 
Bandwith 
(GB/sec) 

Power 
Cons.  
(W) 

CPU: AMD 
Opteron 

(Interlagos) 
16 2.1 268 134 57 115 

GPU: Fermi 
X2090 

512 1.3 1330 665 155 225 

• Higher peak performance at 
lower cost / power consumption 
 

• High memory bandwidth 
 

X 5 X 3 



Xavier Lapillonne 4 HPC in Meteorology, ECMWF 2012 

Using GPUs : the accelerator approach 

• CPU and GPU have different memories 

 

 

 

 

 

 

• Most intensive parts are ported to GPU, data is copied back and forth between the 
GPU and the CPU between each accelerated part. 

 

 

 

 

 

 

  
CPU 

Flops GPU 

Hybrid 
system 

CPU Flops Flops Flops 



Xavier Lapillonne 5 HPC in Meteorology, ECMWF 2012 

What does this mean for NWP application ? 

• Low FLOP count per load/store (stencil computation) 

• Example with COSMO-2 (operational configuration at MeteoSwiss) : 

 

 

 

 

 

Part Time/∆t 

Dynamics 172 ms 

Physics 36 ms 

Total 253 ms 

* CPU measurements: Cray XT6, Magny-Cours, 45 nodes, COSMO-2 
§ GPU measurements: PCIe 8x, HP SL390, 2 GB/s one way, 8 sub-domains 

* 
vs 

118 ms 

Transfer of ten 
prognostic variables  

§ 

CPU-GPU data transfer time is large with respect to computation time: 

Accelerator approach might not be optimal 



Xavier Lapillonne 6 HPC in Meteorology, ECMWF 2012 

Our strategy : full GPU port 

• All code which uses grid data fields at every time step is ported to GPU 
 

Input/Setup 

∆t 

Initialize timestep 

Assimilation 

Diagnostics 
Output 

Dynamics 

➞  keep on CPU / copy to GPU 

➞ OpenACC directives 

Finalize 

➞ C++ rewrite (uses CUDA) 

➞ GPU-GPU communication library (GCL) 

➞  keep on CPU / copy from GPU 

➞ OpenACC directives 

➞ OpenACC directive (part on CPU) 

➞ OpenACC directives 

Physics 

Halo-update 



Xavier Lapillonne 7 HPC in Meteorology, ECMWF 2012 

• Part of the Swiss High Performance High Productivity initiative  
• Prototype implementation of the COSMO production suite of MeteoSwiss 

making aggressive use of GPU technology 
• Same time-to-solution on substantially cheaper hardware: 

1 cabinet Cray XE5 

18cm 

GPU based hardware 

144 CPUs with 12 cores each 
(1728 cores) 

The  HP2C   OPCODE project 

• These developments are part of the priority project POMPA within the COSMO 
consortium : preoperational GPU-version of COSMO for 2014 

• OPCODE prototype code should be running by end 2012 



Xavier Lapillonne 8 HPC in Meteorology, ECMWF 2012 

COSMO-7: 72h 3x/day, 
6.6km, 60 levels 

IFS @ ECMWF:  
lateral boundaries   
4x /day 
16km, 91 levels 

COSMO-2: 33h 8x/day 
2.2km, 60 levels 

520 x 350 x 60 grid points 

MeteoSwiss COSMO-7 and COSMO-2 



Xavier Lapillonne 9 HPC in Meteorology, ECMWF 2012 

COSMO on the demonstrator system 

Multicore 
Processor 

One MPI task per GPU 

Demonstrator 
Multi-GPU node 



Xavier Lapillonne 10 HPC in Meteorology, ECMWF 2012 

Dynamical core refactoring 

Dynamics 
•Small group of developers 
•Memory bandwidth bound 
•Complex stencils (IJK-dependencies) 
•60% of runtime 
•40 000 lines (18%) 
 
