

ClusterStor

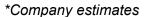
Advancing Digital Storage Innovation

Advanced Lustre Infrastructure Monitoring

Torben Kling Petersen, PhD
Principal Solution Architect, HPC

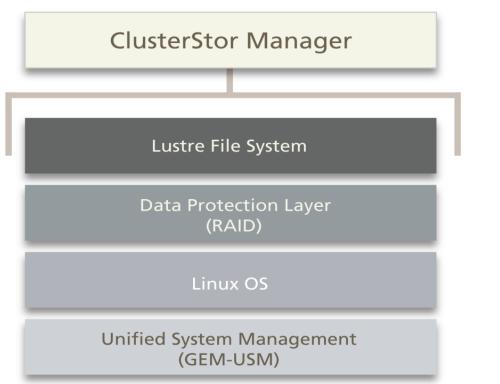
XyraWHOL2ading Provider of Data Storage Technology to OEMs

- > 4,000 Petabytes of storage shipped in 2011
- Largest OEM Disk Storage System provider


- ~ 50% of w/w disk drives are produced utilizing Xyratex Technology*
- Largest independent supplier of Disk Drive Capital Equipment

Enterprise
Data Storage
Solutions

HDD Capital Equipment Solutions



ClusterStor Design Philosophy

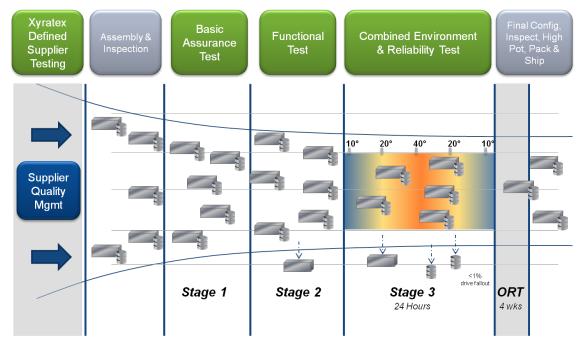
- > Architected
- > Integrated
- > Tested
- ➤ Optimized
- Qualified
- > Supported

- > Factory integration
- Component and system testing
- System shipped to site, not built on site
- > Single owner of entire stack
- ➤ Global Support capability

CS-2584 - Scalable Storage Unit (SSU) – Lustre OSS

Ultra HD - CS-2584 SSU - OSS

- 5U84 Enclosure completely H/A
 - Two (2) trays of 42 HDD's each
 - Dual-ported 3.5" FatSAS & SSD HDD Support
 - 150MB/s SAS available bandwidth per HDD
- Pair of H/A Embedded Application Servers
 - CS-3000: = 3.5 GB/sec IOR over IB
 - CS-6000: = 6 GB/sec IOR over IB
- IB QDR/FDR or 10/40 GbE Network Link
- Data Protection/Integrity (RAID 6, 8+2)
 - 2 OSS's per SSU
 - 4 OST's per OSS
- 2x SSD OSS journal disks for increased performance
 - 2X Hot Spare HDD's
- 64 Usable Data Disks per SSU
 - 1TB x 64 64TB usable per SSU
 - 2TB x 64 128TB usable per SSU
 - 3TB x 64 192TB usable per SSU
 - 4TB x 64 256TB usable per SSU

