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1. Background 
Ensemble forecasts, in addition to providing raw material for producing probabilistic forecasts, 
provide the forecaster with a way to estimate the uncertainty in a single, deterministic forecast. The 
accuracy of quantitative estimates of forecast uncertainty derived from an ensemble forecast system 
depend on the ability of the system to sample all sources of forecast uncertainty, including 
uncertainties in the initial state and boundary conditions as well as uncertainties in the forecast model. 
The Ensemble Kalman Filter (EnKF) is a data assimilation technique designed specifically to meet 
this need. Unlike variational data assimilation systems, which produce a single deterministic analysis, 
the EnKF produces an ensemble of initial states designed to sample the probability distribution 
consistent with observations and prior forecast errors. 

All data assimilation systems require “background-error covariances” (Pb) which describe the error 
characteristics of the first-guess forecast - these determine how the first-guess forecast is blended with 
observations in the analysis. The unique aspect of the EnKF is that the Pb is estimated from an 
ensemble of first-guess, or background forecasts, and therefore adapts to the dynamics. This leads to 
an improvement in analysis quality (through a better blending of first-guess and observation 
information) and a more accurate, situation-dependent estimate of initial condition uncertainty for 
initializing ensemble forecasts. 

Figure 1 shows some idealized examples of how flow dependent background-error covariances can 
drastically alter how observations are used in certain dynamical situations. In the hurricane example, 
an observation of meridional wind just east of the storm center can increment the entire axisymmetric 
circulation in the EnKF, since the Pb estimate contains information about that structure. When the Pb 
is flow-independent (in this case homogeneous and isotropic), the wind observation only affects the 
wind speed on one side of the storm, leading to a spurious asymmetry. Similarly, the dynamical 
information present in the EnKF estimate of Pb can allow a temperature observation ahead of a warm 
front to shift the position of the entire warm front, instead of locally bulging the warm front toward 
the observation. In both of these examples it is assumed that there is only one observation within the 
dynamical feature of interest. If they were many more observations sampling the entire feature, the 
benefits of flowdependent background-error covariances would be much less apparent. In other 
words, the benefits of flow-dependent background-error covariances are greatest in situations where 
there are sparsely observed, but dynamically coherent structures in the background forecast. 
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Figure 1: Idealized examples of the impact of flow dependent versus static (isotropic and 
homogeneous) background-error covariances on analysis increments. Top row: idealized 
hurricane with an observation of meridional wind at the location of the black dot. Bottom row: 
Idealized warm front with an observation of temperature at the location of the black dot. Left 
hand panels show the background forecast. Middle panels show the “3DVar” increment 
computed using homogeneous, isotropic flowindependent background error covariances. Right 
hand panels show increment computed using flow-dependent background-error covariances 
estimated from an ensemble of short-range forecasts. 

 

2. Mathematical background and algorithmic details 
Here we use the standard notation of Ide et al (1997), so that y is a vector of observations with 
expected error ε, x is the model state vector (subscript b denotes background or prior, subscript a 
denotes analysis or posterior, subscript t denotes “truth”), H is the forward observation operator that 
converts the model state to observation space (Hxt =  y + ε), R is the observation error covariance 

matrix (= < εεT >), Pb is the background-error covariance matrix (=<xb xb
T>, s.t. ( )b

t bx = x ,PN ), 

<..> denotes expected value, the overbar ensemble mean, and prime ensemble perturbation  
(s.t. x = x = x′ ). 

If we assume that background observation errors are Gaussian, i.e. 

 ( ) ( ) and 0b
t bx =  x ,P ,RN Nε =  (1) 

then Bayes rule p (x|y)  p(y|x)p(x) implies the Kalman Filter equations (Kalman and Bucy, 1961); 

 ( ) ( )a b
a b bx  = x  + K y - Hx ; P  = I - KH P  (2)a,b 
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Where 

 ( ) 1−b T b TK = P  H HP  H  + R  (3) 

is the Kalman gain. Solving the Kalman filter directly is impractical for high-dimensional models, 
since Pb is an Nx by Nx matrix (where Nx the dimension of the model state vector x). The EnKF, first 
proposed by Evensen (1994) and Houtekamer and Mitchell (1998) approximates Pb with a sample 
estimate of dimension Ne, which is typically many orders of magnitude less than Nx. It can be shown 
that under assumptions of linearity and Gaussianity, the EnKF converges to the full Kalman Filter as 
Ne → Nx. Simply using a sample estimate for Pb is not enough to make the EnKF practical – next I 
describe several other computational shortcuts that almost all current implementation use.1 

