Scalability of Elliptic Solvers in Numerical Weather and Climate-Prediction

Eike Hermann Müller, Robert Scheichl
Department of Mathematical Sciences, University of Bath

ECMWF Workshop on the Use of HPC in Meteorology
Reading Oct 1st, 2012
NGWCP project

Next Generation Weather and Climate Prediction project

- Selection of numerical algorithms to simulate the atmosphere in weather and climate prediction which take advantage of massively parallel architectures.
- Develop new dynamical core for the Met Office Unified Model which scales up to $10^5 - 10^6$ cores
- Substantial increase in global model resolution
 \[\sim 25\text{km} \rightarrow \sim \text{few km} \]
 \[\Rightarrow \gtrsim 10^{10} \text{ degrees of freedom per atmospheric variable} \]
- Model runtime $\lesssim 1\text{hour}$ for 5 day forecast
- Solve elliptic PDE for pressure correction in $\ll 1\text{second}$
1 Background
 - Elliptic PDE in implicit time stepping
 - Model equation
 - Multigrid solvers

2 Scaling results
 - Massively parallel scaling on Hector

3 Tensor product geometric multigrid
 - Parallel scaling results
 - Weak scaling
 - Strong scaling
 - Implementation in DUNE-Grid

4 Summary and Outlook
Implicit timestepping

Large scale atmospheric flow:
Navier Stokes equations

\[
\frac{D\mathbf{u}}{Dt} = -2\Omega \times \mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{g} + \mathbf{S}^u
\]

\[
\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{u}, \quad \ldots
\]

Implicit time stepping

- Unconditionally stable \(\Rightarrow\) Larger integration time step \(\Delta t\)
- Solve 3d **elliptic PDE** for pressure correction \(\pi'\) at every time step

\[
-(\alpha \Delta t)^2 c_s^2 \nabla \cdot (a \nabla \pi') + b \pi' = RHS
\]

- Significant proportion of model runtime
- Need **numerically efficient & scalable** solver
Does the solver scale?

Started by testing the following “black box” solvers:

Distributed and Unified Numerics Environment (DUNE)

ISTL Bastian et al. 2008, Blatt and Bastian 2007 & 2008

- CG preconditioned with aggregation AMG + ILU0 smoother

Hypre Developed at LLNL by U. Maier-Yang, R. Falgout and others

- CG preconditioned with BoomerAMG

⇒ “Matrix-free” geometric multigrid

- DUNE-based code with indirect horizontal-, direct vertical-addressing
Does the solver scale?

Comparison of **Multigrid solvers** for model equation

Weak scaling of # iter, total time +AMG setup time

all times in seconds

<table>
<thead>
<tr>
<th># proc</th>
<th># dof</th>
<th>AMG (DUNE)</th>
<th>BoomerAMG</th>
<th>geo MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>8.3 \cdot 10^6</td>
<td>11 6.92+4.13</td>
<td>12 8.72+2.59</td>
<td>6 1.99</td>
</tr>
<tr>
<td>64</td>
<td>3.4 \cdot 10^7</td>
<td>11 7.01+4.92</td>
<td>13 9.52+2.74</td>
<td>6 2.02</td>
</tr>
<tr>
<td>256</td>
<td>1.3 \cdot 10^8</td>
<td>11 7.18+4.88</td>
<td>12 8.98+2.82</td>
<td>6 2.04</td>
</tr>
<tr>
<td>1024</td>
<td>5.4 \cdot 10^8</td>
<td>11 7.32+5.89</td>
<td>12 9.04+3.18</td>
<td>6 2.06</td>
</tr>
<tr>
<td>4096</td>
<td>2.1 \cdot 10^9</td>
<td>13 8.64+6.32</td>
<td>12 8.99+3.56</td>
<td>6 2.06</td>
</tr>
<tr>
<td>16384</td>
<td>8.6 \cdot 10^9</td>
<td>12 8.16+8.06</td>
<td>11 9.43+5.75</td>
<td>6 2.10</td>
</tr>
<tr>
<td>65536</td>
<td>3.4 \cdot 10^{10}</td>
<td>11 7.49+10.92</td>
<td>9 20.20+7.09</td>
<td>6 2.24</td>
</tr>
</tbody>
</table>

+ matrix setup time for AMG solvers

Eike Mueller

Scalability of Elliptic Solvers in NWP
Model equation

Simplified model equation for \(u \equiv \pi' \) on spherical shell

\[
-\omega^2 \left[\Delta_{(2d)} + \lambda^2 \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right] u + u = \text{RHS}
\]

