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ABSTRACT

In this chapter we will introduce the standard particle filter and show that it is degenerate, i.e. the ensemble
collapses to one member for systems with dimensions larger than let’s say 3. The origin of the degeneracy is
found to be the large number of independent observations. We proceed by showing that instead of the original
model equations a modified model equation can be used that pulls the model towards future observations. By
introducing the proposal transition density we ensure that we solve the fully nonlinear data assimilation problem.
Although this does greatly reduce the number of particles needed, the filter is still degenerate for systems with large
dimensions. Then the so-called almost-equal-weight scheme is introduced, which is shown to solve all problems
by construction. The new method is demonstrated and shown to work succesfully on a 65,000 dimensional chaotic
barotropic vorticity system with observations at twice the decorrelation time scale of the model. It is concluded
that particle filters can be applied to high-dimensional systems with large numbers of observations, and might be
of use for numerical weather and climate prediction.

1 Introduction

In this chapter we will discuss particle filters and their use in the geosciences. A general review on the
application and usefulness of particle filters in geosciences in given in Van Leeuwen (2009), see also
Bocquet et al. (2010), and a general overview of particle filtering is given by the excellent book by
Doucet et al, (2001). There it was shown that although interesting progress had been made until 2009,
no solution for the degeneracy problem, or the curse of dimensionality had been found. In this paper
we will concentrate on recent developments in using the so-called proposal transition density in solving
the degeneracy problem First the basic idea behind particle filters is presented, followed by why this
basic formulation can never work for large-dimensional systems. We then explore methods that do have
the potential to solve the fully nonlinear data-asimilation problem, all based on methods that use the
proposal density.

Finally, we will not discuss the numerous papers that explore approximations to full particle filters. A
full list of this rapidly emerging field can be found in Van Leeuwen (2009), but that paper does not
contain the many interesting new developments. There is room for a new review...

2 Basic Importance Sampling

The particle filters we will discuss here are based on Importance Sampling. The most straight-forward
implementation is what is called Basic Importance Sampling here. (In the statistical literature one usu-
ally finds Importance Sampling described with a proposal density different from the prior model pdf.
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However, for pedagogical reasons we present Importance Sampling in the following way.) Basic Impor-
tance sampling is straightforward implementation of Bayes Theorem. The idea is to represent the prior
pdf by a set of particles xi, which are delta functions centred around state vectors xi, and from which all
statistical measures of interest can be calculated, like mean, covariance etc. If one represents the prior
pdf by a number of particles, or ensemble members, like in the Ensemble Kalman Filter,so

p(x) =
N

∑
i=1

1
N

δ (x− xi) (1)

and we use this in Bayes Theorem;

p(x|y) =
p(y|x)p(x)∫

p(y|x)p(x) dx
(2)

we find

p(x|y) =
N

∑
i=1

wiδ (x− xi) (3)

in which the weights wi are given by:

wi =
p(y|xi)

∑
N
j=1 p(y|x j)

(4)

The density p(y|xi) is the probability density of the observations given the model state xi, which is often
taken as a Gaussian:

p(y|xi) = Aexp
[
−(y−H(xi))2

2σ2

]
(5)

in which H(xi) is the measurement operator, which is the model equivalent of the observation y, and σ

is the standard deviation of the observation error. When more measurements are available, which might
have correlated errors, the above should be the joint pdf of all these measurements.

Weighting the particles just means that their relative importance in the probability density changes. For
instance, if we want to know the mean of the function f (x) we now have:

f (x) =
∫

f (x)p(x) dx≈
N

∑
i=1

wi f (xi) (6)

Common examples for f (x) are x itself, giving the mean of the pdf, and the squared deviation from the
mean, giving the covariance.

Up to now, we haven’t specified what x is. It can be a state vector xn at a certain time n, or x can be a
model trajectory over some time window (0,n∆t), so x = x0:n = (x0,x1, ...,xn) over n time steps. Here
the superscript is the time index, and the subscript is the sample, or particle.

A practical way to implement the particle filter is to calculate the one time or the trajectory sequentially
over time, which is where the name ’filter’ comes from. The idea is to write the prior density as

p(x0:n) = p(xn|x0:n−1)p(x0:n−1) (7)

Using that the state vector evolution is Markov, i.e. to predict the future we only need the present, not
the past, we can write:

p(x0:n) = p(xn|xn−1)p(xn−1|p(xn−2)...p(x1|x0)p(x0) (8)

Before we continue it is good to realise what the so-called transition densities p(xn|xn−1) actually mean.
Consider a model evolution equation given by:

xn = f (xn−1)+β
n (9)

172 ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011



P.J. VAN LEEUWEN PARTICLE FILTERS . . .

in which β nis a random term or factor in the model equation that describes the error in the model
equation. The idea is that the model is not perfect, i.e. any numerical model used in the geosciences
that is used to simulate the real world has errors (and these tend to be significant!). These errors are
unknown (otherwise we would include them as deterministic terms in the equations) but we assume we
are able to say something about their statistics, e.g. their mean, covariance, etc. Typically one assumes
the errors in the model equations are Gaussian distributed with zero mean and known covariance, but
that is not always the case. To draw from such a transition density p(xn|xn−1) means to draw β n from
its density and evaluate the model equation given above. In fact, for normal, or Gaussian, distributed
model errors β n with covariance Q, we can write:

p(xn|xn−1) = N( f (xn−1),Q) (10)

Note that we assume the model errors are additive in this paper. Multiplicative model errors in which
the size of the random forcing is dependent on the state x can be accounted for too, but we use additive
model errors here for simplicity.