2.1. Simplifying the Kalman Gain calculation 

Instead of computing the Nx by Nx matrix Pb and then post-multiplying by the No by No matrix HT 
(where No is the dimension of the observation vector y), the Nx by No matrix Pb HT is computed 
directly in observation space via 

 ( ) ( )
1 1

1 1 and 
1 1

e eN N

j je eN N
′ ′ ′ ′

= =− −∑ ∑b T b b b T b b
j j j jP H x Hx HP H H x Hx  (4) 

where the subscript j denotes ensemble member. This saves computation since No is typically much 
smaller than Nx. Furthermore, when covariance localization is applied (section 2.2), the number of 
points where this calculation is performed is reduced to the subset of model state elements that are 
“close” to each observation. 

2.2. Covariance Localization 

If a distance can be computed between each model prior element in xb and each observation in y, and 
it is assumed that the magnitude of the true covariance between model prior element in xb and each 
observation prior element in Hxb decreases with spatial separation, then the calculations in (4) need 
only be computed for “nearby” state and observation prior pairs. In other words, for a given ensemble 
size, the covariance between model state and observation priors becomes statistically 
indistinguishable from zero at some separation distance L. Typically, a smooth function, such as the 
one proposed by Gaspari and Cohn (1999) is used to smoothly taper the covariances from unity at 
zero separation distance to zero at separation distance L (Hamill et al 2001). By removing the 
sampling noise while retaining most of the using signal, covariance localization can improve the 
accuracy of the sample covariance estimate. This is illustrated in Figure 2, which shows the effect that 
covariance localization has on the 50-member sample estimate of an idealized “true” covariance. 

 

                                                      
1  Much of the material in this section is covered in more detail in the review papers of Evensen (2003) and 
Hamill (2006). 
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Figure 2: Effect of covariance localization on a sample covariance estimate using 50 ensemble 
members. Red curves show the exact covariance. The blue curve on the left is the sample estimate 
computing by randomly sampling the exact covariance matrix with 50 ensemble members. The 
dashed curve on the left shows the covariance localization function. The blue curve on the right is 
the localized sample covariance estimate computed by multiplying the blue and dashed curve 
show on the left. 

Localization effectively increases the rank of the sample estimate of Pb. Without localization, the 
global analysis increment is required to project completely into the low-dimensional space spanned by 
the background ensemble. With localization, only the local increment (within a distance L of an 
observation) is constained to lie in the ensemble subspace in that local region. This means that, in a 
global sense, the EnKF can make corrections to the background in directions not contained in the 
subspace of the ensemble. In addition to dramatically reducing the computational load, covariance 
localization is crucial for avoiding the catastrophic condition known as “filter divergence” which 
occurs whenever the global subspace spanned by the EnKF analysis increments is smaller than the 
space spanned by the true Pa. Filter divergence causes the EnKF solution to drift farther and farther 
from the observations, so that the ensemble mean analysis errors grow while the ensemble variance 
decreases. It is impossible to overstate the importance of covariance localization in making the EnKF 
a viable solution for numerical weather prediction - it really is the “secret ingredient” that makes it all 
possible.  

Localization implemented with the observation space estimate of Pb HT (equation 4) works well when 
the forward observation operator of H is nearly diagonal, as is the case when the observed variable is 
a model state variable and H is simply linear interpolation. However, when H is more complicated, 
such as is the case with satellite radiance observations, equation (4) is an approximation to Pb HT, 
even for infinite ensemble size, since the covariance calculation and the forward observation operator 
do not commute (Campbell et al, 2010). 