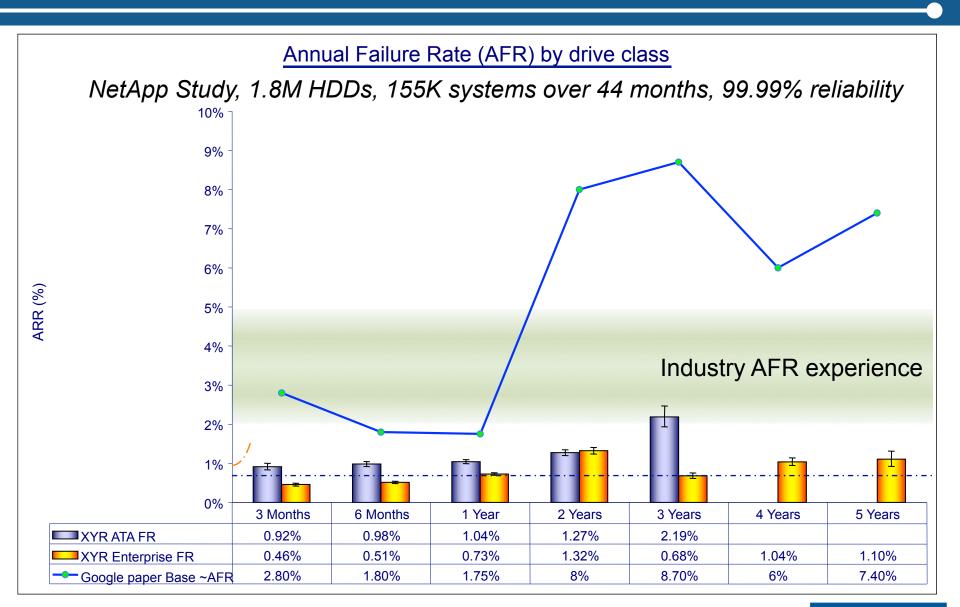


Extensive Testing = Reliability = System uptime

Integrated System Testing (IST) is a patented 3 Stage testing process embedded within manufacturing and designed to remove hidden quality problems

Features

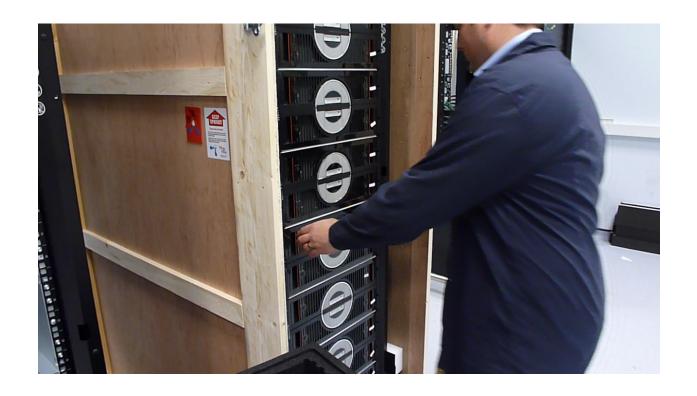
Optimized 36 Hour Manufacturing & Test
Adaptable Test Automation
Standard Across the Globe



Benefits

- Reduces solution warranty and service costs
- Reduces Infant Mortality
- Up to 1.5X drive reliability improvement over 3 Yrs.
 - AFR Reduction to 1% or less.
 - 67% less disk drive failures in first 3 months
- Accelerates time to market

Xyratex HDD Reliability: Failure Rate Comparison


Product Under Test

- Up to 30-day 'Soak Test'
- Soak test measures:
 - I/O connectivity to (ClusterStor to Lustre clients)
 - I/O performance read/write/ rewrite (ClusterStor)
- Tests a system with significant load extended over a significant period of time
- Includes "adverse" conditions testing (running HA scenarios for ClusterStor systems)

Drive Installation / Unloading Process

- The drives are removed from the unit with the use of a speed loader.
- The speed loader allows the user to rapidly remove and install 7 drives at a time.
- The packaging and loader compliment each other, thus significantly reducing the handling time.

Ensuring Quality of Delivery & OOB Experience

Racks are reinforced with an additional 32 rivets to ensure quality!