Let us now continue with Importance Sampling. If we also assume that the observations at different
times are independent, which is not necessary for the formulation of the theory, but keeps the notation
so much simpler, we have for the likelihood:

p(y1:n|x0:n) = p(yn|xn)...p(y1|x1) (11)

where we used that y j is not dependent on xk with j 6= k when x j is known. The posterior density can
now be written as:

p(x0:n|y1:n) =
p(y1:n|x0:n)p(x0:n)

p(y1:n)
(12)

=
p(yn|xn)...p(y1|x1)p(xn|xn−1)...p(x1|x0)p(x0)

p(yn), ..., p(y1)

=
p(yn|xn)p(xn|xn−1)

p(yn)
...

p(y1|x1)p(x1|x0)p(x0)
p(y1)

Realising that the last ratio in this equation is actually equal to p(x0:1|y1) we find the following sequential
relation:

p(x0:n|y0:n) =
p(yn|xn)p(xn|xn−1)

p(yn)
p(x0:n−1|y1:n−1) (13)

This expression allows us to find the full posterior with the following sequential scheme(see figure 1):

1 Sample N particles xi from the initial model probability density p(x0), in which the superscript 0
denotes the time index.

2 Integrate all particles forward in time up to the measurement time. In probabilistic language we
denote this as: sample from p(xn|xn−1

i ) for each i,
i.e. for each particle xi run the model forward from time n−1 to time n using the nonlinear model
equations. The stochastic nature of the forward evolution is implemented by sampling from the
density that describes the random forcing of the model.

3 Calculate the weights according to (4), normalise them so their sum is equal to 1, and attach these
weights to each corresponding particle. Note that the particles are not modified, only their relative
weight is changed!

4 Increase n by one and repeat 2 and 3 until all observations have been processed.

ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011 173



P.J. VAN LEEUWEN PARTICLE FILTERS . . .

t=0 t=10 t=20

weighting weighting

Figure 1: The standard particle filter with Importance Sampling. The model variable runs along
the vertical axis, the weight of each particle corresponds to the size of the bullets on this axis. The
horizontal axis denotes time, with observations at a time interval of 10 time units. All particles have
equal weight at time 0. At time 10 the likelihood is displayed together with the new weights of
each particle. At time 20 only 2 members have weights different from zero: the filter has become
degenerate.

The good thing about importance sampling is that the particles are not modified, so that dynamical
balances are not destroyed by the analysis. The bad thing about importance sampling is that the particles
are not modified, so that when all particles move away from the observations they are not pulled back to
the observations. Only their relative weights are changed.

Before we continue, it is stressed how simple this scheme is compared to traditional methods like 3- or
4DVar and (Ensemble) Kalman filters. The success of these scheme depends heavily on the accuracy
and error covariances of the model state vector. In 3- and 4DVar this leads to complicated covariance
structures to ensure balances etc. In Ensemble Kalman filters artificial tricks like covariance inflation
and localisation are needed to get good results in high dimensional systems. Particle filters do not have
these difficulties.

However, there is (of course) a drawback. Even if the particles manage to follow the observations in
time, the weights will differ more and more. Application to even very low-dimensional systems shows
that after a few analysis steps one particle gets all the weight, while all other particles have very low
weights (see figure 1, at t = 20). That means that the statistical information in the ensemble becomes too
low to be meaningful. This is called filter degeneracy. It has given importance sampling a low profile
until resampling was invented, see the next section.

3 Reducing the variance in the weights

Several methods exists to reduce the variance in the weights, and we discuss Sequential Importance
Resampling here. See Van Leeuwen(2009) for other methods. In resampling methods the posterior
ensemble is resampled so that the weights become more equal (Gordon et al., 1993). In the next section
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after this one methods are discussed that do change the positions of the prior particles in state space to
improve the likelihood of the particles, i.e. to bring them closer to the observations before the weighting
with the likelihood is applied.

3.1 Resampling

The idea of resampling is simply that particles with very low weights are abandoned, while multiple
copies of particles with high weight are kept for the posterior pdf in the sequential implementation. In
order to restore the total number of particles N, identical copies of high-weight particles are formed.
The higher the weight of a particle the more copies are generated, such that the total number of particles
becomes N again. Sequential Importance Re-sampling (SIR) does the above, and makes sure that the
weights of all posterior particles are equal again, to 1/N.

