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Overview 

• Desirable properties of assimilation methods 
• Variational methods and Ensemble Kalman filters 
• Deterministic Kalman filters: 
 Classical Extended Kalman filter 
 Variational reformulation of the Kalman filter  

• Quasi-Geostrophic model: integration and 
implementation 

• Parallelization concerns 
• Conclusions 



Desirable properties of assimilation  

methods 

− Assimilation methods should be 

− Accurate 

− No bias 

− Precise 

− Use all available information in an optimal fashion 

− Provide for dynamic error covariances 

− Parallelizable 

− Simple 

− Tangent linear and adjoint models difficult to maintain 

− All these criteria are difficult to meet simultaneously 



Variational methods and  

Ensemble Kalman Filters 

− Optimum Interpolation 

− Unbiased 

− Parallelizable by domain decomposition 

− Not precise – static error covariances 

− No tangent linear or adjoint model 

 

− 4DVAR 

− Precise, but static error covariances 

− Potentially biased – because of strong model constraint 

− Not very parallelizable 

− Tangent linear and adjoint models 
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Variational methods and  

Ensemble Kalman Filters 

− Weak constraint 4DVAR 

− Precise, partially dynamic error covariance 

− Potentially biased 

− Computationally expensive – big control vector dimension 

− Parallelizable – by domain decomposition in time ? 

− Tangent linear and adjoint models 

 

− Ensemble Kalman Filters 

− Potentially unbiased 

− Efficiently parallelizable 

− Dynamic error covariance 

− Not precise – ensemble small compared to state space dimension 

− No tangent linear or adjoint models 
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Extended and Variational Kalman 

Filters 
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Kalman Filters: 

Extended Kalman Filter 

Input: 𝑥𝑘 , 𝑦𝑘+1, 𝐶𝑘 , 𝑄𝑘+1, 𝑅𝑘+1, 𝑀𝑘+1, 𝐾𝑘+1. 

1. 𝑥𝑘+1
𝑝

≔ 𝑀𝑘+1𝑥𝑘 

2. 𝐶𝑘+1
𝑝

≔ 𝑀𝑘+1𝐶𝑘𝑀𝑘+1
′ + 𝑄𝑘+1 

3. 𝐺𝑘+1 ≔ 𝐶𝑘+1
𝑝

𝐾𝑘+1
′ 𝐾𝑘+1𝐶𝑘+1

𝑝
𝐾𝑘+1
′ + 𝑅𝑘+1

−1
 

4. 𝑥𝑘+1 ≔ 𝑥𝑘+1
𝑝

+ 𝐺𝑘+1 𝑦𝑘+1 − 𝐾𝑘+1𝑥𝑘+1
𝑝

 

5. 𝐶𝑘+1 ≔ 𝐶𝑘+1
𝑝

− 𝐺𝑘+1𝐾𝑘+1𝐶𝑘+1
𝑝

 

Output: 𝑥𝑘+1, 𝐶𝑘+1 

Where: 𝐶𝑘 , 𝑄𝑘+1, 𝑅𝑘+1 are covariance matrices of 

𝑥𝑘 , 𝜀𝑘+1
𝑝

, 𝜀𝑘+1
𝑜  respectively.  



Extended Kalman Filter: drawbacks 

− Covariance error matrix propagation requires 𝑂 𝑛3  

flops 

− Covariance storage requires to store 𝑛2 floating-

point or double-precision values 

− In the case of weather simulation dynamical 

systems 𝑛 ≈ 1017, which makes the basic 

formulations impossible to implement 

 

Solution: provide a low-memory matrix approximation 

supporting efficient matrix-vector multiplications 



Variational Kalman Filter VKF 

− Variational Kalman Filter 

− Precise – equivalent to EKF, hence dynamic error covariance 

− Guaranteed to be stable 

− Bias can be kept under control 

− Not very parallelizable 

− Tangent linear and adjoint models inherited from 4DVAR 
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Low-memory matrix 

approximations 

− Consider an arbitrary matrix 𝐴 

− The task is to compute its “smallest” update 𝐷 in terms of Frobenius norm 

such that 𝐴 + 𝐷 𝑣 = 𝑦, where 𝑣 and 𝑦 is known pair of vectors and 𝑣 is 

nonzero. 

