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Experimental 4D-Var assimilation of SYNOP rain gauge daB@MWF EECMWF

Abstract

Four-dimensional variational data assimilation (4D-\@periments with 6-hourly rain gauge accumu-
lations observed at synoptic stations around the globe bega run over several months, both at high
resolution in an ECMWF operations-like framework and atdowesolution in an early or mid-20
century reanalysis style with the reference observatiooatrage reduced to surface pressure data only.
The key aspects of the technical implementation of rain galaga assimilation in 4D-Var are described,
which includes the specification of observation errorss biarection procedures, screening and quality
control.

Results from experiments indicate that the positive immdiaain gauges on forecast scores remains
limited in the operations-like context because of their petition with all other observations already
available. In contrast, when only synoptic station surfamssure observations are assimilated in the
reanalysis-like control experiment, the additional adsition of rain gauge measurements substantially
improves not only surface precipitation scores, but alsalysis and forecast scores of temperature,
geopotential, wind and humidity at most atmospheric legeld for forecast ranges up to 10 days. The
verification against Meteosat infrared imagery also shoalsa@ improvement in the spatial distribution
of clouds. This suggests that assimilating rain gauge daiiéable during data sparse periods of the past
might help to improve the quality of future reanalyses aruseqguent forecasts.

1 Introduction

Over the last decades, progress in data assimilation (D#&jnigques combined with the availability
of new observation types have led to substantial improvésnignour ability to represent the three-
dimensional atmospheric state (temperature, humiditpdwsurface pressure,...) at any given time.
The resultinganalysesare often used in operational numerical weather prediqid/VP) to initialize
global or limited-area model forecasts over a large vaétyme ranges. Operational weather forecasts
over periods of up to 10 days have been shown to benefit fromoved atmospheric analyses (i.e. initial
conditions). In addition to operational DA, which works witeal-time observations, it is also possible
to run data assimilation over past periods to produce deecatanalyses. Benefits of the latter lie in
the possibility to use extra observations that were notlavai in real-time and to take advantage of a
posteriori improvements of the data assimilation systemr. ifstance, ECMWF (see Appendix 1 for
list of acronyms) run their operational DA system twice y&il generate analyses and 10-day forecasts,
but also utilized a similar system to produce global atmesiphand surface reanalyses for the period
1957-2002 (ERA40; Uppalet al. 2005).

A commonly used DA method is the variational method (e.g. limd and Talagrand 1986) which
searches for the model state that best fits a set of availdddereations and some a priori (back-
ground information from the model, in a least-square sense. Teatpe, wind and surface pressure
observations were first to be successfully assimilatedr fatlowed by water vapour measurements.

Since the late 1990s, significant efforts have been devatddet assimilation of observations that are
directly related to clouds and precipitation. As far as lfitgeplatforms are concerned, the assimila-
tion of microwave brightness temperatures from SSM/I ocipitation retrievals from the latter was
implemented in several operational systems worldwidegdoeet al. 2002; Marécal and Mahfouf
2003; Linet al. 2007; Baueret al. 2010; Geeret al. 2010), using the variational assimilation ap-
proach. Experimental studies were also conducted witliatt brightness temperatures (Vukiceetc
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al. 2006), cloud optical depths (from MODIS; Benedetti and slamia 2008), precipitation radar reflec-
tivities (from TRMM-PR; Benedettet al. 2005) and cloud radar data (from CloudSat; Janiskeival.
2011), among others. From the prospect of ground-basedinents, the assimilation of reflectivities or
rainfall retrievals obtained from precipitation radargiseady operational in the limited area models of
several weather forecasting centres (Macpherson 200¥pbyet al. 2002; Caumongt al. 2010), using
either latent heat nudging, diabatic initialization or axed Bayesian-variational method, respectively.
Furthermore, direct four-dimensional variational (4DAVBA of surface rain data from ground-based
radars recently became operational in ECMWF's global faséng system (Lopez 2011). In a more
experimental context, the assimilation of ground-basedrdata on the mesocale using the alternative
technique of ensemble Kalman filtering was studied by Torpéue (2005) and Cayet al. (2005)).

Taking advantage of all the developments made at ECMWF fodifect 4D-Var assimilation of NCEP

Stage IV ground-based radar data (Lopez 2011), which becge®tional on 15 November 2011, the
present study investigates the potential benefits of dyresisimilating synoptic station (SYNOP) rain
gauge (RG) observations in ECMWF's 4D-Var system. Both d&n@&solution operations-like context
and a lower-resolution reanalysis-like framework (witliedaparse conditions) are considered.

SYNOP RG observations assimilated in this work, the spextifin of their error statistics and the pro-
cedure for their bias correction are detailed in sec#orgection3 introduces the 4D-Var assimilation
method and provides additional information about qualdgtool. Results from direct 4D-Var assimila-
tion experiments are presented in secipomwhile remaining issues are discussed in seciioBection6
summarizes the main findings of this study and gives an dutboathe future of RG data assimilation at
ECMWEF.

2 SYNOP rain gauge observations

The precipitation data used in this study are 6-hourly aedations RR6h) measured by the worldwide
network of synoptic stations. These data are routinelyivedeat ECMWF through the Global Telecom-
munication System (GTS). Before the assimilation in 4D;\#&rvalid SYNOP RGs available inside a
model grid box are averaged into a single "superob” attatcbelis grid box. A logarithmic transform,
In(RRBh + 1), is also applied to each superob, since this makes thehditm of background depar-
tures closer to Gaussian (Mahfcetfal. 2007; Lopez 2011), as required in variational DA. Note that t
6-hourly rain accumulation used in(RR6h+ 1) is expressed in mm™H. The following subsections
will introduce the specification of observation error stidss, bias correction and screening procedures
applied to SYNOP RGs.