Sequential Importance Re-sampling is identical to Basic Importance Sampling but for a resampling step
after the calculation of the weights. The ’flow chart’ reads (see figure 2):

1 Sample N particles xi from the initial model probability density p(x0).

2 Integrate all particles forward in time up to the measurement time (so, sample from p(xn|xn−1
i ) for

each i)

3 Calculate the weights according to (4) and attach these weights to each corresponding particle.
Note that the particles are not modified, only their relative weight is changed!

4 Re-sample the particles such that the weights are equal to 1/N.

5 Repeat 2, 3 and 4 sequentially until all observations have been processed.

t=0 t=10 t=20t=10

resamplingweighting weighting

Figure 2: The Particle Filter with Resampling, also called Sequential Importance Resampling. The
model variable runs along the vertical axis, the weight of each particle corresponds to the size of the
bullets on this axis. The horizontal axis denotes time, with observations at a time interval of 10 time
units. All particles have equal weight at time zero. At time 10 the particles are weighted according
to the likelihood, and resampled to obtain an equal-weight ensemble.

It is good to realise that the resampling step destroys the smoother character of the method. All particles
that are not chosen in the resampling scheme are lost, and their evolution is broken. So the smoother
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estimate is build of of lesser and lesser particles over time, until it consists of only one particle, loosing
again all statistical meaning.

The resampling can be performed in many ways, and we discuss the most used.

1) Probabilistic resampling

Most straightforward is to directly sample randomly from the density given by the weights. Since
this density is discrete and one-dimensional this is an easy task. However, due to the random char-
acter of the sampling, so-called sampling noise is introduced. Note that this method is actually
generalised Bernoulli for those versed in sampling techniques..

2) Residual Sampling

To reduce the sampling noise Residual Sampling can be applied. In this re-sampling method all
weights are multiplied with the ensemble size N. Then n copies are taken of each particle i in
which n is the integer part of Nwi. After obtaining these copies of all members with Nwi ≥ 1, the
integer parts of Nwi are subtracted from Nwi. The rest of the particles needed to obtain ensemble
size N are than drawn randomly from this resulting distribution.

3) Stochastic Universal Sampling

While Residual Sampling reduces the sampling noise, it can bee shown that Stochastic Universal
Sampling has lowest sampling noise. In this method all weights are put after each other on the
unit interval [0,1]. Then a random number is drawn from a uniform density on [0,1/N], and N
line pieces starting from the random number, and with interval length 1/N are laid on the line
[0,1]. A particle is chosen when one of the end points of these line pieces falls in the weight bin
of that particle. Clearly, particles with high weights span an interval larger than 1/N and will be
chosen a number of times, while small weight particles have a negligible change of being chosen.

3.2 Is resampling enough?

Snyder et al. (2008) prove that resampling will not be enough to avoid filter collapse, i.e. one particle
gets all the weight, and the others get weight zero. See also the contribution by Chris Snyder to this
symposium. Their argument is quite involved and makes a few assumptions that cannot be fully justified,
although the numerical experiments performed fit the theory perfectly. These authors argue that the
number of particles should grow exponentially with the dimension of the system. Below we show that it
is the number of independent observations that brings about the ensemble collapse, and not so much the
dimension of the system. To do that we first discuss the idea of the proposal density in particle filtering
in the next session.

4 Improvement of the likelihood: exploring the proposal density

Related to decreasing the variance of the weights is to make sure that all model integrations end up close
to the new observations. First we discuss the application of a proposal density that allows one to sample
from a density that is conditioned on these observations, so it is much closer to the observations than the
prior density. As an example the EnKF is chosen as the proposal density. Then we discuss methods that
modify the model equations. The so-called ’optimal proposal density’ is discussed, and it is shown it is
not optimal, followed by a scheme that does solve the degeneracy problem by construction.
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4.1 The proposal density: the basic idea

We are now to discuss a very interesting property of particle filters that has received little attention in
the geophysical community. We start from Bayes, i.e. eq (13):

p(x0:n|y0:n) =
p(yn|xn)p(xn|xn−1)

p(yn)
p(x0:n−1|y1:n−1) (14)

To simplify the analysis, and since we concentrate on a filter here, let us first integrate out the past, to
get:

p(xn|y0:n) =
p(yn|xn)

p(yn)

∫
p(xn|xn−1)p(xn−1|y1:n−1) dxn−1 (15)

This expression does not change when we multiply and divide by a so-called proposal transition density
q(xn|xn−1,yn), so:

p(xn|y0:n) =
p(yn|xn)

p(yn)

∫ p(xn|xn−1)
q(xn|xn−1,yn)

q(xn|xn−1,yn)p(xn−1|y1:n−1) dxn−1 (16)

As long as the support of q(xn|xn−1,yn) is equal to or larger than that of p(xn|xn−1) we can always
do this. This last condition makes sure we don’t divide by zero. Let us now assume that we have an
equal-weight ensemble of particles from the previous analysis at time n−1, so

p(xn−1|y1:n−1) =
N

∑
i=1

1
N

δ (xn−1− xn−1
i ) (17)