Simplified Installation – Hours vs. Days/Weeks

Xyratex delivers a complete ready-to-run ClusterStor solution

- Sizing and Configuration optimization
 - Performance centric
 - Capacity centric
- Factory Integration & Staging
 - Rack integration & Cabling
 - Entire storage software stack factory pre-installed and preconfigured
 - System soak test and benchmark testing area at Xyratex factory
- Drive speed-loader reduces drive insertion time by 85%

ClusterStor CS-3000 & CS-6000

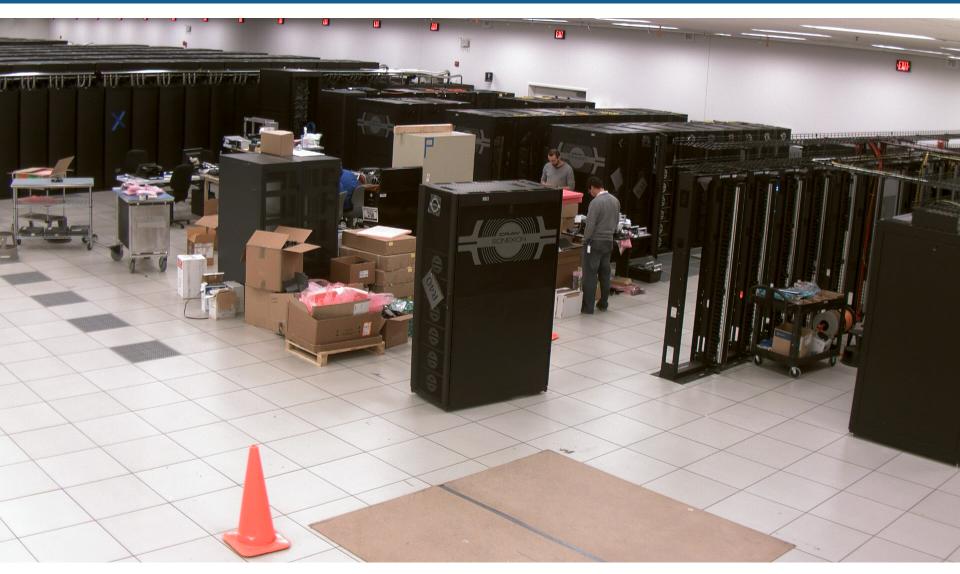
CS-3000 Overview

- Targeted >24 GB/s per rack
- Overall Performance scalable to >100GB/s bandwidth
- Overall Capacity scalable to >30PBs

CS-6000 Overview

- > Targeted >42 GB/s per rack
- Overall Performance scalable to >1TB/s bandwidth
- Overall capacity scalable to >100PBs

ClusterStor a complete ready-to-run Lustre solution


- Up to 560 HDD's per rack (42RU)
- Up to 1.8PBs usable per rack (with 4TB HDD's)
- Up to 14 Application Controllers per rack
- Up to 14 high bandwidth Network connectivity ports/rack
- Factory Integration & Staging
 - Rack integration & Cabling
- Entire storage software stack factory pre-installed and pre-configured
 - System Burn-in and benchmark testing area at Xyratex factory
 - "Rack'n'Roll" installation hours vs. days or weeks

Well, we're currently installing a BIG system

Let's do the numbers

Requirements:

- Compute system capable of at least 10 PFLOPs
- Storage capable of doing 10% of Compute -> 1 000 GB/s
- Energy efficient
- Incredible reliability (well, let's settle for decent)
- Supportable for 3-5 years ...

Throughput reqs (GB/s) Embedded Server	1000 CS6000						Clı	uster!	Stoi	TM
SSU Performance (GB/s)	5						CIC		y ratex.	
Volume requirements (TB)	10 000							A	, , , , , ,	
Disk size (TB)	2									
Rack size (42 or 48RU)	42									
Power (SSUs) kW	2,08									
SSUs per Rack (8 max)	6									
	# SSUs	Total usable volume	Agg. throughput	IB Uplink ports	# Racks	# OSTs	# HHDs	Power reqs (kW)	Weight (T)	Floor space (m2)
Solution (performance)	210	26 880 TB	1050 GB/s	422	35	1 680	17 220	438,8 kW	40,25	42
Solution (Full racks)	279	35 712 TB	1395 GB/s	560	35	2 232	22 878	582,3 kW	40,25	42

xyratex.

Advancing Digital Storage Innovation

Managing a monster ...