2.1 Raingaugeerrors

Rain gauge measurements can be affected by a large varieoflosystematic and random errors.

2.1.1 Systematic errors

Systematic errors are dominated by wind-induced errorshmtasult from the deformation of the airflow
by the gauge itself. Wind-induced error usually causesipitation undercatch and thus a negative bias
in the observations. This type of error will be addressedibysection?2.2 dealing with bias-correction.
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Other systematic errors can be attributed to the wettingeofjauge walls, to the loss through evaporation
(especially for manual RGs) and to raindrops splashing dway the gauge collector. All can lead to
an additional underestimation of precipitation by RGs, ritegnitude of which is usually well below
0.1 mm it though (Sevruk 1974a; Sevruk 1974b). It will thus be neglédn this study.

2.1.2 Local random errors

RG measurements can also be affected by local random eremrsed for instance by the discrete nature
of the time sampling in tipping bucket RGs, by small-scaléateons of the turbulent airflow around
the gauge, or even by occasional blockage of the gauge tmlle€o account for these errors, which
usually significantly decrease with accumulation lengtra¢@ 2003), a fixed contributiogjo. = 0.05

in terms of INRRBh+ 1) has been used in all experiments. These errors are usuatlly smialler than
representativity errors described in the next subsection.

2.1.3 Representativity errors

Representativity errors arise every time rain gauge poedasurements need to be compared with model
grid-box averaged precipitation fields, as in the contextlaitfr assimilation. In this work, the choice
has been made to average (or "superob”) SYNOP RG obsersatiato the model grid before starting
the assimilation process. In practice, representativitgrecan be quantified by the standard deviation
of the horizontal fluctuations of surface precipitation iotree model grid-box area. For a single gauge,
representativity error increases with model grid-box sigewvell as in the presence of convective pre-
cipitation (higher spatial variability). When several RGs be averaged inside a model grid box, the
resulting representativity error is expected to drop, esiniltiple measurements usually provide more
information than a single one.

Here, RG representativity error has been specified usingjifigle parametrization proposed by Lotz
al. (2011), which was derived from ground-based radar pretipit estimates and local high-density RG
networks and which is applied in terms of RR6h+ 1). The representativity error standard deviation,
Orep, IS parametrized as a function of model resolution and deahefear and also includes the effect
of spatial correlations among RGs that are located insideséime model grid box. The parametrized
representativity errors are maximum in summer and minimarwinter, and the opposite is true for
spatial correlations. This is a very crude way of taking mtcount the contrast between stratiform pre-
cipitation in winter (low spatial variability) and convéet rainfall in summer (high spatial variability).
A more detailed description of the parametrization can bmdoin Appendix 2. With this formulation,
Orep (in terms of I{RRBh+ 1)) typically ranges between 0.08 and 0.25 (resp. 0.04 and @oi3I511
(=40 km) (resp. T1279+15 km)) model resolution. The relative crudeness of theasgmtativity error
formulation will be discussed in sectidn

Eventually, this yields the total observation error staddieviationg, = , /U|%C+ ar%p to be applied in
the data assimilation process, whejg. was defined in sectio®.1.2 For illustration purposes, Fid.
displays the distribution 06, values specified in the T511 and T1279 RG assimilation expearis
presented below. As expected, is dominated by representativity error at both resolutiohbe few
outliers with a larger error standard deviation of aboutif.ganel (b) correspond to model grid boxes
that contain a single RG (i.e. higher valuesofy).
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Figure 1: Total observation error histograms from the (a)ll5and (b) T1279 truncation rain gauge
data assimilation experiments described in this study. eBlagion error values are expressed in terms
of In(RR6h+ 1). Mean and standard deviation of the distribution are givéthe top of each panel.

2.2 Biascorrection

One of the main assumptions in variational data assimiladhat both model background and obser-
vations should be unbiased. It is therefore important tadrgemove any known bias, such as that as-
sociated with wind-induced undercatch (raw SYNOP RGs areowected for this bias). In ECMWF's
operational system, most observation types are subjectadvariational bias correction (VarBC; Dee
and Uppala 2009). Here, however, a separate non-variatimastep bias correction procedure has
been specially developed for RGs.

2.2.1 Correction of wind-induced error

Several studies (e.g. Folland 1988; Yaeigal. 1998; NeSpor and Sevruk 1999) showed that wind-
induced undercatch increases with wind speed and rainegaygheight above ground. For rain, the

relative underestimation worsens as dropsize becomesesraatl is therefore much higher for drizzle

than in heavy showers. For snow, wind-induced relativerésroften larger than for rain and can exceed
50% in windy conditions. Therefore, RG measurements in greituations have been discarded in the
present study. Furthermore, shielding installed aroun@Ga&h substantially reduce wind-induced error
for snowfall, much less for rain.