Using this in the equation above gives:

p(xn|y0:n) =
N

∑
i=1

1
N

p(yn|xn)
p(yn)

p(xn|xn−1
i )

q(xn|xn−1
i ,yn)

q(xn|xn−1
i ,yn) (18)

As a last step, we run the particles from time n−1 to n, i.e. we sample from the transition density. How-
ever, instead of drawing from p(xn|xn−1

i ), so running the original model, we sample from q(xn|xn−1
i ,yn),

so from a modified model. Let us write this modified model as

xn = g(xn−1,yn)+ β̂
n (19)

so that we can write for the transition density, assuming β̂ n is Gaussian distributed with covariance Q̂:

q(xn|xn−1,yn) = N(g(xn−1,yn), Q̂) (20)

Drawing from this density leads to:

p(xn|y0:n) =
N

∑
i=1

1
N

p(yn|xn
i )

p(yn)
p(xn

i |x
n−1
i )

q(xn
i |x

n−1
i ,yn)

δ (xn− xn
i ) (21)

so the posterior pdf at time n can be written as:

p(xn|y1:n) =
N

∑
i=1

wiδ (xn− xn
i ) (22)

with weights wi given by:

wi =
1
N

p(yn|xn
i )

p(yn)
p(xn

i |x
n−1
i )

q(xn
i |x

n−1
i ,yn)

(23)
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We recognise the first factor in this expression as the likelihood, and the second as as a factor related
to using the proposal transition density instead of the original transition density to propagate from time
n− 1 to n, so it is related to the use of the proposed model instead of the original model. Note that
because the factor 1/N and p(yn) are the same for each particle and we are only interested in relative
weights, we will drop them from now on, so

wi = p(yn|xn
i )

p(xn
i |x

n−1
i )

q(xn
i |x

n−1
i ,yn)

(24)

4.2 Example: the EnKF as proposal

As an example we will explore this technique with the Gaussian of the EnKF as the proposal density.
First we have to evaluate the prior transition density. Since we know the starting point of the simulation,
xn−1

i , and its end point, the posterior EnKF sample xn
i , and we know the model equation, written formally

as:
xn

i = f (xn−1
i )+β

n
i (25)

we can determine β n
i from this equation directly. We also know the distribution from which this β n

i is
supposed to be drawn, let us say a Gaussian with zero mean and covariance Q. We then find for the
transition density:

p(xn
i |xn−1

i ) ∝ exp
[
−1/2

(
xn

i − f (xn−1
i )

)
Q−1 (xn

i − f (xn−1
i )

)]
(26)

This will give us a number for each [xn−1
i , xn

i ] combination.

Let us now calculate the proposal density q(xn
i |x

n−1
i ,yn). This depends on the ensemble Kalman filter

used. For the Ensemble Kalman filter with perturbed observations the situation is as follows. Each
particle in the updated ensemble is connected to those before analysis as:

xn
i = xn,old

i +Ke
(

y+ εi−H(xn,old
i )

)
(27)

in which εi is the random error drawn from N(0,R) that has to be added to the observations in this variant
of the ensemble Kalman filter. Ke is the ensemble Klman gain, i.e. the Kalman gain using the prior error
covariance calculated from the prior ensemble. The particle prior to the analysis comes from that of the
previous time step through the stochastic model:

xn,old
i = f (xn−1)+β

n
i (28)

Combining these two gives:

xn
i = f (xn−1

i )+β
n
i +Ke (y+ εi−H(xn−1

i )−H(β n
i ))
)

(29)

or
xn

i = f (xn−1
i )+Ke (y−H( f (xn−1

i ))
)
+(1−KeH)β n

i +Ke
εi (30)

assuming that H is a linear operator. The right-hand side of this equation has a deterministic and a
stochastic part. The stochastic part provides the transition density going from xn−1

i to xn
i . Assuming

both model and observation errors to be Gaussian distributed and independent we find for this transition
density:

q(xn
i |xn−1

i yn) ∝ exp
[
−1/2(xn

i −µ
n
i )T

Σ
−1
i (xn

i −µ
n
i )
]

(31)

in which µn
i is the deterministic ’evolution’ of x, given by:

µ
n
i = f (xn−1

i )+Ke (y−H(xn−1
i )

)
(32)
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and the covariance Σi is given by:

Σi = (1−KeH)Q(1−KeH)T +KeRKeT (33)

where we assumed that the model and observation errors are uncorrelated. It should be realized that xn
i

does depend on all xn,old
j via the Kalman gain, that involves the error covariance Pe. Hence we have

calculated q(xn
i |Pe,xn−1

i ,yn) instead of q(xn
i |x

n−1
i ,yn), in which Pe depends on all other particles. The

reason why we ignore the dependence on Pe is that in case of an infinitely large ensemble Pe would be
a variable that depends only on the system, not on specific realizations of that system. This is different
from the terms related to xn

i , that will depend on the specific realization for β n
i even when the ensemble

size is ’infinite’. (Hence another approximation related to the finite size of the ensemble comes into play
here and at this moment it is unclear how large this approximation error is.)