𝐷𝑣 = 𝑦 − 𝐴𝑣 = 𝑟, 𝐷 𝐹𝑟
2 → 𝑚𝑖𝑛 

− Consider a pair of vectors 𝑣 and 𝑦.  

− The task is to find a symmetric positive definite matrix which maps 𝑣 to 𝑦. 

 



Low-memory matrix 

approximations: BFGS update 

Theorem.  Let 𝐿𝐶  be a nonsingular matrix, 𝐻𝐶 = 𝐿𝐶𝐿𝐶
𝑇 . Let 𝑦 and 𝑣 be an arbitrary 

pair of vectors where 𝑣 is nonzero. There is a symmetric positive definite matrix 𝐻+, 
such that 𝐻𝐶 + 𝐻+ 𝑣 = 𝑦, if and only if 𝑦𝑇𝑣 > 0. If there is such a matrix , then 
𝐻+ = 𝐽+𝐽+

𝑇, where 

𝐽+ = 𝐿𝐶 +

𝑦 −
𝑦𝑇𝑣

𝑣𝑇𝐻𝐶𝑣
𝐻𝐶𝑣 𝐿𝐶

𝑇𝑣
𝑇

𝑦𝑇𝑣
𝑣𝑇𝐻𝐶𝑣

𝑣𝑇𝐻𝐶𝑣

 



Low-memory matrix 

approximations: BFGS update 

Iterative process: 
𝒙𝒌+𝟏 = 𝒙𝒌 − 𝜶𝐻 𝑘𝛻𝑓𝑘  

𝑥𝑘 𝐻 𝑘𝛻𝑓𝑘  𝛼 

𝑥𝑘+1 

L-BFGS 2-loop 
recursion 

𝛻𝑓𝑘 

𝑠𝑘 , 𝑦𝑘 , 𝑠𝑘−1, 𝑦𝑘−1 , … , 𝑠𝑘−𝑚+1, 𝑦𝑘−𝑚+1  

Line search 
algorithm 

𝒇(𝒙) – cost function, 𝒇𝒌 = 𝒇 𝒙𝒌 . 
𝑯 𝒌 - inverse Hessian approximation. 
𝜶 – step scale. 
𝒔𝒌 = 𝒙𝒌+𝟏 − 𝒙𝒌, 𝒚𝒌 = 𝜵𝒇𝒌+𝟏 − 𝜵𝒇𝒌. 



Variational Kalman Filter 

Input: 𝑥𝑘 , 𝑦𝑘+1, 𝐶𝑘 , 𝑄𝑘+1, 𝑅𝑘+1
−1, 𝑀𝑘+1, 𝐾𝑘+1. 

1. 𝑥𝑘+1
𝑝

≔ 𝑀𝑘+1(𝑥𝑘) 

2. Compute L-BFGS approximation 𝐵𝑘+1
∗  of 𝐶𝑘+1

𝑝 −1
, 

 where 𝐶𝑘+1
𝑝

≔ 𝑀𝑘+1𝐶𝑘𝑀𝑘+1
′ + 𝑄𝑘+1. 

3. Minimize with L-BFGS 
𝑙 𝑥 = 𝑦𝑘+1 − 𝐾𝑘+1𝑥

′ 𝑅𝑘+1
−1 𝑦𝑘+1 − 𝐾𝑘+1𝑥

+ 𝑥 − 𝑥𝑘+1
𝑝 ′

𝐵𝑘+1
∗ 𝑥 − 𝑥𝑘+1

𝑝
 

4. Define 𝑥𝑘+1  to be the minimizer from step 3 and 
𝐶𝑘+1  to be the L-BFGS approximation of inverse 
Hessian of the problem on step 2. 

 



Use of LBFGS in stabilized VKF 

Assume that an approximation 𝐵𝑘−1
#  for covariance 𝐶𝑘−1

𝑒𝑠𝑡  is available. Then 
the EKF formulas can be approximated directly, which leads to the following 
algorithm: 

1. Compute prediction 𝑥𝑘
𝑝
= ℳ𝑘 𝑥𝑘

𝑒𝑠𝑡 . 

 Define prediction covariance 𝐶𝑘
𝑝
= 𝑀𝑘𝐵𝑘−1

# 𝑀𝑘
𝑇 + 𝐶ℰ𝑘

𝑝. 