NeSpor and Sevruk (1999) proposed a thorough study of widdeed error for three types of RGs, two
of which, Mk2 and Hellmann, are commonly used worldwide. iTerk was based on wind tunnel
experiments and numerical simulations of the airflow arotiedgauge. Here, their results have been
synthesized in such way that the wind-induced relativerdyias correctionBCying, (for rain only) can

be parametrized as

RR)bs_ RIarue
BCvind = —— 1
Cuind RRons (1)
= aRR 2)
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where coefficients andb are power functions of the wind speed at gauge-top 1&g},
a1 Vg €)
b = bV (4)
Note that the coefficients of the parametrization have beempated by assuming that= 0 and se-

lecting the "turbulent” case of NeSpor and Sevruk (1999Me Values of parametees, ap, by andb,
are given in Tablel for the two RG types considered here. As an illustration, Eidisplays curves

Rain gauge type a; a by b,
Mk2 —0.031| 0.547| —0.640| —0.085
Hellmann —0.030| 0.733| —0.631| —0.091

Table 1: Values of the parameters, &, b, and b used in Eq. 8) and Eq. &).

of the parametrized wind-induced relative error as a famctf rainfall rate, for various wind speeds at
gauge-top level and for the Mk2 (panel (a)) and Hellmann €pén)) gauge types. Relative error clearly
increases for smaller rainfall rates and stronger winds.dlso obviously higher for the larger Hellmann
type than for the Mk2 type.

MKk2 rain gauge wind-induced error Hellmann rain gauge wind-induced error
(based on Nespor and Sevruk 1999) (based on Nespor and Sevruk 1999)

o
T

o
T

Relative wind-induced error (%)
|
a
o

Relative wind-induced error (%)
|
(42
T

— Vrg=20.0m#§ L. — Vrig=200m§%

——-Vrg=150m#& 4 ——-Vrg=15.0m#&

—m Vrg=10.0m & - VIg=10.0m§&
....... Vrg=7.0m§! -em VIg=7.0m &
L - Vrg:5.0m§1 Vrg:5.0m§i

_ I —— Vrg=3.0ms | _ L Vrg=3.0mS§s B
1007 —— Vrg=10m#§" | 100 —— Vrg=10m#§"
0.1 1.0 10.0 0.1 1.0 10.0
Measured rain rate (mm¥ Measured rain rate (mm*H

Figure 2: Curves of wind-induced relative error as a funatiof rainfall rate (in mm h'), for various
wind speeds at gauge-top level (in msand for (a) Mk2 and (b) Hellmann gauge types.

Assuming a logarithmic profile for the wind in the surfacedgyone can write
|n(hRG/Z())
In(10/2)

whereVion is the 10-m wind speed (from SYNOP reportlyg is the gauge-top height above ground
andz is the roughness length (set to 0.02 m here, a typical valushfart-grass cover).

VR Viom %)

In the presence of rain-gauge shieldiB§ing is reduced through

1-0.9631 0.7784
7 arctan( ) n 0.9631} (6)

BCuinda = Bcwind{

10m
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which leads to a maximum reduction of about 49%Baf,iq in strong wind conditions.

Eventually, the bias-corrected value of the rain obsanma?RvR,bs, is given by

RRpbs = RRoybs(1— BCying) ()

Information about gauge type, gauge-top height and theepoesof shielding was first collected from
Sevruk and Klemm (1989) and was then updated through ingividontacts with the major national
weather services around the world. It should be stresseéddespite all these efforts, the information
thereby obtained might not be completely accurate for somnetcies, given the absence of worldwide
standards for RG specifications. As far as gauge type is coedefor simplicity, all worldwide RGs
have been categorized as either Mk2 or Hellmann, dependirthair shape and size. FigudeFig. 4
and Fig.5 show global maps of gauge types, gauge-top heights andnoeesé shielding, respectively,
as prescribed in this work. One should note that the windiéed error bias correction is applied to each
individual RG before averaging over the corresponding rhgde box.

SYNOP rain gauge type: black=Mk2; red=Hellmann
o TR : @

30°N

60°N

30°N

\ )
0° t—— e e 0°
R TS R,
Y - > " N : o
0 d . {//‘FKK. ~ o
30°S [* N L"M\J 30°S
5 )

60°S

‘- by * - - 60°S
I [ =

120°W 60°W 0° 60°E 120°E

Figure 3: Global map of rain gauge types, assumedh this study. Typical daily data coverage obtained
from GTS.

2.2.2 Correction of other biases

Besides the systematic wind-induced error bias, otheebiasboth observations and model have been
assessed by computing global statistics of observatias @mrrected for wind) minus model background
departures from a passive monitoring T1222.6 km) L91 4D-Var experiment over April-May 2011.
From these two-month statistics expressed in terms(&R8h + 1), the following third-degree polyno-
mial bias correctionBCgther, has been constructed:

3 .
BCother = Zlai In(RRSh+ 1) (8)
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SYNOP rain gauge height above ground (m)
® Noinfo 03-04 04-05 @ 05-06 @ 0.6-0.7 0.7-0.8

08-1 ® 1-11 @ 11-12 ® 12-13 ® 13-15 @® 15-2
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Figure 4: Same as in Fig3 but for rain gauge top height above ground (in m). When norinédion is
available, gauge-top height is arbitrarily setto 1 m.

SYNOP rain gauge shielding: black=unshielded; red=shielded
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Figure 5: Same as in Fig3 but for rain gauge shielding.
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wherea; are prescribed coefficients aim{ RR6h + 1) denotes the average over model background and
observation. Using the average of model and observatiodsvadesirable spurious asymmetries in the
bias correction (Geer and Bauer 2011).