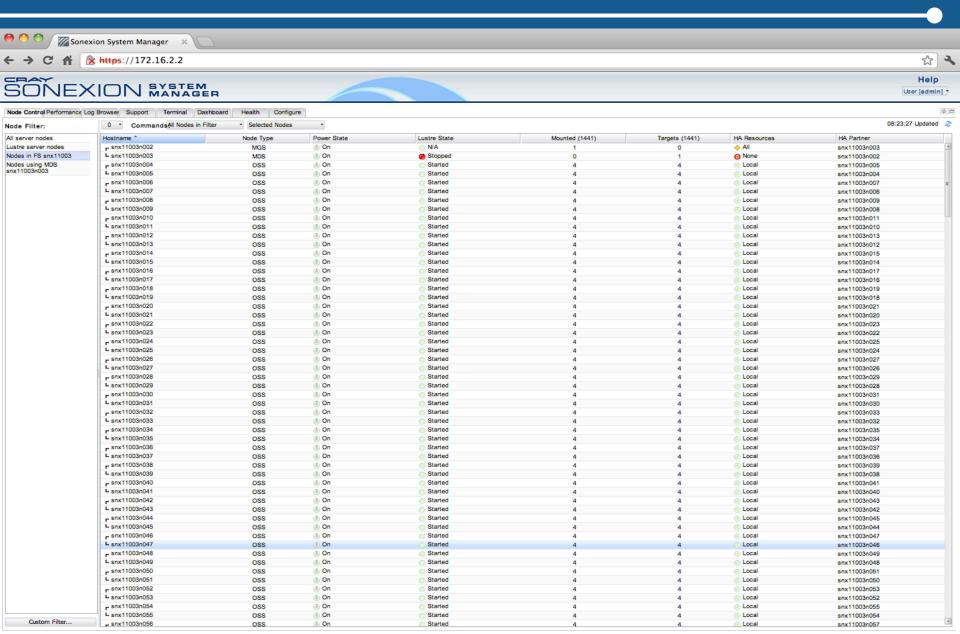
CLI - Worked in the past, works now, right ??

The first 50 (of 360 OSS nodes ...)

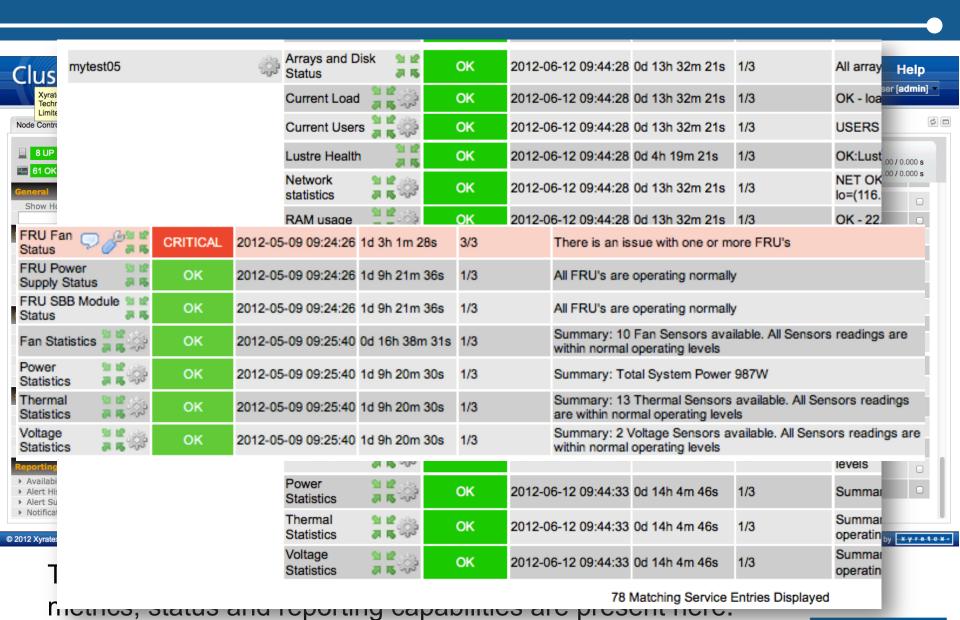
"I've got my own scripts ..."