 Define 𝐴 = 𝐾𝑘𝐶𝑘
𝑝
𝐾𝑘
𝑇 + 𝐶ℰ𝑘

𝑂, 𝑏 = 𝑦𝑘 − 𝐾𝑘𝑥𝑘
𝑝

. 

2. Solve optimization problem 
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 → 𝑚𝑖𝑛 with respect to 𝑥 

and compute a low-memory approximation 𝐵∗ ≈ 𝐴−1. 

3. Compute state estimate 𝑥𝑘
𝑒𝑠𝑡 = 𝑥𝑘

𝑝
+ 𝐶𝑘

𝑝
𝐾𝑘
𝑇𝑥∗, where 𝑥∗ is solution for 

the optimization problem from step 2. 

4. Compute a low-memory approximation 𝐵𝑘
# for the estimate covariance 

𝐶𝑘
𝑒𝑠𝑡 = 𝐶𝑘

𝑝
− 𝐶𝑘

𝑝
𝐾𝑘
𝑇𝐵∗𝐾𝑘𝐶𝑘

𝑝
. 

 

Matrix 𝑪𝒌
𝒆𝒔𝒕 = 𝑪𝒌

𝒑
− 𝑪𝒌

𝒑
𝑲𝒌
𝑻𝑩∗𝑲𝒌𝑪𝒌

𝒑
 is not guaranteed to remain positive 

definite. Therefore, numerical instability may occur in some cases. 
 



Stabilized VKF 

 Setting 𝐵∗ = 𝐴−1 we get 

𝐶𝑘
𝑒𝑠𝑡 = 𝐶𝑘

𝑝
− 𝐶𝑘

𝑝
𝐾𝑘
𝑇 2𝐼 − 𝐵∗𝐴 𝐵∗𝐾𝑘𝐶𝑘

𝑝
= 𝐶𝑘

𝑝
− 𝐶𝑘

𝑝
𝐾𝑘
𝑇𝐴−1𝐾𝑘𝐶𝑘

𝑝
= 

𝐶𝑘
𝑝
− 𝐺𝑘𝐾𝑘𝐶𝑘

𝑝
,  

which is the exact formula from the EKF. Therefore, the Stabilized VKF still 
mimics the basic EKF formulas. 

 



Quasigeostrophic 2-layer model 
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Quasi-Geostrophic model: 

review 

𝑈1 - constant zonal flow in the top layer.          𝑆 𝑥, 𝑦  - orography term.   
𝑈2 - constant zonal flow in the bottom layer.  𝑓0 - Coriolis parameter. 
𝐷1 - undisturbed depth of the top layer. 
𝐷2 - undisturbed depth of the bottom layer. 
 
 
 



Quasi-Geostrophic model: 

review 

𝑔 = 𝑔
∆𝜃

𝜃 
, 𝐹1 =

𝑓0
2𝐿2

𝑔 𝐷1
, 𝐹2 =

𝑓0
2𝐿2

𝑔 𝐷2
,  

𝑅𝑠 =
𝑓0𝐿𝑆 𝑥, 𝑦

𝑈𝐷2
, 𝛽 = 𝛽0

𝐿

𝑈
. 

𝐷1𝑞1
𝐷𝑡

=
𝐷2𝑞2
𝐷𝑡

= 0; 

𝑞1 = 𝛻2𝜓1 − 𝐹1 𝜓1 − 𝜓2 + 𝛽𝑦, 
𝑞2 = 𝛻2𝜓2 − 𝐹2 𝜓2 − 𝜓1 + 𝛽𝑦 + 𝑅𝑠. 

𝐷𝑖 ∙

𝐷𝑡
=
𝜕 ∙

𝜕𝑡
+ 𝑢𝑖

𝜕 ∙

𝜕𝑥
+ 𝑣𝑖

𝜕 ∙

𝜕𝑦
, 

𝛻𝜓𝑖 = 𝑣𝑖 , −𝑢𝑖  



Quasi-Geostrophic model: 

review 

𝐷1𝑞1
𝐷𝑡

=
𝐷2𝑞2
𝐷𝑡

= 0, 

𝑞1 = 𝛻2𝜓1 − 𝐹1 𝜓1 − 𝜓2 + 𝛽𝑦, 
𝑞2 = 𝛻2𝜓2 − 𝐹2 𝜓2 − 𝜓1 + 𝛽𝑦 + 𝑅𝑠, 

𝐷𝑖 ∙

𝐷𝑡
=
𝜕 ∙

𝜕𝑡
+ 𝑢𝑖

𝜕 ∙

𝜕𝑥
+ 𝑣𝑖

𝜕 ∙

𝜕𝑦
, 

𝛻𝜓𝑖 = 𝑣𝑖 , −𝑢𝑖  

Apply 𝛻2 to the equation for 𝑞1, subtract 𝐹1 times equation for 𝑞1 and 
𝐹2 times equation for 𝑞2: 