Figure6 displays observation minus model background departuresrims of IfRR6h+ 1) as a function
of In(RRBh+ 1) values in April-May 2011. The polynomial fit used to define Hias correction is also
plotted (dashed line). Figur&illustrates the overestimation (resp. underestimatiarthe model for
6-hour precipitation accumulations lower (resp. higheant0.6 mm h' (i.e. In(RRéh+1) ~ 0.5). The
overall mean bias is rather smal Q.02 in terms of IIRReh + 1)).

fjgh SYNOP RR 4D—Var 2011040100-2011053112
Mean=—-0.020 (147810 pts)
%0 B B S Sy B
Foo,=—0.2785

- o,= 0.6592
T 0,=—0.2273

OB—BG Ln(RR+1) departures

0.5~

-1.0 i S S S T S S S S R E
0.0 0.5 1.0 1.5 2.0 2.5
mean(BG,0B) Ln(RR+1)

Figure 6: Average observation minus model background depes in terms oin(RReh+ 1) (solid line)
as a function ofn(RR6h+ 1) for April-May 2011. The dash line shows the second degregmpatial fit
chosen to define the bias-correction. Values of fit coeffigjen (i=1,. .. ,3), are also given.

It should be emphasized that global statistics computedtfar seasons of the year yielded very similar
bias curves (not shown). It is also interesting to underiresimilarity of the curve shown in Figu
with those displayed in Lopez (2011) in the context of NCER)B1V ground-based radar surface rainfall
data assimilation over the United States. Finally, one lshoate that since original SYNOP RGs are
averaged onto the model grid before the assimilation, the @rrection defined in EqB)is applied in
model space.

2.3 Screening

In data assimilation, observations must be screened sorafett data that are thought to be inaccurate
or not representative of the model geometry. In the presesd of SYNOP station RGs, the choice was
made not to assimilate data:

e over rugged orography (poor horizontal representativitg) wherever the standard deviation of the
model subgrid-scale orography is larger than 100 m,

e when SYNOPV;on exceeds 20 ms (excessive precipitation underestimation),
e when model grid box altitude departs from SYNOP RG altitugartore than 300 m (poor vertical
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representativity),
e when either SYNOP or model 2-metre temperature is belovCKgkely snowfall),

e within the intertropical band (2%-25N) (larger representativity error associated with freduem-
vection, as evidenced in Lopet al. 2011).

It should also be mentioned that, in contrast with Lopez 2@tho rejected all ground-based rain data
whenever either the model background or the observatioe wen-rainy, for reasons explained in his
paper, no such rejection was applied in the present studg.hBElped to increase the number of RG data
used in 4D-Var.

To illustrate the result of the screening process, an exawfd YNOP rain gauge 6-hourly precipitation
data coverage, after superobbing and as passed to 4D-Vis study, is displayed in Fig.at 1800 UTC

16 April 2011. In this plot, each point corresponds to a T12i®lel grid box over which available valid
gauges were averaged. In practice, this coverage of arcd@@ @servations is reduced even further
during the analysis process, due to the additional quatitytrol described in sectioB.2 Most of the
observations selected in this work are located over Eufdpeh America, China, Japan, South America,
South Africa and New Zealand (but no available data over rialia). Finally, one should also keep in
mind that the choice of averaging RGs over model grid boxean:i¢hat the number of observations
passed to 4D-Var does increase with model resolution, khimihe limit imposed by the local density
of available RGs.

180W 120W 60w 0 60E 120E 180E

60N

BON |

30N 30N

30S 30S

180W 120W 60W 0 60E 120E 180E

60S 60S

|
|

Figure 7: Example of SYNOP rain gauge 6-hourly accumulatettipitation data coverage (after su-
perobbing) at 1800 UTC 16 April 2011 as obtained through tleSGafter screening out points affected
by rugged orography, snowfall, strong surface winds, oated in the tropics.

3 Thed4D-Var method

3.1 General description

The aim of 4D-Var assimilation is to find the optimal initidd&tmospheric state (thaalysig that leads
to a short-range model forecast that best fits a set of olismrsaand some a priori information from the

Technical Memorandum No. 661 9



EECMWF Experimental 4D-Var assimilation of SYNOP rain gauge da@@MWF

model (the so-callednodel backgrounabr trajectory) over a certain time window (currently 12 hours
at ECMWF). Formally, the analysis corresponds to the mo@éb=(t) at timety which minimizes the
following cost function

Ix(to)] = 5[x(to) —x°(to)] "By [x(to) —x°(to)]

NI NI
]

[HiM[x(to)] —¥°] "R 1 [Hi[M[x(to)]] —y?] )

following the notations and definitions of ldg al. (1997). x°(tg) denotes the model background state
atinitial time. In ECMWF’s 4D-Var system, the model statesists of temperature, humidity, vorticity,
divergence and surface pressukd. andM are the often non-linear observation operator and forecast
model, respectively, used for converting the initial mosigte to observed equivalents at timeAll
observations available in the assimilation window are ga&ti in vectory?. R; andBy are respectively
the observation and model background error covarianceaesatBg is made flow-dependent through a
wavelet formulation (Fisher 2004).

In practice at ECMWHFJ is re-formulated using an incremental approach (Couetiel. 1994). In each
4D-Var cycle, three successive minimizations are perforaitdower horizontal resolution. After each
minimization, the model trajectory and observationodel departures are recomputed at high resolution.
Starting with the lowest resolution ensures that largelescare adjusted first, reduces the computational
cost of 4D-Var and permits the handling of weak non-linéssijteven though 4D-Var still strongly relies
on the linearity assumption for all meteorological proessis describes.