"CLI will always be faster.."

If it can't fit onto a single screen

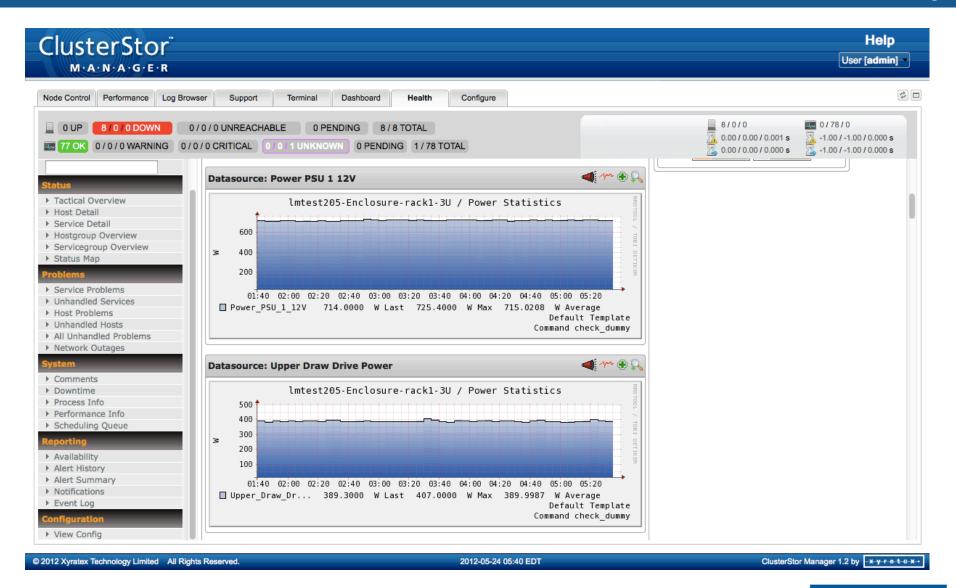

Pipe it to something ..

#cscli show_nodes -c |
/dev/null


Are we having fun yet ???

