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Experimental 4D-Var assimilation of SYNOP rain gauge data at ECMWF

Abstract

Four-dimensional variational data assimilation (4D-Var)experiments with 6-hourly rain gauge accumu-
lations observed at synoptic stations around the globe havebeen run over several months, both at high
resolution in an ECMWF operations-like framework and at lower resolution in an early or mid-20th-
century reanalysis style with the reference observationalcoverage reduced to surface pressure data only.
The key aspects of the technical implementation of rain gauge data assimilation in 4D-Var are described,
which includes the specification of observation errors, bias correction procedures, screening and quality
control.

Results from experiments indicate that the positive impactof rain gauges on forecast scores remains
limited in the operations-like context because of their competition with all other observations already
available. In contrast, when only synoptic station surfacepressure observations are assimilated in the
reanalysis-like control experiment, the additional assimilation of rain gauge measurements substantially
improves not only surface precipitation scores, but also analysis and forecast scores of temperature,
geopotential, wind and humidity at most atmospheric levelsand for forecast ranges up to 10 days. The
verification against Meteosat infrared imagery also shows aclear improvement in the spatial distribution
of clouds. This suggests that assimilating rain gauge data available during data sparse periods of the past
might help to improve the quality of future reanalyses and subsequent forecasts.

1 Introduction

Over the last decades, progress in data assimilation (DA) techniques combined with the availability
of new observation types have led to substantial improvements in our ability to represent the three-
dimensional atmospheric state (temperature, humidity, wind, surface pressure,. . . ) at any given time.
The resultinganalysesare often used in operational numerical weather prediction(NWP) to initialize
global or limited-area model forecasts over a large varietyof time ranges. Operational weather forecasts
over periods of up to 10 days have been shown to benefit from improved atmospheric analyses (i.e. initial
conditions). In addition to operational DA, which works with real-time observations, it is also possible
to run data assimilation over past periods to produce so-called reanalyses. Benefits of the latter lie in
the possibility to use extra observations that were not available in real-time and to take advantage of a
posteriori improvements of the data assimilation system. For instance, ECMWF (see Appendix 1 for
list of acronyms) run their operational DA system twice daily to generate analyses and 10-day forecasts,
but also utilized a similar system to produce global atmospheric and surface reanalyses for the period
1957-2002 (ERA40; Uppalaet al. 2005).

A commonly used DA method is the variational method (e.g. Le Dimet and Talagrand 1986) which
searches for the model state that best fits a set of available observations and some a priori (orback-
ground) information from the model, in a least-square sense. Temperature, wind and surface pressure
observations were first to be successfully assimilated, later followed by water vapour measurements.

Since the late 1990s, significant efforts have been devoted to the assimilation of observations that are
directly related to clouds and precipitation. As far as satellite platforms are concerned, the assimila-
tion of microwave brightness temperatures from SSM/I or precipitation retrievals from the latter was
implemented in several operational systems worldwide (Treadonet al. 2002; Marécal and Mahfouf
2003; Lin et al. 2007; Baueret al. 2010; Geeret al. 2010), using the variational assimilation ap-
proach. Experimental studies were also conducted with infrared brightness temperatures (Vukicevicet
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al. 2006), cloud optical depths (from MODIS; Benedetti and Janisková 2008), precipitation radar reflec-
tivities (from TRMM-PR; Benedettiet al. 2005) and cloud radar data (from CloudSat; Janiskováet al.
2011), among others. From the prospect of ground-based instruments, the assimilation of reflectivities or
rainfall retrievals obtained from precipitation radars isalready operational in the limited area models of
several weather forecasting centres (Macpherson 2001; Ducrocqet al. 2002; Caumontet al. 2010), using
either latent heat nudging, diabatic initialization or a mixed Bayesian-variational method, respectively.
Furthermore, direct four-dimensional variational (4D-Var) DA of surface rain data from ground-based
radars recently became operational in ECMWF’s global forecasting system (Lopez 2011). In a more
experimental context, the assimilation of ground-based radar data on the mesocale using the alternative
technique of ensemble Kalman filtering was studied by Tong and Xue (2005) and Cayaet al. (2005)).

Taking advantage of all the developments made at ECMWF for the direct 4D-Var assimilation of NCEP
Stage IV ground-based radar data (Lopez 2011), which becameoperational on 15 November 2011, the
present study investigates the potential benefits of directly assimilating synoptic station (SYNOP) rain
gauge (RG) observations in ECMWF’s 4D-Var system. Both a high-resolution operations-like context
and a lower-resolution reanalysis-like framework (with data-sparse conditions) are considered.

SYNOP RG observations assimilated in this work, the specification of their error statistics and the pro-
cedure for their bias correction are detailed in section2. Section3 introduces the 4D-Var assimilation
method and provides additional information about quality control. Results from direct 4D-Var assimila-
tion experiments are presented in section4, while remaining issues are discussed in section5. Section6
summarizes the main findings of this study and gives an outlook on the future of RG data assimilation at
ECMWF.

2 SYNOP rain gauge observations

The precipitation data used in this study are 6-hourly accumulations (RR6h) measured by the worldwide
network of synoptic stations. These data are routinely received at ECMWF through the Global Telecom-
munication System (GTS). Before the assimilation in 4D-Var, all valid SYNOP RGs available inside a
model grid box are averaged into a single ”superob” attachedto this grid box. A logarithmic transform,
ln(RR6h+ 1), is also applied to each superob, since this makes the distribution of background depar-
tures closer to Gaussian (Mahfoufet al. 2007; Lopez 2011), as required in variational DA. Note that the
6-hourly rain accumulation used in ln(RR6h+ 1) is expressed in mm h−1. The following subsections
will introduce the specification of observation error statistics, bias correction and screening procedures
applied to SYNOP RGs.

2.1 Rain gauge errors

Rain gauge measurements can be affected by a large variety ofboth systematic and random errors.