𝛻2 𝛻2𝜓1 − 𝐹1 + 𝐹2 𝛻2𝜓1 = 
𝛻2 𝑞1 − 𝛽𝑦 − 𝐹2 𝑞1 − 𝛽𝑦 − 𝐹1 𝑞2 − 𝛽𝑦 − 𝑅𝑠  



Quasi-Geostrophic model: 

integration pipeline 

Wind operator: 
𝛻𝜓𝑖 = 𝑣𝑖 , −𝑢𝑖  



Experimental Design: 

simulation model 

− Two-layer Quasi-Geostrophic model solved on a 

cylindrical 40x20 domain 

− Spatial discretization steps △ 𝒙 =△ 𝒚 = 𝟑𝟎𝟎𝒌𝒎 

− Time discretization step △ 𝒕 = 𝟐𝟏𝟔𝟎𝟎𝒔 

− Layer depths 𝑫𝟏 = 𝟔𝟎𝟎𝟎𝒎, 𝑫𝟐 = 𝟒𝟎𝟎𝟎𝒎 

− Orography term: 

− Gaussian hill 

− 2000m high, 1000km wide at grid vertex 𝟎, 𝟏𝟓  

− Domain 12000km x 6000km 
 



Experimental Design: 

orography component 



Experimental Design: 

assimilation with a biased model 

− Assimilation model, and tangent linear and adjoint 

models: 

− The same settings as for simulation model 

− Different layer depths 𝑫𝟏 = 𝟓𝟓𝟎𝟎𝒎, 𝑫𝟐 = 𝟒𝟓𝟎𝟎𝒎 

− Initial state: 

− Propagate assimilation and “truth” models for two 

weeks with one hour time step 

− Observation concept: 

− Observe sparse set of 100 grid vertices at every 

assimilation step 

− Selection of the vertices observed at every 

assimilation step remains unchanged 

 

 

 



Experimental Design: 

model error 

• Main diagonal hill 
corresponds to in-layer 
correlations between the 
vertices. 

• Off diagonal hills 
correspond to cross-layer 
correlations 

• Small hills near the 
corners reveal model’s 
periodical nature 



Assimilation results 
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Parallelization concerns with VKF 
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Parallelization concerns with VKF 

− With respect to parallelization, VKF is similar to 4DVAR 

− This means it is an inherently serial algorithm 

− Both  

− L-BFGS itself,  

− the alternating serial calls to the tangent linear and 

adjoint models, and 

− the alternation between 3DVAR-like purely spatial 

observation processing and 4DVAR-like error 

covariance update process  

− are all serial 



Parallelization concerns with VKF 

− On the other hand, the serial complexity of VKF is almost 

identical to that of 4DVAR, and it may be even less: it consists 

of the same operations as 4DVAR, organized in a different 

manner 

− So instead of a variational form of EKF, VKF can also be seen 

as an efficient way to provide 4DVAR with 

− A dynamic error covariance matrix 

− A way to counter model bias without covariance inflation 

− But VKF can be run - just like 4DVAR - in an Ensemble of 

Data Assimilations EDA 

− This will yield as ensemble from the right posterior distribution 

 



Conclusions 
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Conclusions 

− Assimilation methods should be 

− Accurate 

− Precise 

− Parallelizable 

− Simple 

− Stabilized Variational Kalman Filter is 

− Accurate 

− Precise 

− Not very parallelizable – but serves well in EDA 

− Simple, if 4DVAR has been in use before 



Conclusions 

− VKF has been implemented in the Lappeenranta version 

of ECMWF OOPS, dubbed LOOPS 

− Integration with IFS is possible once it is brought 

into OOPS – see the talk by Yannick and Mike in 

Session 11 tomorrow  



Thank You! 
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