Complete rewrite in C++ 
Development of a stencil library 
Target architectures CPU (x86) and 
GPU 
Could be extended to other 
architectures 
Long term adaptation of the model  
 

 

Communication library 
• Requirement for multi-node 

communications that can be called from 
the new dynamical core. 
 New communication library (GCL) 
 Can be called from C++ and Fortran 

code 
 Can handle CPU-CPU and GPU-GPU 

communication 
 Allows overlap of communication and 

computation 

Note : only single node results will be 
presented 



Xavier Lapillonne 11 HPC in Meteorology, ECMWF 2012 

Stencil computations 

• COSMO is using finite differences on a structured grid 
• Stencil computation is the dominating algorithmic motif within the dycore 

 
• Stencil Definition 
• Kernel updating array elements according to a fixed access pattern  

 
• Example 2D Laplacian 

 
 

lap(i,j,k) = –4.0 * data(i,j,k) + 
    data(i+1,j,k) + data(i-1,j,k) +  
    data(i,j+1,k) + data(i,j-1,k); 



Xavier Lapillonne 12 HPC in Meteorology, ECMWF 2012 

Stencil library development 

Motivation 
• Provide a way to implement stencils in a platform independent way 
• Hide complex/hardware dependent optimizations from the user 
 Single source code which is performance portable 
 
Solution retained 
• DSEL : Domain Specific Embedded Language 
• C++ library using template meta programming 
• Optimized back-ends for GPU and CPU 

CPU GPU 

Storage Order (Fortran) KIJ IJK 

Parallelization OpenMP CUDA 



Xavier Lapillonne 13 HPC in Meteorology, ECMWF 2012 

Stencil code concepts 

DO k = 1, ke 
  DO j = jstart, jend 
    DO i = istart, iend    
      lap(i,j,k) =  
 -4.0 * data(i,j,k) + 
 data(i+1,j,k) + data(i-1,j,k) +  
 data(i,j+1,k) + data(i,j-1,k)  
    ENDDO 
  ENDDO 
ENDDO 

 
A stencil definition consists of 2 parts 
•Loop-logic: Defines stencil application domain and execution order 
•Update-function: Expression evaluated at every location 

loop-logic update-function / stencil 

While the loop-logic is platform dependent the update-function is not  
 treat the two separately 

DSEL 

USER 



Xavier Lapillonne 14 HPC in Meteorology, ECMWF 2012 

Programming the new dycore 

enum { data, lap }; 
 
template<typename TEnv>  
struct Lap 
{ 
  STENCIL_STAGE(TEnv) 
   
  STAGE_PARAMETER(FullDomain, data) 
  STAGE_PARAMETER(FullDomain, lap) 
   
  static void Do(Context ctx, FullDomain) 
  { 
    ctx[lap::Center()] =  
      -4.0 * ctx[data::Center()] + 
      ctx[data::At(iplus1)] +  
      ctx[data::At(iminus1)] +  
      ctx[data::At(jplus1)] +  
      ctx[data::At(jminus1)]; 
  } 
}; 

IJKRealField lapfield, datafield; 

Stencil stencil; 

 

StencilCompiler::Build( 

  stencil,  

  "Example", 

  calculationDomainSize, 

  StencilConfiguration<Real, BlockSize<32,4> >(), 

  … 

  define_sweep<KLoopFullDomain>( 

    define_stages( 

      StencilStage<Lap, IJRange<cComplete,0,0,0,0> >() 

    ) 

  )  

  … 

); 

 

for(int step = 0; step < 10; ++step) 

{ 

  stencil.Apply();  

} 

Update-
function 

      lap(i,j,k) = data(i+1,j,k) + …  

    ENDDO 
  ENDDO 
ENDDO 

DO k = 1, ke 
  DO j = jstart, jend 
    DO i = istart, iend    

Stencil 
Setup 



Xavier Lapillonne 15 HPC in Meteorology, ECMWF 2012 

Dynamics, single-node performance 

• Test domain 128x128x60. CPU: 16 cores Interlagos CPU; GPU : X2090 
 
CPU / OpenMP Backend 
• Factor 1.6x - 1.7x faster than the COSMO dycore 
• No explicit use of vector instructions (10% up to 30% improvement) 