2.1.1 Systematic errors

Systematic errors are dominated by wind-induced errors which result from the deformation of the airflow
by the gauge itself. Wind-induced error usually causes precipitation undercatch and thus a negative bias
in the observations. This type of error will be addressed in subsection2.2dealing with bias-correction.
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Other systematic errors can be attributed to the wetting of the gauge walls, to the loss through evaporation
(especially for manual RGs) and to raindrops splashing awayfrom the gauge collector. All can lead to
an additional underestimation of precipitation by RGs, themagnitude of which is usually well below
0.1 mm h−1 though (Sevruk 1974a; Sevruk 1974b). It will thus be neglected in this study.

2.1.2 Local random errors

RG measurements can also be affected by local random errors,caused for instance by the discrete nature
of the time sampling in tipping bucket RGs, by small-scale variations of the turbulent airflow around
the gauge, or even by occasional blockage of the gauge collector. To account for these errors, which
usually significantly decrease with accumulation length (Ciach 2003), a fixed contributionσloc = 0.05
in terms of ln(RR6h+ 1) has been used in all experiments. These errors are usually much smaller than
representativity errors described in the next subsection.

2.1.3 Representativity errors

Representativity errors arise every time rain gauge point measurements need to be compared with model
grid-box averaged precipitation fields, as in the context ofdata assimilation. In this work, the choice
has been made to average (or ”superob”) SYNOP RG observations onto the model grid before starting
the assimilation process. In practice, representativity error can be quantified by the standard deviation
of the horizontal fluctuations of surface precipitation over the model grid-box area. For a single gauge,
representativity error increases with model grid-box sizeas well as in the presence of convective pre-
cipitation (higher spatial variability). When several RGscan be averaged inside a model grid box, the
resulting representativity error is expected to drop, since multiple measurements usually provide more
information than a single one.

Here, RG representativity error has been specified using thesimple parametrization proposed by Lopezet
al. (2011), which was derived from ground-based radar precipitation estimates and local high-density RG
networks and which is applied in terms of ln(RR6h+ 1). The representativity error standard deviation,
σrep, is parametrized as a function of model resolution and day ofthe year and also includes the effect
of spatial correlations among RGs that are located inside the same model grid box. The parametrized
representativity errors are maximum in summer and minimum in winter, and the opposite is true for
spatial correlations. This is a very crude way of taking intoaccount the contrast between stratiform pre-
cipitation in winter (low spatial variability) and convective rainfall in summer (high spatial variability).
A more detailed description of the parametrization can be found in Appendix 2. With this formulation,
σrep (in terms of ln(RR6h+ 1)) typically ranges between 0.08 and 0.25 (resp. 0.04 and 0.13) for T511
(≈40 km) (resp. T1279 (≈15 km)) model resolution. The relative crudeness of the representativity error
formulation will be discussed in section5.

Eventually, this yields the total observation error standard deviationσo =
√

σ2
loc + σ2

rep to be applied in

the data assimilation process, whereσloc was defined in section2.1.2. For illustration purposes, Fig.1
displays the distribution ofσo values specified in the T511 and T1279 RG assimilation experiments
presented below. As expected,σo is dominated by representativity error at both resolutions. The few
outliers with a larger error standard deviation of about 0.2in panel (b) correspond to model grid boxes
that contain a single RG (i.e. higher values ofσrep).
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Figure 1: Total observation error histograms from the (a) T511 and (b) T1279 truncation rain gauge
data assimilation experiments described in this study. Observation error values are expressed in terms

of ln(RR6h+1). Mean and standard deviation of the distribution are given at the top of each panel.

2.2 Bias correction

One of the main assumptions in variational data assimilation is that both model background and obser-
vations should be unbiased. It is therefore important to tryto remove any known bias, such as that as-
sociated with wind-induced undercatch (raw SYNOP RGs are not corrected for this bias). In ECMWF’s
operational system, most observation types are subjected to a variational bias correction (VarBC; Dee
and Uppala 2009). Here, however, a separate non-variational two-step bias correction procedure has
been specially developed for RGs.

2.2.1 Correction of wind-induced error

Several studies (e.g. Folland 1988; Yanget al. 1998; Nešpor and Sevruk 1999) showed that wind-
induced undercatch increases with wind speed and rain-gauge-top height above ground. For rain, the
relative underestimation worsens as dropsize becomes smaller and is therefore much higher for drizzle
than in heavy showers. For snow, wind-induced relative error is often larger than for rain and can exceed
50% in windy conditions. Therefore, RG measurements in snowy situations have been discarded in the
present study. Furthermore, shielding installed around a RG can substantially reduce wind-induced error
for snowfall, much less for rain.

Nešpor and Sevruk (1999) proposed a thorough study of wind-induced error for three types of RGs, two
of which, Mk2 and Hellmann, are commonly used worldwide. Their work was based on wind tunnel
experiments and numerical simulations of the airflow aroundthe gauge. Here, their results have been
synthesized in such way that the wind-induced relative error bias correction,BCwind, (for rain only) can
be parametrized as

BCwind =
RRobs−RRtrue

RRobs
(1)

= a RRb
obs (2)
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where coefficientsa andb are power functions of the wind speed at gauge-top level,VRG,

a = a1 Va2
RG (3)

b = b1 Vb2
RG (4)

Note that the coefficients of the parametrization have been computed by assuming thatκ = 0 and se-
lecting the ”turbulent” case of Nešpor and Sevruk (1999). The values of parametersa1, a2, b1 andb2

are given in Table1 for the two RG types considered here. As an illustration, Fig. 2 displays curves

Rain gauge type a1 a2 b1 b2

Mk2 −0.031 0.547 −0.640 −0.085
Hellmann −0.030 0.733 −0.631 −0.091

Table 1: Values of the parameters a1, a2, b1 and b2 used in Eq. (3) and Eq. (4).

of the parametrized wind-induced relative error as a function of rainfall rate, for various wind speeds at
gauge-top level and for the Mk2 (panel (a)) and Hellmann (panel (b)) gauge types. Relative error clearly
increases for smaller rainfall rates and stronger winds. Itis also obviously higher for the larger Hellmann
type than for the Mk2 type.
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Hellmann rain gauge wind−induced error
(based on Nespor and Sevruk 1999) 
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Figure 2: Curves of wind-induced relative error as a function of rainfall rate (in mm h−1), for various
wind speeds at gauge-top level (in m s−1) and for (a) Mk2 and (b) Hellmann gauge types.