The calculation of p(xn|xn−1) and q(xn
i |x

n−1
i yn) look like very expensive operations. By realizing that Q

and R can be obtained from the ensemble of particles, computationally efficient schemes can easily be
derived.

We can now determine the full new weights. Since the normalization factors for the transition and the
posterior densities are the same for all particles the weights are easily calculated. The procedure now is
as follows (see figure 3):

1 Run the ensemble up to the observation time

2 Perform a (local) EnKF analysis of the particles

3 Calculate the proposal weights w∗i = p(xn
i |x

n−1
i )/q(xn

i |x
n−1
i yn)

4 Calculate the likelihood weights wi = p(yn|xn
i )

5 Calculate the full relative weights as wi = wi ∗w∗i and normalize them.

6 Resample

It is good to realize that the EnKF step is only used to draw the particles close to the observations.
This means that when the weights are still varying too much, one can do the EnKF step with much
lower observational errors. This might look like overfitting but it is not since the only thing we do in
probabilistic sense is to generate particles to those positions in state space where the likelihood is large.

Finally, other variants of the EnKF, like the adjusted and the transform variants can be used too, as
detailed in Van Leeuwen (2009). The efficiency of using the EnKF as proposal is under debate at the
moment. The conclusions so far seem to be that using the EnKF as proposal in high-dimensional systems
does not work. What has not been tested, however, is to use EnKF proposals with smaller observation
matrix R, and more possibilities are still open.

4.3 Modifying the model equations

So far we have discussed proposal density applications in which the model equations were not changed
directly. However, much more efficient scheme’s can be derived that change the model equations such
that each particle is pulled towards the future observations at each time step. By keeping track of the
weights associated with this it can be assured that the correct problem is solved, and the particles are
random samples from the posterior pdf.

As mentioned before, the idea of the proposal transition density is that we draw samples from that
density instead of from the original model. Furthermore, these samples can be dependent on the future
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t=0 t=10 t=10 t=10 t=10

weighting
proposal

correct
weights resample

Figure 3: The particle filter with proposal density. The model variable runs along the vertical axis,
the weight of each particle corresponds to the size of the bullets on this axis. The horizontal axis
denotes time, with observations at a time interval of 10 time units. All particles have equal weight
at time zero. At time 10 the particles are brought closer to the observations by using e.g. the EnKF.
Then they are weighted with the likelihood and these weights are corrected for the artificial EnKF
step.

observations. To see how this works, let us write the stochastic model equation as:

xn
i = f (xn−1

i )+β
n
i (34)

First we have to understand how this equation is related to the transition density p(xn
i |x

n−1
i ). The prob-

ability to end up in xn
i starting from xn−1

i is related to β n
i . For instance, if β n

i = 0, so no model error,
a perfect model, this probability is 1 if the xn

i ,x
n−1
i pair fulfils the perfect model equations, and zero

otherwise. So, in this case p(xn
i |x

n−1
i ). would be a delta function centred on f (xn−1

i ). However, the
more realistic case is that the model error is nonzero. The transition density will now depend on the
distribution of the stochastic random forcing. Assuming Gaussian random forcing with mean zero and
covariance Q, so β n

i ∼ N(0,Q), we find

p(xn
i |xn−1

i ) ∝ N( f (xn−1
i ),Q) (35)

As mentioned above, we will not use the normal model equation for each particle, but a modified model
equation, one that ’knows’ about future observations, and actually draws the model to those observa-
tions. Perhaps the simplest example is to add a term that relaxes the model to the future observation,
like

xn
i = f (xn−1

i )+β
n
i +Kn(yn+m−H(xn−1

i ) (36)

in which n + m is the next observation time. Note that the observation operator H does not contain
any model integrations, it is just the evaluation of xn−1

i in observation space. The reason is simple, we
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don’t have xn+m
i yet. Clearly, each particle i will now be pulled towards the future observations, with

relaxation strength related to matrix Kn. In principle, we are free to choose Kn, but it is reasonable
to assume that it is related to the error covariance of the future observation R, and that of the model
equations Q. We will show possible forms in the examples discussed later.

With the simple relaxation, or other techniques, we have ensured that all particles end up closer to the
observations. But we can’t just alter the model equations, we have to compensate for this trick. This is
why the proposal density turns up in the weights. Each time step the weight of each particle changes
with

wn
i =

p(xn
i |x

n−1
i )

q(xn
i |x

n−1
i ,yn)

(37)

between observation times. This can be calculated in the following way. Using the modified model
equations, we know xn−1

i for each particle, that was our starting point, and also xn
i . So, assuming the

model errors are Gaussian distributed, this would become

p(xn
i |xn−1

i ) ∝ exp
[
−1

2
(
xn

i − f (xn−1
i )

)T
Q−1 (xn

i − f (xn−1
i )

)]
(38)

The proportionality constant is not of interest since it is the same for each particle, and drops out when
the relative weights of the particles are calculated. Note that we have all ingredients to calculate this,
and p(xn

i |x
n−1
i ) is just a number.