 
GPU / CUDA backend 
• Tesla M2090 (GPU with 150 GB/s memory bandwidth) is roughly a factor 2.6x 

faster than Interlagos (CPU with 52 GB/s memory bandwidth) 
• Ongoing performance optimizations 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

GPU HP2C (Tesla M2090)

CPU HP2C (Interlagos)

CPU Fortran (Interlagos)

Speedup 

Speedup



Xavier Lapillonne 16 HPC in Meteorology, ECMWF 2012 

Pros and Cons of the rewrite approach 

Pros 
•Performance and portability 
•Better separation of implementation strategy and algorithm 
•Single source code 
•The library suggest / forces certain coding conventions and styles 
•Flexibility to extend to other architecture 
 

Cons/difficulties 
•This is a big step with respect to the original Fortran code 
• Can this be taken over by main developers of the dycore ? (workshop, knowledge 

transfer …) 
•Adding support for new hardware platforms requires a deep understanding of the 
library implementation 
 
 
 



Xavier Lapillonne 17 HPC in Meteorology, ECMWF 2012 

Physics and data assimilation port to GPU 

Physics 
• Large group of developers 
• Some code maybe shared with other 

model 
• Less memory bandwidth bound 
• Simpler stencils (K-dependencies) 
• 20% of runtime 
• 43 000 lines (19%) 

Data assimilation 
•Very large code  
•83 000 lines (37%) 
•1 % of runtime 
 

 GPU port with OpenACC directives 
only for parts accessing multiple 
grid data field 

 No code optimization 
 Single source code 
 Some parts still computed on CPU 

 GPU port with OpenACC directives 
 Optimization of the code to get 

optimal performance on GPU 
 Most routines have for the moment 

a GPU and CPU version 



Xavier Lapillonne 18 HPC in Meteorology, ECMWF 2012 

Directives / Compiler choices for OPCODE 
 !$acc parallel  
  !$acc loop gang vector 
 do i=1,N 
  a(i)=b(i)+c(i) 
 end do 
 !$acc end parallel 

OpenAcc: Open standard, supported by 3 compiler vendors PGI, Cray, Caps 
 Solution retained for OPCODE  (for physics and assimilation) 
 PGI : some remaining issues with the compiler 
 Cray: The code can be compiled and run. Gives correct results 
 CAPS: not investigated yet 

 
• PGI proprietary:  

 First implementation of the physics 
 Translation to OpenAcc is not an issue 

Being able to test code with different compilers is essential 



Xavier Lapillonne 19 HPC in Meteorology, ECMWF 2012 

Implementation strategy with directives 

• Parallelization: horizontal direction, 1 thread per vertical column 
• Most loop structures unchanged, one only adds directives 
• In some parts, loop restructuring to reduce kernel call overheads, and profit from 

cache reuse.  
 !$acc data present(a,c1,c2) 
!vertical loop 
do k=2,Nz 
 !work 1 
 !$acc parallel loop vector_length(N) 
 do ip=1,nproma 
  c2(ip)=c1(ip,k)*a(ip,k-1) 
 end do 
 !$acc end parallel loop 
!work 2 
!$acc parallel loop vector_length(N) 
do ip=1,nproma 
    a(ip,k)=c2(ip)*a(ip,k-1) 
end do 
!$acc end parallel loop 
end do 
!$acc end data 

!$acc data present(a,c1) 
!$acc parallel loop vector_length(N) 
do ip=1,nproma 
 !vertical loop 
 do k=2,Nz 
  !work 1 
  c2=c1(ip,k)*a(ip,k-1) 
  !work 2 
   a(ip,k)=c2*a(ip,k-1) 
 end do 
end do 
!$acc end parallel loop 
!$acc end data 