2.3. Serial observation processing 

If the observation error covariance R is diagonal, that is errors in individual observations are 
uncorrelated with each other, then assimilating observations one at a time is equivalent to assimilating 
them all at once in the Kalman filter (Gelb 1974). For a single observation, the term Pb HT in the 
Kalman gain becomes a vector of length Nx and the innovation covariance HPb HT + R becomes a 
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scalar. Therefore, the computation of the Kalman gain no longer involves matrix inversions and can 
be computed as a simple dot product. After a single observation is assimilated, the updated model 
state becomes the background for the assimilation of the next observation. To avoid having to 
recompute the forward observation operator for all unassimilated observations after each step, the 
EnKF update can be applied in observation space to update the model observation priors along with 
the model state priors. The serial processing approach is described in more detail in Whitaker and 
Hamill (2002) and Anderson (2001), and is implemented in the operational EnKF run for global 
weather prediction at the U.S. National Center for Environmental Prediction (NCEP) and the 
community Data Assimilation Research Testbed (DART) software (Anderson et al, 2009). An 
efficient approach for parallelizing the serial filter is described in Anderson and Collins (2007), and is 
implemented in both the NOAA/NCEP and DART systems. Instead of assimilating observations one 
at a time, they can be assimilated in small batches to keep the computation of the inverse of the 
innovation covariance matrix tractable. This is done in the current operational system at Environment 
Canada (Houtekamer et al, 2005). When using serial assimilation, it is important to remember that 
covariance localization destroys the formal equivalence between serial processing and batch 
processing of observations, and introduces a dependence on the order observations are assimilated 
(Whitaker and Hamill, 2002).  However, experience so far has not shown any negative consequences 
associated with the combination of serial assimilation with covariance localization. If observation 
errors are correlated (i.e. R is not diagonal), serial processing can still be used after transforming the 
observations and observation priors into the eigenspace of R. 

2.4. Local implementations of the EnKF 

Another way to reduce the size of the matrices involved in the solution of the EnKF is to perform the 
state update in local, overlapping regions of the model state space. For example, if all the NL 
observations with the covariance localization radius L of a given model grid point are used to update 
that single model grid point, the dimension of the innovation covariance matrix becomes NL and Pb 
HT is simply a vector of length NL. The solution for each grid point can be computed independently, 
so the local approach is highly parallelizable. However, the price to be paid is lots of redundant 
computation, since adjacent model grid points have a large degree of overlap in their sets of nearby 
observations. There is also an approximation implicit in the local approach, since the covariances 
between observation priors outside and inside the local region are ignored. The most popular 
algorithm for solving the EnKF locally is the Local Ensemble Transform Kalman Filter (LETKF), 
described in detail by Hunt et al (2007). The local approach is similar to the “box” method of 
observation selection in optimal interpolation (Lorenc, 1981). 

2.5. Stochastic versus Deterministic implementations 

The EnKF as originally formulated by Houtekamer and Mitchell (1998) treats the observations as an 
ensemble by adding N(0,R) noise to the observation vector. This is needed to prevent under-
estimation of Pa when every ensemble member updated with the same Kalman Filter update equations 
(Burgers et al, 1998). This “perturbed observation” approach has come to be known as the stochastic 
implementation of the EnKF. Whitaker and Hamill (2002) pointed out that the ensemble mean and 
ensemble perturbations can be updated separately to ensure that the analysis-error covariance Pa is 
consistent with what is expected from the Kalman filter covariance update equation 2b, without 
having to add random noise to the observations. The class of algorithms that follow this approach are 
known as deterministic filters, and while they all use the Kalman filter update equation (2a) to update 
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the ensemble, they use different methods to update deviations from the ensemble mean. This is 
because there are many ways to construct an ensemble perturbation update that produces the expected 
Pa (Tippett et al, 2003). The most popular deterministic filter implementations are the LETKF (Hunt 
et al, 2007) and the serial “ensemble square-root filter” of Whitaker and Hamill (2002)2. The 
deterministic approach is more accurate for small ensemble sizes, since it avoids an extra source of 
sampling error in the estimation of the observation-error covariance matrix (Whitaker and Hamill, 
2002), while the stochastic approach is more robust in the presence of outliers that result from non-
gaussianity in the background ensemble (Lawson and Hansen, 2004). 

3. What makes the EnKF suboptimal? 
The EnKF is optimal in the least-squares sense if the following conditions are met: 

i. Observation and background forecast errors are uncorrelated and Gaussian. 

ii. Ensemble size large enough so that sampling errors are small (Ne → Nx) 

iii. All sources of forecast error are sampled by the ensemble, including model error. 

The first condition applies to all techniques based on the Kalman filter, including variational methods. 
The second and third conditions are specific to ensemble data assimilation systems. EnKF 
development efforts are currently focused on developing better methods to deal with sampling errors, 
model errors and other un- or underrepresented sources of error in the background forecast ensemble. 
In addition to model and sampling error, other sources of background error that may be under-
represented in EnKF systems include 

i. mis-specification of observation errors (including correlated observation errors) 

ii. errors in the forward observation operator H 

iii. errors in boundary conditions (such as the sea and land surface). 