For the proposal transition density we use the same argument, to find:

q(xn
i |xn−1

i yn) ∝ exp
[
−1

2
(
xn

i − f (xn−1
i )−Kn(yn−H(xn−1)

)T
Q−1 (xn

i − f (xn−1
i )−Kn(yn−H(xn−1)

)]
= exp

[
−1

2
β

n
i

T Q−1
β

n
i

]
(39)

Again, since the did choose β to propagate the model state forward in time, we can calculate this and it
is just a number. In this way, any modified equation can be used, and we know, at least in principle, how
to calculate the appropriate weights.

4.4 The ’Optimal proposal density’

In the literature the so-called ’optimal proposal density’ is described (e.g. Doucet et al, 2000). It is
argued that taking q(xn|xn−1,yn) = p(xn|xn−1,yn) results in optimal weights. However, it is easy to show
that this is not the case. Assume observations every time step, and a resampling scheme at every time
step, so that a equal-weighted ensemble of particles is present at time n− 1. Furthermore, assume that
model errors are Gaussian distributed N(0,Q) and observation errors are Gaussian distributed according
to N(0,R). First, using the definition of conditional densities we can write:

p(xn|xn−1,yn) =
p(yn|xn)p(xn|xn−1)

p(yn|xn−1)
(40)

where we used p(yn|xn,xn−1) = p(yn|xn). Using this proposal density gives posterior weights:

wi = p(yn|xn
i )

p(xn
i |x

n−1
i )

q(xn
i |x

n−1
i ,yn)

= p(yn|xn
i )

p(xn
i |x

n−1
i )

p(xn
i |x

n−1
i ,yn)

= p(yn|xn−1
i ) (41)
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The latter can be expanded as:

wi =
∫

p(yn,xn|xn−1) dxn =
∫

p(yn|xn)p(xn|xn−1) dxn (42)

in which we again used p(yn|xn,xn−1) = p(yn|xn). Using the Gaussian assumptions mentioned above
(note, the state is never assumed to be Gaussian), we can perform the integration to obtain:

wi ∝ exp
[
−1

2
(
yn−H f (xn−1

i )
)T

(HQHT +R)−1 (yn−H f (xn−1
i )

)]
(43)

Note that we have just calculated the probability density of p(yn|xn−1
i ).

To estimate the order of magnitude of the first two moments of the distribution of y−H f (xn−1
i ) it

is expanded to y−Hxn
t + H

(
xn

t − f (xn−1
i )

)
in which xn

t the true state at time n. If we now use xn
t =

f (xn−1
t )+ β n

t this can be expanded further as y−Hxn
t + H

(
f (xn−1

t )− f (xn−1
i )

)
+ Hβ n

t . To proceed we
make the following restrictive assumptions that will nevertheless allow us to obtain useful order-of-
magnitude estimates. Let us assume that both the observation errors R and the observed model errors
HQHT are uncorrelated, with variances Vy and Vβ , respectively, to find:

− log(wi) =
1

2(Vβ +Vy)

M

∑
j=1

[
y j−H jxn

t +H jβ
n
t +H j

(
f (xn−1

t )− f (xn−1
i )

)]2
(44)

The variance of wi arises from varying ensemble index i. Clearly the first three terms are given, and
we introduce the constant γ j = yn

j −H jxn
t +H jβ

n
t . To proceed with our order of magnitude estimate we

assume that the model can be linearised as F(xn−1
i )≈ Axn−1

i ., leading to:

− log(wi) =
1

2(Vβ +Vy)

M

∑
j=1

[
γ j +H jA(xn−1

t − xn−1
i )

]2
(45)

A following step in our order of magnitude estimate is to assume xn−1
t −xn−1

i to be Gaussian distributed.
In that case the expression above is non-central χ2

M distributed apart from a constant. This constant
comes from the variance of γ j + H jA(xn−1

t − xn−1
i ), which is equal to H jAPn−1AT HT

j = Vx, in which
Pn−1 is the covariance of the model state at time n−1. Hence we find:

− log(wi) =
Vx

2(Vβ +Vy)

M

∑
j=1

[
γ j +H jA(xn−1

t − xn−1
i )

]2
Vx

(46)

Apart from the constant in front the expression above is non-central χ2
M distributed with variance

a22(M +2λ ) where a = Vx/(2(Vβ +Vy) and λ = (∑ j γ2
j )/Vx.