Assuming a logarithmic profile for the wind in the surface layer, one can write

VRG =
ln(hRG/z0)

ln(10/z0)
V10m (5)

whereV10m is the 10-m wind speed (from SYNOP reports),hRG is the gauge-top height above ground
andz0 is the roughness length (set to 0.02 m here, a typical value for short-grass cover).

In the presence of rain-gauge shielding,BCwind is reduced through

BCwind = BCwind

{1−0.9631
π/2

arctan
(0.7784

V10m

)
+0.9631

}
(6)
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which leads to a maximum reduction of about 4% ofBCwind in strong wind conditions.

Eventually, the bias-corrected value of the rain observation, R̃Robs, is given by

R̃Robs = RRobs(1−BCwind) (7)

Information about gauge type, gauge-top height and the presence of shielding was first collected from
Sevruk and Klemm (1989) and was then updated through individual contacts with the major national
weather services around the world. It should be stressed that, despite all these efforts, the information
thereby obtained might not be completely accurate for some countries, given the absence of worldwide
standards for RG specifications. As far as gauge type is concerned, for simplicity, all worldwide RGs
have been categorized as either Mk2 or Hellmann, depending on their shape and size. Figure3, Fig. 4
and Fig.5 show global maps of gauge types, gauge-top heights and presence of shielding, respectively,
as prescribed in this work. One should note that the wind-induced error bias correction is applied to each
individual RG before averaging over the corresponding model grid box.

60°S60°S

30°S 30°S

0°0°

30°N 30°N

60°N60°N

120°W

120°W 60°W

60°W 0°

0° 60°E

60°E 120°E

120°E

SYNOP rain gauge type: black=Mk2; red=Hellmann

Figure 3: Global map of rain gauge types, asassumedin this study. Typical daily data coverage obtained
from GTS.

2.2.2 Correction of other biases

Besides the systematic wind-induced error bias, other biases in both observations and model have been
assessed by computing global statistics of observation (bias corrected for wind) minus model background
departures from a passive monitoring T1279 (≈15 km) L91 4D-Var experiment over April-May 2011.
From these two-month statistics expressed in terms of ln(RR6h+1), the following third-degree polyno-
mial bias correction,BCother, has been constructed:

BCother =
3

∑
i=1

αi ln(RR6h+1)
i

(8)
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Figure 4: Same as in Fig.3 but for rain gauge top height above ground (in m). When no information is
available, gauge-top height is arbitrarily set to 1 m.
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Figure 5: Same as in Fig.3 but for rain gauge shielding.
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whereαi are prescribed coefficients andln(RR6h+1) denotes the average over model background and
observation. Using the average of model and observation avoids undesirable spurious asymmetries in the
bias correction (Geer and Bauer 2011).

Figure6 displays observation minus model background departures interms of ln(RR6h+1) as a function
of ln(RR6h+1) values in April-May 2011. The polynomial fit used to define thebias correction is also
plotted (dashed line). Figure6 illustrates the overestimation (resp. underestimation) in the model for
6-hour precipitation accumulations lower (resp. higher) than 0.6 mm h−1 (i.e. ln(RR6h+1) ≈ 0.5). The
overall mean bias is rather small (−0.02 in terms of ln(RR6h+1)).

Figure 6: Average observation minus model background departures in terms ofln(RR6h+1) (solid line)
as a function ofln(RR6h+1) for April-May 2011. The dash line shows the second degree polynomial fit

chosen to define the bias-correction. Values of fit coefficients, αi (i=1,. . . ,3), are also given.

It should be emphasized that global statistics computed forother seasons of the year yielded very similar
bias curves (not shown). It is also interesting to underlinethe similarity of the curve shown in Figure6
with those displayed in Lopez (2011) in the context of NCEP Stage IV ground-based radar surface rainfall
data assimilation over the United States. Finally, one should note that since original SYNOP RGs are
averaged onto the model grid before the assimilation, the bias correction defined in Eq. (8) is applied in
model space.

2.3 Screening

In data assimilation, observations must be screened so as toreject data that are thought to be inaccurate
or not representative of the model geometry. In the present case of SYNOP station RGs, the choice was
made not to assimilate data:

• over rugged orography (poor horizontal representativity), i.e. wherever the standard deviation of the
model subgrid-scale orography is larger than 100 m,

• when SYNOPV10m exceeds 20 m s−1 (excessive precipitation underestimation),

• when model grid box altitude departs from SYNOP RG altitude by more than 300 m (poor vertical
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representativity),

• when either SYNOP or model 2-metre temperature is below +2◦C (likely snowfall),

• within the intertropical band (25◦S-25◦N) (larger representativity error associated with frequent con-
vection, as evidenced in Lopezet al. 2011).

It should also be mentioned that, in contrast with Lopez (2011) who rejected all ground-based rain data
whenever either the model background or the observation were non-rainy, for reasons explained in his
paper, no such rejection was applied in the present study. This helped to increase the number of RG data
used in 4D-Var.

To illustrate the result of the screening process, an example of SYNOP rain gauge 6-hourly precipitation
data coverage, after superobbing and as passed to 4D-Var in this study, is displayed in Fig.7 at 1800 UTC
16 April 2011. In this plot, each point corresponds to a T1279model grid box over which available valid
gauges were averaged. In practice, this coverage of around 2000 observations is reduced even further
during the analysis process, due to the additional quality control described in section3.2. Most of the
observations selected in this work are located over Europe,North America, China, Japan, South America,
South Africa and New Zealand (but no available data over Australia). Finally, one should also keep in
mind that the choice of averaging RGs over model grid boxes means that the number of observations
passed to 4D-Var does increase with model resolution, but within the limit imposed by the local density
of available RGs.