Neglecting or under-estimating any of these sources of error in the ensemble forecast system will 
cause the assimilation to give too little weight to observations. For the remainder of this paper, I will 
describe how these missing sources of background error are currently parameterized, and some 
ongoing research efforts aimed at improving the representation of these errors within ensemble data 
assimilation and forecast systems.  

3.1. Flow-dependent covariance localization 

The simplest form of covariance localization, described in section 2.2, tapers the covariance between 
model state and observation priors to zero at a specified distance from the observation location. The 
taper distance is a single parameter, and is typically not a function of spatial location or the flow 
situation. As pointed out by Bishop and Hodyss (2007), this is a very crude approximation and there is 

                                                      
2 Identical to the “ensemble adjustment filter” of Anderson (2001) 
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likely to be a high-degree of flow dependent variability in background-error covariance sampling 
errors. For example, Figure 3 shows the covariance between the background ensemble temperature at 
the location of a radiosonde over Australia and temperature at other locations in an EnKF data 
assimilation system. In the lower troposphere (850 hPa) the covariances are fairly compact, and the 
1800 km covariance localization radius is fairly effective at removing the noisy far-field covariance 
while preserving the apparent signal close to the observation location. However, at 10 hPa, the 
covariances are much larger scale, and the fixed localization is likely removing signal as well as noise 
in the covariance estimate. This is because the dynamics of error evolution are much different in the 
stratosphere than they are in the lower troposphere, resulting in much longer length scales in the 
stratosphere. Another simple example illustrating how the assumptions used in simple covariance 
localization can break down involves the assimilation of observations separated in both time and 
space from the model state element being updated. If the observation time is prior to the analysis time, 
the maximum covariances will be downstream of the observation location, while the simple 
localization described in section 2.2 assumes that the covariance maximum occurs at the observation 
location. One simple way to deal with the problems illustrated in Figure 3 is to make the localization 
radius vertically varying, increasing upward in the stratosphere. Alternately, one can try to estimate 
localization function itself directly from the background ensemble, thereby taking into account flow-
dependence (and implicitly accounting for the effect of temporal as well as spatial separation between 
observation and model state priors). 

 

Figure 3: Covariances estimated in a EnKF between temperature at every grid point and a grid 
point over Australia at 850 hPa (top panels) and 10 hPa (bottom panels), before (left) and after 
(right) covariance localization is applied. The covariance localization function tapers to zero 
1800 km from the observation location. 
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In a series of papers, Bishop and Hodyss (see e.g. 2007, 2011 and references therein) have devised a 
method for estimating a localization function from sample correlations computed smoothed, 
normalized ensemble perturbations. These localization functions vary with the flow situation in a 
continuous and physically plausible way. However, there is a significant extra cost incurred in 
applying this flow dependent localization, and it is not yet clear whether this extra computation results 
in analyses that are superior to what could be obtained by simply increasing the ensemble size for the 
same cost and using a fixed non-adaptive localization scheme with a larger localization radius. 

Anderson (2007) proposed a different approach which he calls a “hierarchical ensemble filter”, which 
involves running multiple parallel ensemble data assimilation cycles (effectively an ensemble of 
ensemble Kalman filters). The differences between the sample covariance estimates in the parallel 
cycles is used to construct a localization function - where the variability of the covariance estimates is 
much larger (smaller) than the mean covariance estimate, the localization function is set to a value 
near zero (one). This method is also very expensive, and the cost/benefit ratio relative to running a 
single larger ensemble is questionable. However, Anderson points out that the hierarchical approach 
could be run for only a short period, to derive a spatially varying but temporally fixed 
“climatological” localization function which can then be applied in single ensemble filter. Anderson 
(2011) also proposed a much simpler and cheaper scheme in which the localization function depends 
only on the sample correlation and ensemble size. 

All covariance localization schemes will tend to destroy the underlying dynamical balances (such as 
geostrophy) inherent in the background ensemble. The more severe the localization, the larger the 
imbalances will be in the analysis ensemble. This means that post-analysis balance adjustments, such 
as digital filter finalization (Lynch and Huang, 1992), are needed to prevent gravity wave noise from 
building up as the system is cycled (Mitchell et al, 2002; Houtekamer and Mitchell, 2005). This 
motivated Kepert (2010) to design a localization scheme explicitly to maintain geostrophic balance. 