Of particular interest for the assimilation of precipitatiobservations, linearized simplified parametriza-
tions of convection (Lopez and Moreau 2005) and large-gualist processes (Tompkins and Janiskova
2004) are used during each minimization. Other linearizZiegsical processes also accounted for are
radiation (Janiskovét al. 2002), vertical diffusion and orographic gravity wave d{dphfouf 1999)
and non-orographic gravity wave drag (@tral. 2010).

3.2 First-guess check and variational quality control

Like all other observation types already used in 4D-Var, ARG observations are subjected to an
a-priori first-guess check to reject measurements thattmamuch from the model background. Here,

a RG observation is rejected|H; [x°(t;)] — y°| > 4,/ 02+ 02, whered, is the observation error standard
deviation (see sectich 1) andoy, is the background error standard deviation (set to 0.1&M, éxpressed
in terms of INRRBh+ 1). This first-guess check for SYNOP RG data is only applied éfittst trajectory
of each 4D-Var cycle, as for all other observation types.

In addition, in the course of each minimization, the vaoa&l quality control (VarQC; Andersson and
Jarvinen 1999) already applied to all other observatipesyis also applied to SYNOP RG data. Any ob-
servation which leads to large departures that are deersedsistent with neighbouring measurements,
has its weight artificially reduced in the analysis.

10 Technical Memorandum No. 661
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4 Experiments

41 Set-up

Two global 4D-Var baseline experiments have been congidettis work: (1) a T511440 km) early or
mid-20"-century (future) reanalysis-like experiment with theimdstion of surface pressure (Ps) data
from SYNOP land stations and ships only (ERARL hereafter) and (2) an ECMWF operation-like
T1279 &15 km) run with all available observation types assimildfi@@®ERCTRL, hereafter). Exper-
iments corresponding to each baseline set-up plus SYNOPIREmtions were then run to assess the
impact of the additional rain gauge data on the quality of4beVar analyses and subsequent 10-day
forecasts (resp. ERAIEW and OPERNEW). All experiments were run using ECMWF model cycle
37r2 and with 91 vertical levels. TabRsummarizes the experimental set-up in terms of spectnad tru
cation (in both trajectory and the three 4D-Var minimizasiy period and observational coverage. The
choice of the spring season is justified by the desire to abwidejection of too many RG observations
due to the occurrence of snowfall in the winter hemispherktarproperly sample both stratiform and
convective rainy events in the northern hemisphere eripats.

Experiment Truncation Period Observational coverage
Trajectory| Minimizations
ERA CTRL T511 T95/T159/T255 | Apr-Jun 2011 | SYNOP Ps only
ERANEW T511 T95/T159/T255 | Apr-Jun 2011 | SYNOP Ps only + SYNOP RGs
OPERCTRL T1279 | T159/T255/T255 Apr-May 2011 | as in operations
OPERNEW T1279 | T159/T255/T255| Apr-May 2011 | as in operations + SYNOP RGB

Table 2: Experimental set-up used in this study to assessnibact of assimilating SYNOP rain gauge
data in 4D-Var.

4.2 Resultsfrom ERA-like experiments
4.2.1 Coverage in assimilated observations

As preliminary information, the mean density of SYNOP RGeaygps that are actually assimilated in
each 4D-Var cycle (i.e. every 12 hours) is displayed in Bifpr the period April-June 2011. One can
see that Europe, North America and China are the regionsthéthighest data coverage. A smaller
number of RG data is also assimilated in South America, Safriba and New Zealand.

4.2.2 Background and analysis precipitation departures

As a first verification, the statistical distributions of ebgtion-background and observatieanalysis
departures are plotted in Fig. Probability density functions (PDF) from ERKNEW are plotted in terms
of In(RR6h+ 1) for the period April-June 2011, which yields a total sampie ©f 110223 (i.e. around
600 rain observations assimilated in each 4D-Var cycle enamge).

Panel (a) in Fig9 shows that the distribution of observatiobackground departures after bias correction
(see sectior2.?) is not really exactly Gaussian (green curve), yet rathemragtrical, which is always
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Figure 8: Mean density of assimilated SYNOP rain gauge datpressed in superobs pet>22° grid
box and per 4D-Var cycle.
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Figure 9: Histograms of (a) observatierbackground and (b) observatieranalysisin(RRsh+ 1) de-
partures from ERANEW over the period April-June 2011. Black lines display hietogram of bias-
corrected background departures in panel (a) and analysjgadtures in panel (b). Red curves show the
uncorrected background departures in panel (a) and the-b@sected background departures in panel
(b) (i.e. a copy of the black curve from the left panel). Greerves show the Gaussian distribution with
the same mean and standard deviation as the black histogfeequency (y-axis) is in % and the mean,
standard deviationd) and total population of the black histograms are shown etttp of each panel.
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desirable. The mean (RR6h+ 1) background departure is smal-Q.031, indicating a slightly too
rainy background), while the mean analysis departure is eugaller (-0.003). Panel (b) demonstrates
that the PDF of observatieranalysis departures is much narrower than that of observabackground
departures, with the standard deviation dropping from@@&3vn to 0.165. Analysis departures are also
closer to being normally distributed. Therefore, 4D-Vareds in bringing the model rain closer to the
observations through the changes in temperature, mojstunel and surface pressure imposed by the
assimilation of SYNOP Ps and RG information.