180W 120W 60W 0 60E 120E 180E

180W 120W 60W 0 60E 120E 180E

60S

30S

0

30N

60N

60S

30S

0

30N

60N

Figure 7: Example of SYNOP rain gauge 6-hourly accumulated precipitation data coverage (after su-
perobbing) at 1800 UTC 16 April 2011 as obtained through the GTS, after screening out points affected

by rugged orography, snowfall, strong surface winds, or located in the tropics.

3 The 4D-Var method

3.1 General description

The aim of 4D-Var assimilation is to find the optimal initial 3D atmospheric state (theanalysis) that leads
to a short-range model forecast that best fits a set of observations and some a priori information from the
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model (the so-calledmodel backgroundor trajectory) over a certain time window (currently 12 hours
at ECMWF). Formally, the analysis corresponds to the model statex(t0) at timet0 which minimizes the
following cost function

J[x(t0)] =
1
2

[
x(t0)−xb(t0)

]TB−1
0

[
x(t0)−xb(t0)

]

+
1
2

n

∑
i=0

[
Hi[M[x(t0)]]−yo

i

]TR−1
i

[
Hi[M[x(t0)]]−yo

i

]
(9)

following the notations and definitions of Ideet al. (1997). xb(t0) denotes the model background state
at initial time. In ECMWF’s 4D-Var system, the model state consists of temperature, humidity, vorticity,
divergence and surface pressure.Hi andM are the often non-linear observation operator and forecast
model, respectively, used for converting the initial modelstate to observed equivalents at timeti . All
observations available in the assimilation window are gathered in vectoryo

i . Ri andB0 are respectively
the observation and model background error covariance matrices.B0 is made flow-dependent through a
wavelet formulation (Fisher 2004).

In practice at ECMWF,J is re-formulated using an incremental approach (Courtieret al. 1994). In each
4D-Var cycle, three successive minimizations are performed at lower horizontal resolution. After each
minimization, the model trajectory and observation−model departures are recomputed at high resolution.
Starting with the lowest resolution ensures that larger scales are adjusted first, reduces the computational
cost of 4D-Var and permits the handling of weak non-linearities, even though 4D-Var still strongly relies
on the linearity assumption for all meteorological processes it describes.

Of particular interest for the assimilation of precipitation observations, linearized simplified parametriza-
tions of convection (Lopez and Moreau 2005) and large-scalemoist processes (Tompkins and Janisková
2004) are used during each minimization. Other linearized physical processes also accounted for are
radiation (Janiskováet al. 2002), vertical diffusion and orographic gravity wave drag(Mahfouf 1999)
and non-orographic gravity wave drag (Orret al. 2010).

3.2 First-guess check and variational quality control

Like all other observation types already used in 4D-Var, SYNOP RG observations are subjected to an
a-priori first-guess check to reject measurements that depart too much from the model background. Here,

a RG observation is rejected if|Hi[xb(ti)]−yo
i |> 4

√
σ2

o + σ2
b , whereσo is the observation error standard

deviation (see section2.1) andσb is the background error standard deviation (set to 0.18), both expressed
in terms of ln(RR6h+1). This first-guess check for SYNOP RG data is only applied in the first trajectory
of each 4D-Var cycle, as for all other observation types.

In addition, in the course of each minimization, the variational quality control (VarQC; Andersson and
Järvinen 1999) already applied to all other observation types is also applied to SYNOP RG data. Any ob-
servation which leads to large departures that are deemed inconsistent with neighbouring measurements,
has its weight artificially reduced in the analysis.
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4 Experiments

4.1 Set-up

Two global 4D-Var baseline experiments have been considered in this work: (1) a T511 (≈40 km) early or
mid-20th-century (future) reanalysis-like experiment with the assimilation of surface pressure (Ps) data
from SYNOP land stations and ships only (ERACTRL hereafter) and (2) an ECMWF operation-like
T1279 (≈15 km) run with all available observation types assimilated(OPERCTRL, hereafter). Exper-
iments corresponding to each baseline set-up plus SYNOP RG observations were then run to assess the
impact of the additional rain gauge data on the quality of the4D-Var analyses and subsequent 10-day
forecasts (resp. ERANEW and OPERNEW). All experiments were run using ECMWF model cycle
37r2 and with 91 vertical levels. Table2 summarizes the experimental set-up in terms of spectral trun-
cation (in both trajectory and the three 4D-Var minimizations), period and observational coverage. The
choice of the spring season is justified by the desire to avoidthe rejection of too many RG observations
due to the occurrence of snowfall in the winter hemisphere and to properly sample both stratiform and
convective rainy events in the northern hemisphere extratropics.

Experiment Truncation Period Observational coverage
Trajectory Minimizations

ERA CTRL T511 T95/T159/T255 Apr-Jun 2011 SYNOP Ps only
ERA NEW T511 T95/T159/T255 Apr-Jun 2011 SYNOP Ps only + SYNOP RGs
OPERCTRL T1279 T159/T255/T255 Apr-May 2011 as in operations
OPERNEW T1279 T159/T255/T255 Apr-May 2011 as in operations + SYNOP RGs

Table 2: Experimental set-up used in this study to assess theimpact of assimilating SYNOP rain gauge
data in 4D-Var.

4.2 Results from ERA-like experiments

4.2.1 Coverage in assimilated observations

As preliminary information, the mean density of SYNOP RG superobs that are actually assimilated in
each 4D-Var cycle (i.e. every 12 hours) is displayed in Fig.8 for the period April-June 2011. One can
see that Europe, North America and China are the regions withthe highest data coverage. A smaller
number of RG data is also assimilated in South America, SouthAfrica and New Zealand.