We can estimate λ by realising that for a large enough number of observations we expect ∑ j(yn
j −

H jxn
t )

2 ≈MVy, and ∑ j(yn
j −H jxn

t ) ≈ 0. Furthermore, when the dimension of the system under study is
large we expect ∑ j(H jβ

n
t )2≈MVβ . Combining all these estimates we find that the variance of− log(wi)

can be estimated as
M
2

(
Vx

Vβ +Vy

)2(
1+2

(
Vβ +Vy

Vx

))
(47)

This expression shows that the only way to keep the variance of − log(wi) low when the number of
independent observations M is large is to have a very small variance in the ensemble: Vx ≈ (Vβ +Vy)/M.
Clearly, in when the number of observations is large (10 million in typical meteorological applications),
this is not very realistic.

It should be mentioned that a large variance of − log(wi) does not necessarily mean that the weights
will be degenerate because the large variance could be due to a few outliers. However, we have shown
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that − log(wi) is approximately non-central χ2
M distributed for a linear model, so the large variance is

not due to outliers but intrinsic in the sampling from such a distribution. Furthermore, there is no reason
to assume that this variance will behave better for nonlinear models, especially because we didn’t make
any assumptions on the divergent or contracting characteristics of the linear model.

From this analysis we learn two things: it is the number of independent observations that determines the
degeneracy of the filter, and the optimal proposal density cannot be used in systems with a very large
number of independent accurate observations.

4.5 The almost equal weights scheme

Unfortunately, exploring the proposal density by simply nudging will not avoid degeneracy in high-
dimensional systems with a large number of observations. Also more complicated scheme’s, such as
running a 4DVar on each particle, which is essentially what Chorin et al. (2009) propose will lead to
strongly varying weights for the particles. The reason for the latter is related to the ’optimal’ proposal-
density scheme presented in the previous section. A 4DVar solves for the maximum of p(xn

i |x
n−1
i ,ym),

in which m > n. This is a deterministic move, and adding a random number from the the posterior will
give a consistent particle. However, the weights of the particles will be similar to the expression given
for the ’optimal’ proposal density scheme, so degenerate. We have to do something more optimal.

Making sure that all particles end up relatively close to the observations still does not mean that the
weights will not vary wildly in large-dimensional systems. A new ingredient is that we ensure that all
posterior weights are almost equal. This consists of two stages: first perform a deterministic time step
with each particle that ensures that most of the particles have equal weight, and then add a very small
random step to ensure that Bayes theorem is satisfied, see Van Leeuwen (2010, 2011) for details. There
are again infinitely many ways to do this.

For the first stage we write down the weight for each particle using only a deterministic move, so
ignoring the proposal density q for the moment:

− logwi =− logwrest
i +

1
2
(yn−Hxn

i )
T R−1(yn−Hxn

i )+
1
2
(xn

i − f (xn−1
i ))T Q−1(xn

i − f (xn−1
i )) (48)

in which wrest
i is the weight accumulated over the previous time steps between observations, so the p/q

factors from each time step. If H is linear, which is not essential but as we will assume for simplicity
here, this is a quadratic equation in the unknown xn

i . All other quantities are given. We calculate the
minimum of this function for each particle i, which is simply given by

− logwi =− logwrest
i +

1
2
(
yn−H f (xn−1

i )
)T

(HQHT +R)−1 (yn−H f (xn−1
i )

)
(49)

For N particles this given rise to N minima. Next, we determine a target weight as the weight that 80%
of the particles can reach, i.e. 80% of the minimum − logwi is smaller than the target value. Define
a quantity C = − logwtarget , and solve for each particle with a minimum weight larger than the target
weight

C =− logwrest
i +

1
2
(
yn−H f (xn−1

i )
)T

(HQHT +R)−1 (yn−H f (xn−1
i )

)
(50)

So now we have found the positions of the new particles xn
i such that all have equal weight. The

particles that have a larger minimum than C will come back into the ensemble via a resampling step, to
be discussed later.

The equation above has an infinite number of solutions for dimensions larger than 1. To make a choice
we assume

xn
i = f (xn−1

i )+αiK[yn−H f (xn−1
i )] (51)
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in which K = QHT (HQHT + R)−1, Q is the error covariance of the model errors, and R is the error
covariance of the observations. Clearly, if α = 1 we find the minimum back. We choose the scalar αi

such that the weights are equal, leading to

α = 1−
√

1−bi/ai (52)

in which ai = 0.5xT
i R−1HKx and bi = 0.5xT

i R−1xi−C− logwrest
i . Here x = yn−H f (xn−1

i ), C is the
chosen target weight level, and wrest

i denotes the relative weights of each particle i up to this time step,
related to the proposal density explained above.

Of course, this last step towards the observations cannot be fully deterministic. A deterministic proposal
would mean that the proposal transition density q can be zero while the target transition density p is
non zero, leading to division by zero, because for a deterministic move the transition density is a delta
function. The proposal transition density could be chosen a Gaussian, but since the weights have q in
the denominator a draw from the tail of a Gaussian would lead to a very high weight for a particle that is
perturbed by a relatively large amount. To avoid this q is chosen in the last step before the observations
as a mixture density

q(xn
i |x′i) = (1− γ)U(−a,a)+ γN(0,a2) (53)

in which x′i the particle before the last random step, and γ and a are small. By choosing γ small the
change of having to choose from N(0,a2) can be made as small as desired. For instance, it can be made
dependent on the number of particles N.