u Jun 7 14:	n⊎⊎⊎ adminj# da 33:46 PDT 2012 n000 admin]# /d		scli show_nodes -	c snxll003n		
stname	Node type	Power state	Lustre state	Targets	Partner	HA Resources
x11003n000	mds	on	N/A	0 / 0	snx11003n001	None
x11003n001	mds	on	Started	1 / 1	snx11003n000	Local
x11003n002	OSS	on	Started	4 / 4	snx11003n003	Local
x11003n003	055	on	Started	4 / 4	snx11003n002	Local
x11003n004	055	on	Started	4 / 4	snx11003n005	Local
x11003n005	055	on	Started	4 / 4	snx11003n004	Local
x11003n006	055	on	Started	4 / 4	snx11003n007	Local
x11003n007	OSS	on	Started	4 / 4	snx11003n006	Local
x11003n008	055	on	Started	4 / 4	snx11003n009	Local
x11003n009	055	on	Started	4 / 4	snx11003n008	Local
x11003n010	055	on	Started	4 / 4	snx11003n011	Local
x11003n011	055	on	Started	4 / 4	snx11003n010	Local
x11003n012	055	on	Started	4 / 4	snx11003n013	Local
x11003n013	055	on	Started	4 / 4	snx11003n012	Local
x11003n014	055	on	Started	4 / 4	snx11003n015	Local
x11003n015	055	on	Started	4 / 4	snx11003n014	Local
x11003n016	055	on	Started	4 / 4	snx11003n017	Local
x11003n017	055	on	Started	4 / 4	snx11003n016	Local
x11003n018	055	on	Started	4 / 4	snx11003n019	Local
x11003n019	055	on	Started	4 / 4	snx11003n018	Local
x11003n020	055	on	Started	4 / 4	snx11003n021	Local
x11003n021	055	on	Started	4 / 4	snx11003n020	Local
x11003n022	055	on	Started	4 / 4	snx11003n023	Local
x11003n023	055	on	Started	4 / 4	snx11003n022	Local
x11003n024	055	on	Started	4 / 4	snx11003n025	Local
x11003n025	055	on	Started	4 / 4	snx11003n024	Local
x11003n026	055	on	Started	4 / 4	snx11003n027	Local
x11003n027	055	on	Started	4 / 4	snx11003n026	Local
x11003n028	055	on	Started	4 / 4	snx11003n029	Local
x11003n029	055	on	Started	4 / 4	snx11003n028	Local
x11003n030	055	on	Started	4 / 4	snx11003n031	Local
x11003n031	055	on	Started	4 / 4	snx11003n030	Local
x11003n032	055	on	Started	4 / 4	snx11003n033	Local
x11003n033	055	on	Started	4 / 4	snx11003n032	Local
x11003n034	055	on	Started	4 / 4	snx11003n035	Local
x11003n035	055	on	Started	4 / 4	snx11003n034	Local
x11003n036	055	on	Started	4 / 4	snx11003n037	Local
x11003n037	055	on	Started	4 / 4	snx11003n036	Local
x11003n038	055	on	Started	4 / 4	snx11003n039	Local
x11003n039	055	on	Started	4 / 4	snx11003n038	Local
x11003n040	055	on	Started	4 / 4	snx11003n041	Local
x11003n041	055	on	Started	4 / 4	snx11003n040	Local
x11003n042	055	on	Started	4 / 4	snx11003n043	Local
x11003n043	055	on	Started	4 / 4	snx11003n042	Local
x11003n044	055	on	Started	4 / 4	snx11003n045	Local
x11003n045	OSS	on	Started	4 / 4	snx11003n044	Local
x11003n046	055	on	Started	4 / 4	snx11003n047	Local
x11003n047	OSS	on	Started	4 / 4	snx11003n046	Local
x11003n048	055	on	Started	4 / 4	snx11003n049	Local
x11003n049	055	on	Started	4 / 4	snx11003n048	Local

Trying the GUI instead (same 50 nodes)



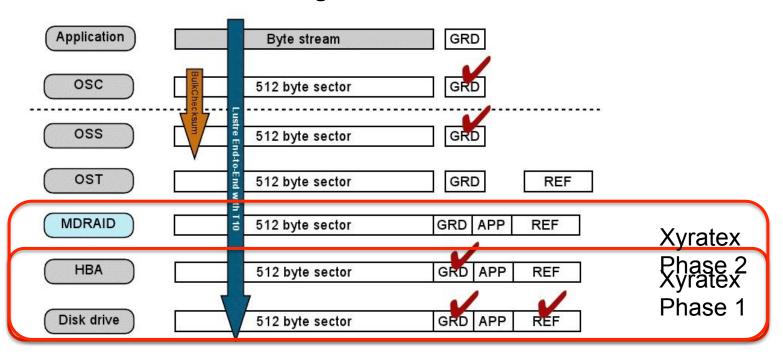
ClusterStor Manager: Infrastructure data ...