4.2.2 Background and analysis precipitation departures

As a first verification, the statistical distributions of observation−background and observation−analysis
departures are plotted in Fig.9. Probability density functions (PDF) from ERANEW are plotted in terms
of ln(RR6h+1) for the period April-June 2011, which yields a total sample size of 110223 (i.e. around
600 rain observations assimilated in each 4D-Var cycle on average).

Panel (a) in Fig.9 shows that the distribution of observation−background departures after bias correction
(see section2.2) is not really exactly Gaussian (green curve), yet rather symmetrical, which is always
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Figure 8: Mean density of assimilated SYNOP rain gauge data,expressed in superobs per 2◦×2◦ grid
box and per 4D-Var cycle.
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Figure 9: Histograms of (a) observation−background and (b) observation−analysisln(RR6h+ 1) de-
partures from ERANEW over the period April-June 2011. Black lines display thehistogram of bias-
corrected background departures in panel (a) and analysis departures in panel (b). Red curves show the
uncorrected background departures in panel (a) and the bias-corrected background departures in panel
(b) (i.e. a copy of the black curve from the left panel). Greencurves show the Gaussian distribution with
the same mean and standard deviation as the black histogram.Frequency (y-axis) is in % and the mean,
standard deviation (σ ) and total population of the black histograms are shown at the top of each panel.
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desirable. The mean ln(RR6h+ 1) background departure is small (−0.031, indicating a slightly too
rainy background), while the mean analysis departure is even smaller (−0.003). Panel (b) demonstrates
that the PDF of observation−analysis departures is much narrower than that of observation−background
departures, with the standard deviation dropping from 0.230 down to 0.165. Analysis departures are also
closer to being normally distributed. Therefore, 4D-Var succeeds in bringing the model rain closer to the
observations through the changes in temperature, moisture, wind and surface pressure imposed by the
assimilation of SYNOP Ps and RG information.

4.2.3 Precipitation scores against SYNOP rain gauges

Another way to check the impact of SYNOP RG assimilation in terms of surface precipitation is to
compute scores against SYNOP RG data themselves, for different forecast ranges. Of course, in this
approach, RG observations cannot be regarded as independent validation data for the first hours of the
forecast since they are assimilated in experiment ERANEW, but such comparison can be useful to
confirm that the 4D-Var assimilation of RGs performed as hoped. Two examples of scores computed
for the entire period over Europe, the USA and China (where most RGs were assimilated) are shown
in Fig. 10: Equitable Threat Score (ETS) and False Alarm Rate (FAR), asdefined in Appendix 3. The
higher ETS and the lower FAR, the better the forecast.

0

0.1

0.2

0.3

0.4

0.5

0.2 1 3 5 7 10 20 30 50 100
Precipitation threshold (mm/day)

ERA_CTRL
ERA_NEW

20110401-20110630
0-6h Precip.  Equitable Threat Score

(a)Europe ETS

0

0.1

0.2

0.3

0.4

0.5

0.2 1 3 5 7 10 20 30 50 100
Precipitation threshold (mm/day)

ERA_CTRL
ERA_NEW

20110401-20110630
0-6h Precip.  Equitable Threat Score

(b)USA ETS

0

0.1

0.2

0.3

0.4

0.5

0.2 1 3 5 7 10 20 30 50 100
Precipitation threshold (mm/day)

ERA_CTRL
ERA_NEW

20110401-20110630
0-6h Precip.  Equitable Threat Score

(c)China ETS

0

0.2

0.4

0.6

0.8

1

0.2 1 3 5 7 10 20 30 50 100
Precipitation threshold (mm/day)

ERA_CTRL
ERA_NEW

20110401-20110630
0-6h Precip.  False Alarm Rate

(d)Europe FAR

0

0.2

0.4

0.6

0.8

1

0.2 1 3 5 7 10 20 30 50 100
Precipitation threshold (mm/day)

ERA_CTRL
ERA_NEW

20110401-20110630
0-6h Precip.  False Alarm Rate

(e)USA FAR

0

0.2

0.4

0.6

0.8

1

0.2 1 3 5 7 10 20 30 50 100
Precipitation threshold (mm/day)

ERA_CTRL
ERA_NEW

20110401-20110630
0-6h Precip.  False Alarm Rate

(f)China FAR

Figure 10: Impact of 4D-Var assimilation of SYNOP RG observations on precipitation forecast scores
computed against SYNOP RGs themselves from experiments ERACTRL (blue curve and triangles) and
ERANEW (red curve and squares) in April-June 2011: (a)-(c) Equitable Threat Score and (d)-(f) False
Alarm Rate for Europe (left), the USA (middle) and China (right). Scores are displayed for the first 6
hours of the forecasts started at 0000 UTC and as a function ofvarious precipitation intensities (x-axis;

in mm day−1). The higher ETS and the lower FAR, the better the forecast.

Figure10 shows that surface precipitation ETS and FAR during the firstsix hours of the forecast are
substantially improved over the three regions considered and for all precipitation intensities, particularly
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above 3 mm day−1 (around 25% increase in ETS and 20% drop in FAR). This clearlyconfirms that
the information coming from SYNOP RGs is properly transferred to the model during the 4D-Var as-
similation, which supports the idea that genuine precipitation analyses are obtained wherever RGs are
available. Beyond the very-short forecast ranges, the positive impact quickly vanishes and becomes neu-
tral (not shown). A similar behaviour was previously identified in the assimilation of ground-based radar
data (Lopez 2011) and satellite microwave brightness temperatures (Kellyet al. 2008). It is also note-
worthy that both ETS and FAR for precipitation intensities below 20 mm day−1 are slightly worse over
China than over Europe and the USA.