• Remove Fortran automatic arrays in subroutines which are often called (to avoid 
call to cudamalloc) 

• Data regions to avoid CPU-GPU transfer 
• Use profiler to target specific parts which need further optimization: reduce 

memory usage, replace intermediate arrays with scalars … 

Lapillonne and Fuhrer submitted to Parallel Processing Letters 



Xavier Lapillonne 20 HPC in Meteorology, ECMWF 2012 

Ported Parametrizations 

 
 

• Currently implemented and tested physics: 
 
 
 
 Microphysics (ice-scheme) 
 Radiation       (Ritter-Geleyn) 
 Turbulence    (Raschendorfer) 
 Soil                (Terra) 

 
 
 

• These 4 parametrizations account for 90-95% of the physics time of a typical 
COSMO-2 run. First meaningful real case simulations are possible with this 
reduced set. 
 
 



Xavier Lapillonne 21 HPC in Meteorology, ECMWF 2012 

Performance results for the physics 

• Overall speed up x3.6 
• Similar performance with Cray CCE and PGI 
• Running the GPU-Optimized code on CPU is about 25% slower 
 separate source for time critical routines 

0

1

2

3

4

5

6

Microphysics Radiation Turbulence Soil Total
Physics

Sp
ee

du
p 

"CCE+OpenACC" "PGI+PGI directives"

• Test domain 128x128x60 – 16 cores Interlagos CPU vs X2090 GPU 



Xavier Lapillonne 22 HPC in Meteorology, ECMWF 2012 

Our experience using directives 

• Relatively easy to get the code running 
 

• Useful to port large part of the code 
 

• Requires some work to get performance: data placement, restructuring, additional 
optimization … 
 
– Ex: GPU part of assimilation is 20% to 50% slower on GPU than on CPU 

 
• Having a single source code that run efficiently on  GPU and CPU (x86) is still an 

issue 



Xavier Lapillonne 23 HPC in Meteorology, ECMWF 2012 

Putting all together: can we run this ? 

• The dynamical core is compiled as a library: 
– gcc + nvcc 

 
•  Linked with the Fortran part + OpenACC 

– So far only working with Cray CCE 
 

• GPU pointers are passed from fortran to C++ library using the host_data 
directive: 
– No data transfer required ! 



Xavier Lapillonne 24 HPC in Meteorology, ECMWF 2012 

Conclusions 

• Our strategy : full GPU port 
 
 

• Dynamics : complete rewrite 
 
 

• Physics and data assimilation : OpenACC directives 
 
 

• Could achieve same time to solution than current operational with a Multi-GPU 
node having o(10) GPUs : demonstrator system for end 2012 
 

 
 



Xavier Lapillonne 25 HPC in Meteorology, ECMWF 2012 

Acknowledgments 

• J. Pozanovick and all CSCS support 
 

• R. Ansaloni, Cray 
 

• P. Messmer, Nvidia 
 

• M. Wolfe, M. Colgrove PGI 
 
 


	Adapting Numerical Weather Prediction codes to heterogeneous architectures: porting the COSMO model to GPUs
	The COSMO model
	Why using Graphical Processor Units ?
	Using GPUs : the accelerator approach
	What does this mean for NWP application ?
	Our strategy : full GPU port
	The  HP2C   OPCODE project
	MeteoSwiss COSMO-7 and COSMO-2
	COSMO on the demonstrator system
	Dynamical core refactoring
	Stencil computations
	Stencil library development
	Stencil code concepts
	Programming the new dycore
	Dynamics, single-node performance
	Pros and Cons of the rewrite approach
	Physics and data assimilation port to GPU
	Directives / Compiler choices for OPCODE
	Implementation strategy with directives
	Ported Parametrizations
	Performance results for the physics
	Our experience using directives
	Putting all together: can we run this ?
	Conclusions
	Acknowledgments