4.2.3 Precipitation scores against SYNOP rain gauges

Another way to check the impact of SYNOP RG assimilation imte of surface precipitation is to
compute scores against SYNOP RG data themselves, fordtifféorecast ranges. Of course, in this
approach, RG observations cannot be regarded as indeperdidiation data for the first hours of the
forecast since they are assimilated in experiment BNEAW, but such comparison can be useful to
confirm that the 4D-Var assimilation of RGs performed as kdopBvo examples of scores computed
for the entire period over Europe, the USA and China (wherstriR&ss were assimilated) are shown
in Fig. 10: Equitable Threat Score (ETS) and False Alarm Rate (FARj)lefimed in Appendix 3. The
higher ETS and the lower FAR, the better the forecast.
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Figure 10: Impact of 4D-Var assimilation of SYNOP RG obstove on precipitation forecast scores
computed against SYNOP RGs themselves from experiment€ERIA(blue curve and triangles) and
ERANEW (red curve and squares) in April-June 2011: (a)-(c) Eaple Threat Score and (d)-(f) False
Alarm Rate for Europe (left), the USA (middle) and Chinalftjg Scores are displayed for the first 6
hours of the forecasts started at 0000 UTC and as a functiofaibus precipitation intensities (x-axis;

in mm day?). The higher ETS and the lower FAR, the better the forecast.

Figure 10 shows that surface precipitation ETS and FAR during the $isshours of the forecast are
substantially improved over the three regions considenelfar all precipitation intensities, particularly

Technical Memorandum No. 661

13



EECMWF Experimental 4D-Var assimilation of SYNOP rain gauge da@@MWF

above 3 mm day* (around 25% increase in ETS and 20% drop in FAR). This cleeolyfirms that
the information coming from SYNOP RGs is properly trangfdrto the model during the 4D-Var as-
similation, which supports the idea that genuine predipitaanalyses are obtained wherever RGs are
available. Beyond the very-short forecast ranges, thdipegnpact quickly vanishes and becomes neu-
tral (not shown). A similar behaviour was previously idéatl in the assimilation of ground-based radar
data (Lopez 2011) and satellite microwave brightness temtyes (Kellyet al. 2008). It is also note-
worthy that both ETS and FAR for precipitation intensitiesdw 20 mm day? are slightly worse over
China than over Europe and the USA.

4.2.4 Atmospheric scores against independent obsengtion

The impact of the 4D-Var assimilation of SYNOP RGs on geoptisi temperature and wind vec-
tor root-mean-square forecast error (RMSE) computed ageadiosonde observations is illustrated in
Fig. 11 for the extratropical northern hemisphere, Europe, Norttefica and Asia, since these regions
have the highest SYNOP RG data coverage (see8Figne should emphasize that radiosondes consti-
tute an independent verification dataset in the case of empets ERACTRL and ERANEW, in which
only SYNOP surface pressure and RGs were assimilated.

Figure 11l clearly shows that the assimilation of SYNOP RGs in 4D-Vands a systematic and often
significant improvement for all plotted parameters, le\aid regions. Most forecast ranges up to day
10 benefit from this improvement and the reduction in RMSEadigularly significant over Europe,
consistent with its highest density of assimilated RGs.(B)g Only 100 hPa geopotential turns out to
be degraded over North America and Asia, yet not signifigambt shown). In contrast, over Europe,
100 hPa geopotential is substantially improved (not sho®apres in the tropics and over the extratrop-
ical southern hemisphere are either positive or neutral ghown), probably as a result of the smaller
number of assimilated rain observations. Close to anatiyais, the most significant positive impact is
found in the middle and upper troposphere (e.g. 200 hPa weatbv scores in Figl1), which suggests
that the information contained in the surface precipitatioeasurements is successfully transferred to
upper levels during the 4D-Var minimization.

Additional statistics of 4D-Var analysis departures wéhpect to independent observations are presented
in Fig. 12 using radiosonde geopotential, meridional wind and redatiumidity and wind profiler data
over Europe, North America and China (Japan for wind prddjlefhis particular subset of observation
types was selected as it exhibited the largest signal. Nateall data used in these statistics were those
that passed the 4D-Var first-guess check, even though theymee assimilated. Statistics computed un-
screened observations gave similar results. In all patredstandard deviation of observatieraalysis
departures is reduced by several percents, reaching up to 8 upper troposphere.

Overall, these consistent results provide a clear indipathat in the context of a sparse data renalysis
system, assimilating RG data could be very beneficial to tiadity of 4D-Var analyses and subsequent
forecasts.

4.2.5 Atmospheric forecast scores against operationalyses

Forecast scores against ECMWF operational analyses hswebabn computed for ERETRL and
ERA_NEW and compared to operational forecast scores. One shtaks that the operational 4D-Var
system is run at high resolution (T1279 L91) and with all @mional and satellite observations available
in real-time. As an illustration of these scores, forecasinaaly correlation (FAC) is plotted in Fid.3
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Figure 11: Impact of 4D-Var assimilation of SYNOP RG data ontimean-square forecast error
(RMSE) computed against radiosondes and as a function efdst range from 0 to 10 days. RMSE
changes are plotted for 500 hPa geopotential height (Z256@;danels), 850 hPa temperature (T 850;
middle panels) and 200 hPa wind vector (WV 200; right panalg) four different regions: (a)-(c) extra-
tropical northern hemisphere (N.Hem), (d)-(f) Europe-(i)North America (N.Amer) and (j)-(l) Asia.
Changes shown on y-axis are normalized by the score in erpatiERACTRL and positive (resp. neg-
ative) values indicate an improvement (resp. degradatidiifie score. Purple bars indicate significance
at the 95% confidence level. Statistics are valid for the |IAhme 2011 period.
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Figure 12: Relative impact of 4D-Var assimilation of SYNQ@ihrgauge data on the standard deviation

of observatior-analysis departures computed using (a) geopotential, @jdional wind and (c) rel-

ative humidity measurements from radiosondes and (d) wiofilgr data. The vertical profiles of the

ratio of the standard deviations from ER¥EW and ERACTRL is shown. Values below unity along the

x-axis indicate an improvement in ERMEW. Statistics are aggregated over Europe, North Amenich a
China (Japan for wind profilers) and over the period 22 A@@-June 2011.