4.2.4 Atmospheric scores against independent observations

The impact of the 4D-Var assimilation of SYNOP RGs on geopotential, temperature and wind vec-
tor root-mean-square forecast error (RMSE) computed against radiosonde observations is illustrated in
Fig. 11 for the extratropical northern hemisphere, Europe, North America and Asia, since these regions
have the highest SYNOP RG data coverage (see Fig.8). One should emphasize that radiosondes consti-
tute an independent verification dataset in the case of experiments ERACTRL and ERANEW, in which
only SYNOP surface pressure and RGs were assimilated.

Figure11 clearly shows that the assimilation of SYNOP RGs in 4D-Var brings a systematic and often
significant improvement for all plotted parameters, levelsand regions. Most forecast ranges up to day
10 benefit from this improvement and the reduction in RMSE is particularly significant over Europe,
consistent with its highest density of assimilated RGs (Fig. 8). Only 100 hPa geopotential turns out to
be degraded over North America and Asia, yet not significantly (not shown). In contrast, over Europe,
100 hPa geopotential is substantially improved (not shown). Scores in the tropics and over the extratrop-
ical southern hemisphere are either positive or neutral (not shown), probably as a result of the smaller
number of assimilated rain observations. Close to analysistime, the most significant positive impact is
found in the middle and upper troposphere (e.g. 200 hPa wind vector scores in Fig.11), which suggests
that the information contained in the surface precipitation measurements is successfully transferred to
upper levels during the 4D-Var minimization.

Additional statistics of 4D-Var analysis departures with respect to independent observations are presented
in Fig. 12 using radiosonde geopotential, meridional wind and relative humidity and wind profiler data
over Europe, North America and China (Japan for wind profilers). This particular subset of observation
types was selected as it exhibited the largest signal. Note that all data used in these statistics were those
that passed the 4D-Var first-guess check, even though they were not assimilated. Statistics computed un-
screened observations gave similar results. In all panels,the standard deviation of observations−analysis
departures is reduced by several percents, reaching up to 8%in the upper troposphere.

Overall, these consistent results provide a clear indication that in the context of a sparse data renalysis
system, assimilating RG data could be very beneficial to the quality of 4D-Var analyses and subsequent
forecasts.

4.2.5 Atmospheric forecast scores against operational analyses

Forecast scores against ECMWF operational analyses have also been computed for ERACTRL and
ERA NEW and compared to operational forecast scores. One shouldstress that the operational 4D-Var
system is run at high resolution (T1279 L91) and with all conventional and satellite observations available
in real-time. As an illustration of these scores, forecast anomaly correlation (FAC) is plotted in Fig.13
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Figure 11: Impact of 4D-Var assimilation of SYNOP RG data on root-mean-square forecast error
(RMSE) computed against radiosondes and as a function of forecast range from 0 to 10 days. RMSE
changes are plotted for 500 hPa geopotential height (Z500; left panels), 850 hPa temperature (T850;
middle panels) and 200 hPa wind vector (WV200; right panels)over four different regions: (a)-(c) extra-
tropical northern hemisphere (N.Hem), (d)-(f) Europe, (g)-(i) North America (N.Amer) and (j)-(l) Asia.
Changes shown on y-axis are normalized by the score in experiment ERACTRL and positive (resp. neg-
ative) values indicate an improvement (resp. degradation)of the score. Purple bars indicate significance

at the 95% confidence level. Statistics are valid for the April-June 2011 period.
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Figure 12: Relative impact of 4D-Var assimilation of SYNOP rain gauge data on the standard deviation
of observation−analysis departures computed using (a) geopotential, (b) meridional wind and (c) rel-
ative humidity measurements from radiosondes and (d) wind profiler data. The vertical profiles of the
ratio of the standard deviations from ERANEW and ERACTRL is shown. Values below unity along the
x-axis indicate an improvement in ERANEW. Statistics are aggregated over Europe, North America and

China (Japan for wind profilers) and over the period 22 April-30 June 2011.

for geopotential, temperature and wind vector as a functionof forecast range from 0 to 10 days. First
and foremost, Fig.13 evidences the strong degradation of FAC in ERACTRL compared to operations,
as expected from the drastic reduction in the number of observations assimilated in 4D-Var (only SYNOP
surface pressure data are used in ERACTRL). Secondly, the FAC computed for ERANEW is always
above that of ERACTRL for forecast ranges up to day 5. Beyond day 5, the impact of assimilating RGs
is still positive, except for 500 hPa geopotential over North America and Asia (panels (g) and (j)) and for
200 hPa wind over North America (panel (i)). The most striking improvement is obtained for Europe at
all forecast ranges, which again is related to the higher density of assimilated rainfall observations. Over
the southern hemisphere, more poorly sampled by RGs, the impact is either neutral or slightly positive
(not shown). These results confirm the overall positive impact coming from the assimilation of SYNOP
RGs.

4.2.6 Verification against satellite infrared imagery

As a complementary independent source of verification, simulated satellite 10.8µm brightness tem-
peratures were computed from short-range forecast fields from ERA CTRL and ERANEW and were
compared to corresponding Meteosat-9 images obtained fromEUMETSAT. The infrared simulation is
based on version 10 of the fast Radiative Transfer for TOVS (RTTOV-10; Matricardiet al. 2004, Ma-
tricardi 2005). Satellite imagery in the 10.8µm channel mainly provides information about cloud top
height in cloudy conditions and surface temperature in clear-sky situations. Table3 gives the mean
Meteosat−model bias and correlation coefficient between Meteosat andmodel calculated over Europe
and over the period April-June 2011 from ERACTRL and ERANEW. Different forecast ranges from
0 (i.e. roughly the analysis) to 24 hours are considered. Thesystematic negative bias of around−4 K
in the forecasts remains almost unchanged in ERANEW versus ERACTRL and could be caused either
by an underestimation of cloud top height or of cloud condensate amount near cloud top in the forecast
model, or by deficiencies in the radiative transfer model in cloudy situations. On the other hand, the
correlation coefficient clearly gets higher when SYNOP RGs are assimilated, which indicates that the
spatial distribution of clouds is improved. This again confirms the potential benefit of assimilating gauge
data in a reanalysis context.
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Figure 13: Impact of 4D-Var assimilation of SYNOP rain gaugedata on forecast anomaly correlation
(FAC) computed against ECMWF operational analyses as a function of forecast range from 0 to 10
days. Blue, red and green curves correspond to ECMWF T1279 operational forecasts, ERACTRL and
ERANEW, respectively. Scores are plotted for 500 hPa geopotential height (Z500; left panels), 850 hPa
temperature (T850; middle panels) and 200 hPa wind vector (WV200; right panels) over four differ-
ent regions: (a)-(c) extratropical northern hemisphere (N.Hem), (d)-(f) Europe, (g)-(i) North America
(N.Amer), and (j)-(l) East Asia (E.Asia). Note that over North America 500 hPa T is shown instead of
850 hPa T. The higher FAC, the better the forecast. Statistics are valid for the April-June 2011 period.