xyratex•

Monitor everything – Power usage

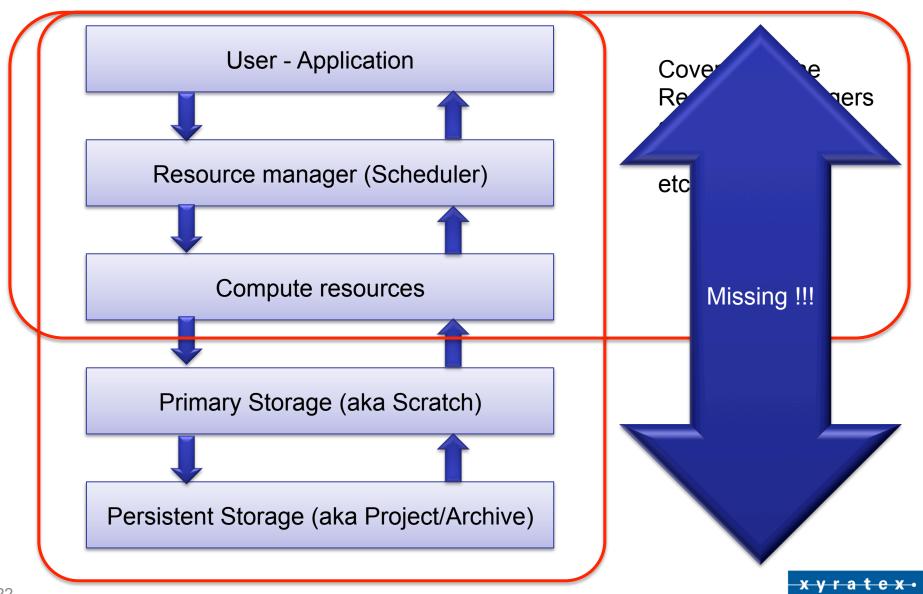
Compute and storage futures ??

Systems	2012	2015
System Peak	10 -15 Pflop/sec	100 - 200 Pflop/sec
Power	8 - 12 MW	20 MW
System Memory	1.5 PBs	16-32 PBs
Node Compute	~500 Gflop/s	2 - 4 Tflops/s
Node Memory BW	100 GB/s	1 - 2 TB/s
Node Concurrency	64	100 - 300
Total Node Interconnect BW	10 GB/s	50-100 GB/s
System Size (Nodes)	20,000	100,000
Total Concurrency	500.000	2.000.000
Storage	25 - 40 PB	200 - 400 PB
Object Storage Servers	400 – 600	5000
I/O	1 TB/sec	15 TB/sec


Increasing resiliency throughout the system

- Disks WILL fail and RAID becomes a problem
 - New algorithms are required (ZFS, Btrfs, FhGFS, RAID-X)
- Silent disk errors is still a problem
 - Solution T10-PI
- Automatic Backups and Snapshots are required
 - Not currently Lustre features, but current roadmap is delivering ...
- Single layer interconnect fabric
 - Multi-rail IB with full LNET support is required
 - Dynamic re-routing (the holy grail revisited)
- End to end monitoring
 - Not just from the storage point of view

Adding more resiliency to the file system


T10-PI – End to End check summing in Lustre

- Additional checksum data described or carried in brw RPC
- Add PI and checking to data path
- For mmap'ed pages, early GRD failure implies data has changed, recompute from OSC
- Optional GRD checking on OSS can push all checksum load to HBA/disk hardware
- Disable bulk checksums

End to End monitoring (QoS)

New times requires new tools (to mention a few ...)

Tools to manage large installations need:

- Instant feedback on issues and failures
- Instant help information for ANY issue
- Every function must be managed
 - Individually
 - In groups
 - Manually
 - Automatically
- Role based layouts
 - Individual dashboard based on job description
- Customizable arrangement of widgets
- Predictive maintenance
- Full inventory of current and replaced components
- Automatic support bundles
- Statistics and Analytics

Summary and conclusions

- Managing HPC storage is getting harder and harder ...
 - Current tools inadequate
 - The borders between multi-tiered storage are vanishing ...
 - Scratch storage is not longer just scratch storage ...
- Higher levels of built in data integrity features are needed
 - > T10-PI for multilevel check summing
 - Data scrubbing and re-silvering of RAID systems
 - Data versioning of files and objects ...
- As a unified approach to storage is required, HPC storage needs to implement enterprise features.
 - > HSM
 - ILM toolkits
 - Snapshots and asynchronous backup for disaster recovery
- Tools for predictive management and administrations
 - > Persistent database of FRUs, replacements, upgrades etc ...
- Lustre is a viable choice as the enterprise quality filesystem for weather, atmospheric and climate computational systems

xyratex.

Advancing Digital Storage Innovation

Thank You - Questions?