for geopotential, temperature and wind vector as a funaiidiorecast range from 0 to 10 days. First
and foremost, Figl3 evidences the strong degradation of FAC in ERARL compared to operations,
as expected from the drastic reduction in the number of @aens assimilated in 4D-Var (only SYNOP
surface pressure data are used in EGFRL). Secondly, the FAC computed for ERMEW is always
above that of ERACTRL for forecast ranges up to day 5. Beyond day 5, the impgaassimilating RGs
is still positive, except for 500 hPa geopotential over N&kinerica and Asia (panels (g) and (j)) and for
200 hPa wind over North America (panel (i)). The most stgkimprovement is obtained for Europe at
all forecast ranges, which again is related to the highesitleof assimilated rainfall observations. Over
the southern hemisphere, more poorly sampled by RGs, thacinipeither neutral or slightly positive
(not shown). These results confirm the overall positive ichgaming from the assimilation of SYNOP
RGs.

4.2.6 \Verification against satellite infrared imagery

As a complementary independent source of verification, Isited satellite 10.§:m brightness tem-
peratures were computed from short-range forecast fietsls ERA.CTRL and ERANEW and were
compared to corresponding Meteosat-9 images obtained FIOMETSAT. The infrared simulation is
based on version 10 of the fast Radiative Transfer for TOVBI®V/-10; Matricardiet al. 2004, Ma-
tricardi 2005). Satellite imagery in the 108n channel mainly provides information about cloud top
height in cloudy conditions and surface temperature inredkg situations. Tabl& gives the mean
Meteosat-model bias and correlation coefficient between Meteosatamdie! calculated over Europe
and over the period April-June 2011 from ERZTRL and ERANEW. Different forecast ranges from
0 (i.e. roughly the analysis) to 24 hours are considered. sistematic negative bias of around K

in the forecasts remains almost unchanged in EXEAW versus ERACTRL and could be caused either
by an underestimation of cloud top height or of cloud condeamount near cloud top in the forecast
model, or by deficiencies in the radiative transfer modellgudy situations. On the other hand, the
correlation coefficient clearly gets higher when SYNOP R@&sassimilated, which indicates that the
spatial distribution of clouds is improved. This again con8 the potential benefit of assimilating gauge
data in a reanalysis context.
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Figure 13: Impact of 4D-Var assimilation of SYNOP rain gawlga on forecast anomaly correlation
(FAC) computed against ECMWF operational analyses as atiimof forecast range from 0 to 10
days. Blue, red and green curves correspond to ECMWF T12&geatipnal forecasts, ERETRL and
ERANEW, respectively. Scores are plotted for 500 hPa geopatdmight (Z500; left panels), 850 hPa
temperature (T 850; middle panels) and 200 hPa wind vectdv A80; right panels) over four differ-
ent regions: (a)-(c) extratropical northern hemisphereHidm), (d)-(f) Europe, (g)-(i) North America
(N.Amer), and (j)-(I) East Asia (E.Asia). Note that over tfioAmerica 500 hPa T is shown instead of
850 hPa T. The higher FAC, the better the forecast. Stadistie valid for the April-June 2011 period.

FC+0h FC+6h FC+12h FC+18h FC+24h
Bias | Corr.| Bias | Corr.| Bias | Corr.| Bias | Corr. | Bias | Corr.
ERACTRL | —4.12| 0.74 | —4.46| 0.86 | —3.53| 0.75 | —5.46| 0.73 | —4.84| 0.74
ERANNEW | —4.27| 0.80 | —4.53| 0.93 | —3.55| 0.79 | —-5.46| 0.78 | —4.77| 0.75

Table 3: Validation of 10.8um brightness temperatures simulated from ERPRL and ERANEW

against Meteosat-9 satellite imagery over Europe. Forecaisges vary between 0 and 24 hours (every

6 hours) and are given on the top row. Mean Meteesabdel bias (in K) and correlation coefficient

(Corr.) between Meteosat and model are valid for the peripdlAlune 2011. The sample size for each
forecast range slightly exceeds 500000.
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4.3 Resultsfrom operations-like experiments

In these experiments, SYNOP RGs were assimilated togetitieallvother observations routinely avail-
able in ECMWF'’s operational system, which includes all @ional and satellite data. Unsurprisingly,
the general impact of the gauge data on analyses and fopdstmance turned out to be much more
modest than in the data-sparse experiments presentedtionsé@. This is because SYNOP RGs have
to compete with all other observations and because gaugesainly available in already well-observed
regions. It is noteworthy that similar conclusions werewdran Lopez and Bauer (2007) and Lopez
(2011) for ground-based precipitation radar data over t8& Ur'his usually neutral impact of SYNOP
RG data on atmospheric forecast scores against radiosdig#gvations is illustrated in Fidl4 for
500 hPa geopotential and 850 hPa temperature over the mohiemisphere extratropics.