3.2. Inflation: multiplicative and additive 

Missing or under-represented sources of error in the background ensemble will inevitably lead to an 
underestimation of the background error variance, and hence to a under-utilization of observation 
information. Even if the forecast model is perfect, sampling error will lead to an underestimation of 
the variance. Multiplicative variance inflation, first proposed by Anderson and Anderson (1999), is 
the simplest way to deal with the inevitable deficiency in ensemble spread in EnKF systems. In its 
simplest form, deviations from the ensemble mean are simply inflated by a constant factor r > 1, 
thereby increasing the ensemble variance by a factor r2. Sacher and Bartello (2008) noted that 
sampling errors in the estimate of the Kalman gain should be proportional to the Kalman gain itself, 
so that more variance inflation should be needed where the Kalman gain suggests observations should 
make a larger correction to the background. Whitaker and Hamill (2012) devised a simple 
multiplicative inflation scheme call “relaxation to prior spread’ (RTPS) that inflates the posterior 
ensemble proportional to the amount that the ensemble variance was reduced by the assimilation of 
observations. The inflation factor has the form 

 1b a

a

r σ σ
α

σ
 −

= + 
 

 (5) 
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Where σb is the background error standard deviation, σa is the analysis error standard deviation (prior 
to inflation), and α is a tunable parameter. If α is zero there is no inflation, and if α = 1 the analysis 
variance is equal to the background variance. This scheme has the desirable property that regardless 
of the value of α, no inflation will occur where observations have no impact on the model state. 
Anderson (2009) proposed a Bayesian algorithm for estimating a spatially and temporally varying 
field of covariance inflation within the data assimilation. When run as part of an EnKF assimilation 
system using a global general circulation model with all “conventional” (i.e. non satellite radiance) 
observations, the Bayesian algorithm produces a spatial field of inflation that looks very similar to 
that implied by RTPS inflation (equation 5), with large values of inflation in regions of dense and/or 
accurate observations, like North America and Europe (Fig. 13 in Anderson et al. (2009)). 

Instead of increasing the amplitude of existing ensemble perturbations, one can add new structures to 
the ensemble by adding random samples from a specified covariance distribution. This is known as 
additive inflation (Mitchell and Houtekamer 2000). Additive inflation is often intended to represent 
model error, so that the distribution the random samples are drawn from is assumed to represent the 
climatological statistics of the random (non-systematic) component of model error. Zhang et al (2004) 
proposed an algorithm that contains both multiplicative and additive aspects, which Whitaker and 
Hamill (2012) denote “relaxation-to-prior perturbations”, or RTPP inflation. This method relaxes the 
posterior ensemble perturbations back to the prior perturbations via 

 ( )1 α α′ ′ ′→ − +a a bx x x  (6) 

Whitaker and Hamill (2012) found that RTPS inflation (equation 5) generally outperforms RTPP 
inflation (equation 6), while both outperform constant variance inflation, in idealized data assimilation 
experiments with a two-level primitive equation model including the effects of truncation model error. 
RTPP inflation does preserve the balances inherent in the background ensemble better, and leads to 
analysis ensemble perturbations that grow faster during the forecast. A combination of additive 
inflation and multiplicative RTPS inflation was found to work better than either alone when both 
model and sampling error were present, while RTPS inflation alone worked best in a perfect model 
environment and additive inflation alone worked best when sampling error was minimal. This is 
consistent with the notion that multiplicative inflation works best representing observation-network 
dependent sources of error in the assimilation system, such as sampling error, while additive inflation 
works best for representing sources of error not related to the assimilation system, such as model 
error. Since inflation is simple to implement, it is useful as a baseline for measuring the performance 
of more sophisticated methods for representing missing sources of error in the background ensemble, 
such as those discussed in the next section.  