FC+0h FC+6h FC+12h FC+18h FC+24h
Bias Corr. Bias Corr. Bias Corr. Bias Corr. Bias Corr.

ERA CTRL −4.12 0.74 −4.46 0.86 −3.53 0.75 −5.46 0.73 −4.84 0.74
ERA NEW −4.27 0.80 −4.53 0.93 −3.55 0.79 −5.46 0.78 −4.77 0.75

Table 3: Validation of 10.8µm brightness temperatures simulated from ERACTRL and ERANEW
against Meteosat-9 satellite imagery over Europe. Forecast ranges vary between 0 and 24 hours (every
6 hours) and are given on the top row. Mean Meteosat−model bias (in K) and correlation coefficient
(Corr.) between Meteosat and model are valid for the period April-June 2011. The sample size for each

forecast range slightly exceeds 500000.
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4.3 Results from operations-like experiments

In these experiments, SYNOP RGs were assimilated together with all other observations routinely avail-
able in ECMWF’s operational system, which includes all conventional and satellite data. Unsurprisingly,
the general impact of the gauge data on analyses and forecastperformance turned out to be much more
modest than in the data-sparse experiments presented in section 4.2. This is because SYNOP RGs have
to compete with all other observations and because gauges are mainly available in already well-observed
regions. It is noteworthy that similar conclusions were drawn in Lopez and Bauer (2007) and Lopez
(2011) for ground-based precipitation radar data over the USA. This usually neutral impact of SYNOP
RG data on atmospheric forecast scores against radiosonde observations is illustrated in Fig.14 for
500 hPa geopotential and 850 hPa temperature over the northern hemisphere extratropics.
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Figure 14: Same as in Fig.11, but for experiments OPERNEW versus OPERCTRL and for the northern
hemisphere extratropics only. Statistics are valid for April-May 2011.

However, there is still a hint that short-range forecasts ofsurface precipitation are slightly improved
over Europe, North America and China, as shown in Fig.15: ETS is increased while FAR is reduced,
especially for rain intensities between 20 and 50 mm day−1. Even though the latter verification against
SYNOP RGs themselves cannot be considered as independent, Fig. 15 indicates that 4D-Var can suc-
cessfully extract some information from RG data.

As a conclusion, the benefits of assimilating SYNOP RGs are expected to be smaller in ECMWF’s
operations than in the context of a future reanalysis of the early or mid-20th century.

5 Remaining issues and future improvements

As already mentioned in section2.1.3, the formulation of RG representativity error used in the experi-
ments is rather crude since it only depends on the resolutionused in the superobbing, on the time of the
year and on a rough distinction between mid-latitudes and tropics. Ideally and as shown in Lopezet al.
(2011), a dependence of representativity error on the grid-box mean observed rain amount itself would
be desirable. Unfortunately, the latter quantity is not known in practice. One would also wish to include
a dependence of representativity error on the type of observed meteorological situation (e.g. convective
versus stratiform). However such additional information,which might be obtained from other obser-
vational sources such as geostationary satellite imagery today, would not be available in reanalyses of
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Figure 15: Same as in Fig.10, but for experiments OPERNEW versus OPERCTRL and for April-May
2011.

data-sparse periods of the past. Furthermore, any given 6-hourly accumulation period might be affected
by more than one type of weather condition, for instance in the case of a fast-moving mid-latitude cloud
system. This argument would be even more relevant when 12 or 24-hour precipitation accumulations
are to be assimilated. It is therefore not clear how to obtainflow-dependent RG representativity errors,
hence the usage of a simpler representativity error formulation.

In other respects, because the standard 4D-Var 12-hour window (as used here) starts either at 2100 UTC
or 0900 UTC and since SYNOP RG observations consist of 6-houraccumulations between 0000, 0600,
1200 and 1800 UTC, only half of the available gauge data were actually assimilated in the experiments
presented here. In the future, shifting the 4D-Var window bythree hours could double the usage of
SYNOP RG data, with no noticeable extra cost.

In addition, the limited worlwide standardization of rain gauge measurements and the frequent unavail-
ability of metadata may introduce some uncertainty in the wind-induced error bias correction described
in section2.2.1.

The present study strongly suggests that the assimilation of historical RG observations in a future ECMWF
reanalysis of the early or mid-20th century could lead to a significant improvement in the quality of those
reanalyses and forecasts initiated from these. However, some uncertainties remain regarding older RG
observations.

First, the types of RGs used in the past are likely to differ from those used over recent decades. In-
formation about their characteristics and installation protocol (e.g. height above ground, dimensions,
shape, surroundings) will probably be even less available than for modern instruments. The variety of
RG types might actually be even larger than today’s. In particular, this might make the computation of
the wind-induced bias correction more uncertain.
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Secondly, obtaining older RG accumulations at a frequency shorter than 24 hours is expected to be
difficult. In this case, new assimilation experiments will need to be performed to assess whether 4D-Var
can still benefit from such longer rain accumulations, particularly with respect to the validity of the
linearity assumption, which is so crucial in 4D-Var and lesslikely to be satisfied in the presence of
precipitation (Lopez 2011).