Dimensional analysis: \(r \in [1, 1 + h] \) with \(h = H/R_{\text{earth}} = 10^{-2} \):

\[
\omega^2 \sim \left(\frac{c_s \alpha \Delta t}{R_{\text{earth}}} \right)^2 \quad \lambda^2 \sim \frac{1}{1 + (\alpha \Delta t)^2 (N^*0)^2}
\]

- Acoustic waves: \(c_s \approx 550 \text{ms}^{-1} \)
- Buoyancy frequency \(N^*0 = 0.018 \text{s}^{-1} \)
- Off-centering parameter \(\alpha = \frac{1}{2} \)
 (fully implicit: \(\alpha = 1 \), fully explicit: \(\alpha = 0 \))
Model equation

Properties

- \(h = \frac{H}{R_{\text{earth}}} \approx 1/100 \Rightarrow \frac{\lambda^2}{h^2} \gg 1 \)
- Strong **vertical anisotropy** \(\left(\frac{\lambda}{h} \cdot \frac{\Delta x}{\Delta z} \right)^2 \)
- **Constant term** improves condition number (on coarser MG levels)

\[- \omega^2 D^{(2)} u + u = \text{RHS} \]

- Horizontal grid e.g. cubed sphere, icosahedral, . . .
- **no pole singularity** as in lat/lon grid
Multigrid solvers

Multigrid idea:
Eliminate error on all scales

- Hierachy of grids $h, 2h, 4h, \ldots$
- Apply smoother (e.g. SOR) on all levels, restrict/prolongate between levels
- Residual equation on coarser grids

\[A^{(H)} e^{(H)} = r^{(H)} \]

⇒ Work on coarse grids is cheap!
- Algorithmically optimal

\[\text{Cost}(MG) = O(n) \]
- Robust & parallelisable
Setup

Weak scaling

- 1/6 of cubed sphere grid
 (have also run on entire sphere)
- Horizontal partitioning only* (atmos. physics)
- # processors \propto problem size

\[n_x \mapsto 2n_x, \quad n_y \mapsto 2n_y, \quad n_z = 128, \quad p \mapsto 4p \]

- Keep Courant number $\nu = c_g \Delta t / \Delta x \sim 10$ fixed\(^{\dagger}\)
 (i.e. Δt decreases)

\[\omega \propto \Delta t \propto \Delta x, \quad \lambda^2 = \frac{1}{1 + (\alpha \Delta t)^2 (N^*0)^2} \]

- All runs carried out on Hector Cray XE6 supercomputer
 2816 nodes of 2 x AMD Opteron 16-core Interlagos 2.3GHz = 90,122 cores

*OpenMP in vertical direction?
\(^{\dagger}\)NB explicit scheme requires $\nu \lesssim 1$
Weak Scaling

“Black box” AMG solvers: # iterations & time per iteration

Residual reduction: \(\|r\|/\|r_0\| \leq 10^{-5} \)

<table>
<thead>
<tr>
<th># proc</th>
<th># dof</th>
<th>AMG (DUNE)†</th>
<th>BoomerAMG†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># iter</td>
<td>(t_{iter})</td>
</tr>
<tr>
<td>16</td>
<td>8.3 (\cdot) 10^6</td>
<td>11</td>
<td>0.63</td>
</tr>
<tr>
<td>64</td>
<td>3.4 (\cdot) 10^7</td>
<td>11</td>
<td>0.64</td>
</tr>
<tr>
<td>256</td>
<td>1.3 (\cdot) 10^8</td>
<td>11</td>
<td>0.65</td>
</tr>
<tr>
<td>1024</td>
<td>5.4 (\cdot) 10^8</td>
<td>11</td>
<td>0.67</td>
</tr>
<tr>
<td>4096</td>
<td>2.1 (\cdot) 10^9</td>
<td>13</td>
<td>0.66</td>
</tr>
<tr>
<td>16384</td>
<td>8.6 (\cdot) 10^9</td>
<td>12</td>
<td>0.68</td>
</tr>
<tr>
<td>65536</td>
<td>3.4 (\cdot) 10^{10}</td>
<td>11</td>
<td>0.68</td>
</tr>
</tbody>
</table>

† as preconditioner for CG
Setup costs + Anisotropy

AMG has **coarse level** & **matrix** setup costs

Rotating anisotropy due to vertical grading

- Grid-aligned anisotropy
- Operator “well-behaved” in horizontal direction

⇒ **Tensor-product matrix-free geometric multigrid**

Tensor-product multigrid

Tensor product operator

\[A = A^{(r)} \otimes M^{(\text{horiz})}_h + M^{(r)} \otimes A^{(\text{horiz})}_h \]