3.3. Stochastic and multi-model approaches 

Several methods for accounting for model uncertainty within the forecast model itself have been 
developed in the context of ensemble prediction. These include stochastic energy backscatter (SKEB: 
Shutts 2005; Berner et al 2009), stochastically perturbed physics tendencies (SPPT: Buizza et al, 
1999), and stochastic convection parameterization (Plant and Craig, 2008; Teixeira and Reynolds, 
2008). The performance of SKEB and SPPT within the ECMWF ensemble prediction system was 
examined in Palmer et al 2009. An alternative approach to sampling model uncertainty is to use 
models with traditional deterministic physics parameterizations, but design an ensemble so that 
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different members are integrated with different models with different dynamical core formulations 
and/or physical parameterizations. If each of the component models is equally skillful, and the 
differences between the models spans the range of uncertainty in the models themselves, then the 
multi-model approach is a viable approach for representing model error. However, there may be a 
large development cost associated with maintaining multiple forecast models so that each has 
comparable forecast skill. These techniques and others where the subject of a recent ECMWF 
workshop (http://www.ecmwf.int/publications/library/do/references/list/201106), and the reader is 
referred to the workshop proceedings for a more detailed discussion of the state of the art in this field. 

The performance of schemes for representing model uncertainty in ensemble prediction systems are 
typically evaluated using spread/skill consistency metrics or probabilistic verification scores. 
Evaluating these schemes in the context of ensemble data assimilation provides a more rigorous test, 
especially when their performance is measured relative to the inflation schemes mentioned in the 
previous section. This is because in order to improve upon inflation, a scheme must improve the 
representation of background-error covariances in the ensemble, whereas any scheme that increases 
the variance of a spread-deficient ensemble prediction system is likely to improve probabilistic skill 
scores. Houtekamer et al (2009) examined the impact of SKEB, SPPT and multi-physics ensembles in 
the operational Environment Canada EnKF data assimilation system, with additive inflation (using 
perturbations drawn from an isotropic, homogeneous covariance matrix) as a baseline. None of the 
candidate schemes performed as well as additive inflation, although the multi-physics ensemble in 
conjunction with additive inflation performed slightly better than additive inflation alone. They 
attributed the relatively disappointing impact of SKEB and SPPT in the data assimilation to the fact 
that they were tuned to perform well within the medium-range ensemble prediction system, not for the 
short-range forecasts required for data assimilation, and that other under-represented sources of error 
in the EnKF system (such as sampling error, mis-specification of observation errors, and forward 
observation operator errors) may be as large or larger than model uncertainty. 

4. Summary 
EnKF data assimilation systems have matured considerably since the last ECMWF Data Assimilation 
seminar. Several centers are now using them operationally, either as standalone systems are as part of 
a hybrid variational-ensemble data assimilation system. Both variational and ensemble-based data 
assimilation systems are approximate solutions to the Kalman Filter, but each makes different, 
perhaps complementary approximations. Therefore, it is likely that a combination of the two can 
produce an analysis that combines the “best of both worlds”, and performs better than either alone. 
Table 1 presents a summary of the relative strengths of the EnKF and 4DVar. 

The subject of hybrid variational/ensemble data assimilation is covered in the article by Dale Barker 
in this volume. 

 

http://www.ecmwf.int/publications/library/do/references/list/
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Features from EnKF Features from 4DVar 
Extra flow-dependence of Pb, 
propagation of flow-dependent 
information from one cycle to the next. 

Covariance localization done correctly (in 
model space, not observation space). 

More flexible treat of model error (within 
the ensemble). 

Reduction in sampling error in the 
estimation of time-lagged covariances 
(through full-rank propagation of Pb through 
the assimilation window by the tangent 
linear model). 

Automatic initialization of ensemble 
forecasts. 
 

Flexibility to add extra constraints to the 
cost function (to preserve balance for 
example). 

 
Table 1: Summary of the unique benefits offered by EnKF and 4DVar. Hybrid variational/ 
ensemble data assimilation systems offer the potential for incorporating all of these features 
together in one system, and hence to provide the “best of both worlds”. 

 

EnKF research has now shifted from the development of new algorithms for calculating analysis 
increments to improving the treatment of sampling error and model uncertainty, as well as other 
potentially under-sampled sources of error in the background ensemble. Efforts to develop practical 
methods for flow-adaptive covariance localization are ongoing, but have not yet been shown to be 
worth the extra computational effort - many centers instead are electing to use extra computation 
resources to run larger ensembles (Environment Canada has recently increased their EnKF ensemble 
size to 192 members). Indeed, now that ensemble-based and hybrid variational/ensemble data 
assimilation systems offer the prospect of improving even deterministic analyses and forecasts by 
increasing ensemble size, operational centers now may now have to think twice before simply 
increasing model resolution with each computer upgrade. 
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