6 Conclusions

In this work, the potential benefits of directly assimilating SYNOP rain gauge 6-hour accumulations in
ECMWF’s 4D-Var has been assessed in both data-sparse reanalysis-like experiments, mimicking early
or mid-20th-century observational coverage, and higher resolution operation-like experiments, with all
routinely available observations used. A bias correction for wind-induced error was developed and ap-
plied to each RG measurement. Observation error specification involves a simple (and rather crude)
parametrization of spatial representativity error (basedon the day of the year and on model resolution)
and a fixed additional contribution from all other sources oferror.

Results from the reanalysis-like experiments clearly indicate that combining SYNOP RGs with surface
pressure observations in the data assimilation process brings on significant improvements in the analyses
and subsequent forecasts. Even though the positive impact on precipitation itself is relatively short-lived,
substantially better forecasts of upper-air geoptential,temperature and wind are obtained up to day 10, at
least, especially over the northern hemisphere where SYNOPRG coverage is best. The validation against
Meteosat infrared imagery shows that short-range forecastbrightness temperatures better correlate with
the observations, which suggests that even cloud fields can benefit from the assimilation of rain gauges
when other available observations are sparse.

In the operations-like experiments, assimilating SYNOP RGobservations together with all other obser-
vations leads to an overall neutral impact on atmospheric analyses and forecast scores. Such a limited
impact can be expected given the competition between gaugesand other observation types, especially ra-
diosondes. However, 4D-Var still seems to be able to successfully extract information from the additional
RG data.

These findings advocate the use of historical RG data in future ECMWF’s reanalyses covering data-poor
periods of the past. However, to achieve this, further testing and developments will be needed to increase
rain gauge usage by shifting the 4D-Var assimilation windowand to be able to assimilate 12 or 24-hour
rather than 6-hour rain accumulations. Quality control might also turn out to be an issue for older RG
observations, due to the lack of information about instrument characteristics and set-up. But still, in
view of the potential gain, further efforts should be devoted to overcome these problems over the coming
months.
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APPENDIX 1

List of abbreviations used in the text

ECMWF = European Centre for Medium-range Weather Forecasts
EUMETSAT = European Organisation for the Exploitation of Meteorological Satellites
NCEP = National Centers for Environmental Prediction (USA)

MODIS = MODerate resolution Imaging Spectroradiometer
SSM/I = Special Sensor Microwave Imager
TRMM-PR = Tropical Rainfall Measuring Mission - Precipitation Radar

APPENDIX 2

Rain gauge representativity error formulation

In this study, each precipitation superob to be assimilatedin 4D-Var is obtained by averaging individual
rain gauges inside the corresponding model grid box. Based on Lopezet al. (2011) and Morrisseyet al.
(1995), the representativity error,σrep, assigned to each precipitation superob (in terms of ln(RR6h+1))
is specified as

σ2
rep = σ̃2

rep VRF[ρ(d)] (10)

whereσ̃rep is the representativity error of a single rain gauge andVRF is the so-called variance reduction
factor. Using Eq.(14) of Morrisseyet al. (1995),VRF is expressed as a function ofρ(d), the spatial
correlation between two rain gauges separated by the distanced. According to Lopezet al. (2011), the
representativity error for a single rain gauge is computed as

σ̃rep(D) = σ0 + ∆σ sin

{
π
2

(D−112
91

)
+ δhemisπ

}
(11)

whereD is the day of the year andδhemisis equal to 0 for the northern hemisphere and 1 for the southern
hemisphere. Parametersσ0 and∆σ depend on model grid resolution and geographical location according
to Table4. Here, tropics are assumed to extend between 25◦S and 25◦N and mid-latitudes between 25◦

and 60◦ in both hemispheres.

Mid-latitudes Tropics
Model grid resolution σ0 ∆σ σ0 ∆σ

15 km 0.220 0.070 0.290 0
40 km 0.285 0.085 0.370 0
80 km 0.350 0.100 0.450 0

Table 4: Values of the two parametersσ0 and ∆σ used in the parametrization of representativity error
for ln(RR6h+1) (see Eq. (11)), for various model grid resolutions and for mid-latitudes and tropics.

In Eq. (10), the spatial correlation between rain gauges is parametrized as

ρ(d) = exp
[
b(M) dc(M)

]
(12)
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whered is the separation distance (in km) andb(M) and c(M) are coefficients which depend on the
month of the year,M, according to

b(M) = b0 + ∆b sin

{
π
2

(M−mb

∆mb

)
+ δhemisπ

}
(13)

c(M) = c0 + ∆c sin

{
π
2

(M−mc

∆mc

)
+ δhemisπ

}
(14)

Coefficientsb0, ∆b, mb, ∆mb andc0, ∆c, mc, ∆mc are given in Table5, for both mid-latitudes and tropics.
In the tropics,b andc are assumed to be constant throughout the year.

Coefficient Mid-latitudes Tropics
b0 −0.056 −0.164
∆b −0.036 0
mb 4.803 /

∆mb 2.481 /
c0 0.672 0.623
∆c −0.078 0
mc 4.711 /

∆mc 2.548 /

Table 5: Values of the eight coefficients used to describe themonthly variations of the fitting coefficients
b and c for spatial correlations ofln(RR6h+1) (see Eq. (12), Eq. (13) and Eq. (14)).

More details and graphs of the latter functions can be found in Lopezet al. (2011).

APPENDIX 3

Precipitation scores used in this study are the Equitable Threat Score (ETS) and the False Alarm Rate
(FAR), defined as follows

ETS =
H −He

H +M +F −He
(15)

FAR =
F

H +F
(16)

whereH is the number of correct hits,M is the number of misses andF is the number of false alarms.
He is the number of correct hits purely due to random chance and is computed as

He =
(H +F)(H +M)

N
(17)

whereN is the sample size.
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