To conclude, the almost-equal-weight scheme consists of the following steps:

1 Use the modified model equations for each particle for all time steps between observations.

2 Calculate, for each particle i for each of these time steps

wn
i = wn−1

i
p(xn

i |x
n−1
i )

q(xn
i |x

n−1
i ,ym)

(54)

3 At the last time step before the observations calculate the maximum weights for each particles
and determine C =− logwtarget

4 Determine the deterministic moves by solving for αi for each particle as outlined above.

5 Choose a random move for each particle from the proposal density (53).

6 Add these random move to each deterministic move, and calculate the full posterior weight.

7 Resample, and include the particles that have been neglected from step 4 on.

Finally, it is stressed again that we do solve the fully nonlinear data assimilation problem with this
efficient particle filter, and the only approximation is in the ensemble size. All other steps are completely
compensated for in Bayes Theorem via the proposal density freedom.

4.6 Application to the barotropic vorticity equations

Here a few results using the new particle filter with almost equal weights are shown. Figure 4 shows the
application of the method to the highly chaotic barotropic vorticity equation, governed by:

∂q
∂ t
− ∂ψ

∂y
∂q
∂x

+
∂ψ

∂x
∂q
∂y

= β

q =
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 (55)
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Figure 4: Snap shot of the vorticity field of the truth (right) and the particle filter mean (left) at time
25. Note the highly chaotic state of the fields, and the close to perfect tracking.

in which q is the vorticity field, ψ is the streamfunction, and β is a random noise term representing
errors in the model equations. It was chosen from a multivariate Gaussian with mean zero, variance
0.01, and decorrelation lengthscale 4 gridpoints. The equations are implemented on a 256 X 256 grid,
using a semi-Lagrangian scheme with time step ∆t = 0.04, grid spacing ∆x = ∆y = 1/256, leading to
a state dimension of close to 65,000. The vorticity field was observed every 50 time steps on every
gridpoint. The decorrelation time scale of this system is about 25 time steps, so, even though the full
state is observed, this is a very hard highly nonlinear data-assimilation problem. The observations were
obtained from a truth run and independent random measurement noise with standard deviation 0.05 was
added to each observation.

Only 24(!) particles were used to track the posterior pdf. In the application of the new particle filter we
chose K = 0.1 in the nudging term (except for the last time step before the new observations, where the
’almost equal weight’ scheme was used, as explained above), multiplied by a linear function that is zero
half way the two updates and growing to one at the new observation time. The random forcing was the
same as in the original model. This allows the ensemble to spread out due to the random forcing, and
pulling harder and harder towards the new observation the closer to the new update time.

Figure 4 shows the difference between the mean and the truth after 50 time steps, and figure 5 the
ensemble standard deviation compared to the absolute value of the mean-truth misfit. Clearly, the truth
is well represented by the mean of the ensemble. Figure 5 shows that although the spread around the
truth is underestimated at several locations, it is over estimated elsewhere,

Finally, figure 6 shows that the weights are distributed as they should: they display small variance around
the equal weight value 1/24 for the 24 particles. Note that the particles with zero weight had too small
weight to be included in the almost equal weight scheme, and will be resampled from the rest.

Because the weights vary so little the weights can be used back in time, generating a smoother solution
for this high-dimensional problem with only 24 particles.
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Figure 5: Snap shot of the absolute value of the mean-truth misfit and the standard deviation in the
ensemble. The ensemble underestimates the spread at several locations, but averaged over the field
it is slightly higher, 0.074 versus 0.056.

5 Summary and conclusions

A new particle filter has been introduced that exploits the proposal density and allows small ensemble
sizes on very large dimensional problems. It was demonstrated here on the highly nonlinear 65,000
dimensional barotropic vorticity equation that simulates ocean eddy processes.

The big advantage of this method is the enormous freedom in the two steps that make up the new method.
The first adds terms to the model equations that force the model towards the future observations. The
simple additive terms allow easy implementation in any simulation code for atmosphere of ocean, or
more general any computer code that simulates a Markov process. But also more sophisticated proposals
can be used, like e.g. a weak-constraint 4DVar solution on each particle, or an Ensemble Kalman filter.
The second crucial step allows the weights to be almost equal. Without this step the particle filter would
still be degenerate with a large number of independent observations in the present settings. Also here
a large freedom exists in how this term is implemented. We replaced the search for the intersection
of a hyperplane and the pdf in the 65,000 dimensional space by a simple line search, but many other
possibilities can be explored.
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Figure 6: Weights distribution of the particles before resampling. All weights cluster around 0.05,
which is close to 1/24 for uniform weights (using 24 particles). The 5 particles with weights zero
will be resampled. Note that the other particles form the smoother estimate.
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