[for operator \(-\nabla (\alpha \nabla \cdot) \)]

Vertical “eigenmodes”

\[A^{(r)} e^{(r)}_j = \omega_t M^{(r)} e^{(r)}_j \]

\[u(r, x) = \sum_{j=1}^{n_z} u_j(x) e^{(r)}_j(r) \]

- Vertical line relaxation (e.g. RB Gauss-Seidel)
- Semi-coarsening in horizontal direction only

\[\Rightarrow 2d \text{ multigrid convergence rate} \]

\[\rho^{(2d)} \leftarrow \max_j \left\{ \rho^{(\text{horiz})}_j [e^{(r)}_j] \right\} \]

Meteorological application on 3d lat-lon grid:
Geometric multigrid

Implementation

- RB Line Gauss-Seidel (1× pre-/post-smoothing)
- Halo exchange after each smoothing step & prolongation
 ⇒ Overlap calculation/communication
- collect/distribute coarse grid data when # procs > # columns
Geometric multigrid

Parallel Multigrid: volume/interface ratio decreases on coarser levels Hülsemann et al., Lect. Notes in Comp. Science and Engineering (2005)

BUT

Well conditioned on coarser levels \((-\omega^2 D^{(2)} u + u = \text{RHS})\)

Horizontal coupling vs. constant term:

\[
4 \frac{\omega^2}{\Delta x^2_\ell} = 4 \frac{\omega^2}{\Delta x^2_0} \times 2^{-2\ell} \leq 2^{8-2\ell}
\]

⇒ Reduce number of levels

- Coarsen to 1 column (standard MG)
- Coarsen to 1 column/processor (7 levels, shallow MG)
- 4 levels (very shallow MG)
- 1-level method to check robustness
Weak scaling results

Different number of multigrid levels

| # proc | # dof | standard MG | | iter | # lev = 7 | | iter | # lev = 4 | | iter |
|--------|--------|-------------|--------|--------|-------------|--------|-------------|--------|--------|
| 16 | $8.3 \cdot 10^6$ | 6 | 0.332 | 6 | 0.332 | 6 | 0.333 |
| 64 | $3.4 \cdot 10^7$ | 6 | 0.337 [99%] | 6 | 0.335 [99%] | 6 | 0.335 [99%] |
| 256 | $1.3 \cdot 10^8$ | 6 | 0.340 [98%] | 6 | 0.338 [98%] | 6 | 0.337 [99%] |
| 1024 | $5.4 \cdot 10^8$ | 6 | 0.343 [97%] | 6 | 0.342 [97%] | 5 | 0.340 [98%] |
| 4096 | $2.1 \cdot 10^9$ | 6 | 0.343 [98%] | 6 | 0.340 [98%] | 5 | 0.342 [97%] |
| 16384 | $8.6 \cdot 10^9$ | 6 | 0.350 [95%] | 6 | 0.342 [97%] | 5 | 0.342 [97%] |
| 65536 | $3.4 \cdot 10^{10}$ | 6 | 0.373 [89%] | 6 | 0.351 [95%] | 5 | 0.342 [97%] |

all times in seconds
Strong scaling results

Standard **geometric multigrid**

Problem size: $n \times n \times 256$

\[
\text{efficiency} = \frac{p_0 \cdot T(p_0)}{p \cdot T(p)} \times 100\%
\]
Multigrid on arbitrary spherical grids

Grid structure

Tensor product grid structure

- 2-sphere
- 1-column

Size of vertical column $O(100)$

- "Hide" indirect addressing in horizontal direction by work in vertical direction
- MacDonald et al., Int J of HPC Appl (2011)
- Naturally maps to DUNE data model: Attach vector of size n_z to each cell of the 2d host grid
- Multigrid hierarchy only on host grid
Comparison to DUNE geometric MG code

Time per iteration [Intel(R) Core(TM)2 Duo CPU E8400 3.00GHz]

\[t_{\text{iter}} = A(\text{grid}) + B \cdot n_z \]

Implemented together with Andreas Dedner (Warwick)
Summary

- Multigrid solvers for elliptic PDE in NWP implicit time stepping
- Verified weak & strong scaling to 65536 cores (HECToR)
- Access to bigger machines?
- Geometric multigrid code avoids AMG- and matrix setup costs
- **Anisotropy**: Tensor product multigrid
 - semi-coarsening + vertical line relaxation
- Problem well-conditioned on coarser grids
 - ⇒ use small number of multigrid levels
- Geometric multigrid robust

Outlook

- Hybrid MPI+OpenMP parallelisation
- More realistic problems (ENDGame?): non-symmetry, non-smoothness,…
- GPGPUs