@ . (b)

B S R R R T I T N A

Forecast Day Forecast Day

Figure 14: Same as in Fid.1, but for experiments OPEREW versus OPERTRL and for the northern
hemisphere extratropics only. Statistics are valid foriAptay 2011.

However, there is still a hint that short-range forecastswface precipitation are slightly improved
over Europe, North America and China, as shown in E.ETS is increased while FAR is reduced,
especially for rain intensities between 20 and 50 mnTdafven though the latter verification against
SYNOP RGs themselves cannot be considered as independgnt5indicates that 4D-Var can suc-
cessfully extract some information from RG data.

As a conclusion, the benefits of assimilating SYNOP RGs apeard to be smaller in ECMWF's
operations than in the context of a future reanalysis of &y @r mid-26" century.

5 Remaining issuesand future improvements

As already mentioned in sectidhl.3 the formulation of RG representativity error used in thpesi

ments is rather crude since it only depends on the resolused in the superobbing, on the time of the
year and on a rough distinction between mid-latitudes amplds. Ideally and as shown in Lopetal.

(2011), a dependence of representativity error on thelyidmean observed rain amount itself would
be desirable. Unfortunately, the latter quantity is notwnan practice. One would also wish to include
a dependence of representativity error on the type of obdameteorological situation (e.g. convective
versus stratiform). However such additional informatiarmich might be obtained from other obser-
vational sources such as geostationary satellite imagelayt would not be available in reanalyses of
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Figure 15: Same as in FidLO, but for experiments OPEREW versus OPERTRL and for April-May
2011.

data-sparse periods of the past. Furthermore, any givenuByhaccumulation period might be affected
by more than one type of weather condition, for instance éctise of a fast-moving mid-latitude cloud
system. This argument would be even more relevant when 12-two@r precipitation accumulations
are to be assimilated. It is therefore not clear how to olftain-dependent RG representativity errors,
hence the usage of a simpler representativity error fortioma

In other respects, because the standard 4D-Var 12-houowi(as used here) starts either at 2100 UTC
or 0900 UTC and since SYNOP RG observations consist of 6-accumulations between 0000, 0600,
1200 and 1800 UTC, only half of the available gauge data wettgally assimilated in the experiments

presented here. In the future, shifting the 4D-Var windowtlimee hours could double the usage of
SYNOP RG data, with no noticeable extra cost.

In addition, the limited worlwide standardization of raiaugje measurements and the frequent unavail-
ability of metadata may introduce some uncertainty in thedanduced error bias correction described
in section2.2.1

The present study strongly suggests that the assimilatioistorical RG observations in a future ECMWF
reanalysis of the early or mid-80century could lead to a significant improvement in the qualftthose
reanalyses and forecasts initiated from these. Howevere smcertainties remain regarding older RG
observations.

First, the types of RGs used in the past are likely to diffenfrthose used over recent decades. In-
formation about their characteristics and installationtgeol (e.g. height above ground, dimensions,
shape, surroundings) will probably be even less availdtda for modern instruments. The variety of
RG types might actually be even larger than today’s. In paldr, this might make the computation of
the wind-induced bias correction more uncertain.
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Secondly, obtaining older RG accumulations at a frequehcyter than 24 hours is expected to be
difficult. In this case, new assimilation experiments wékal to be performed to assess whether 4D-Var
can still benefit from such longer rain accumulations, paléirly with respect to the validity of the
linearity assumption, which is so crucial in 4D-Var and léksly to be satisfied in the presence of
precipitation (Lopez 2011).

6 Conclusions

In this work, the potential benefits of directly assimilgti8YNOP rain gauge 6-hour accumulations in
ECMWF’s 4D-Var has been assessed in both data-sparse ysigAide experiments, mimicking early
or mid-20"-century observational coverage, and higher resolutieraijpn-like experiments, with all
routinely available observations used. A bias correctmmafind-induced error was developed and ap-
plied to each RG measurement. Observation error spedific@tivolves a simple (and rather crude)
parametrization of spatial representativity error (basedhe day of the year and on model resolution)
and a fixed additional contribution from all other sourcesmér.

Results from the reanalysis-like experiments clearlydat# that combining SYNOP RGs with surface
pressure observations in the data assimilation procesgsoin significant improvements in the analyses
and subsequent forecasts. Even though the positive impamegipitation itself is relatively short-lived,
substantially better forecasts of upper-air geoptertéahperature and wind are obtained up to day 10, at
least, especially over the northern hemisphere where SYRIGBoverage is best. The validation against
Meteosat infrared imagery shows that short-range fordmagitness temperatures better correlate with
the observations, which suggests that even cloud fields eaefib from the assimilation of rain gauges
when other available observations are sparse.

In the operations-like experiments, assimilating SYNOP édGervations together with all other obser-
vations leads to an overall neutral impact on atmospherdtyaas and forecast scores. Such a limited
impact can be expected given the competition between gaumgksther observation types, especially ra-
diosondes. However, 4D-Var still seems to be able to sufidsextract information from the additional
RG data.

These findings advocate the use of historical RG data indlE@MWF's reanalyses covering data-poor
periods of the past. However, to achieve this, furtherigsiind developments will be needed to increase
rain gauge usage by shifting the 4D-Var assimilation windma to be able to assimilate 12 or 24-hour
rather than 6-hour rain accumulations. Quality control mhigiso turn out to be an issue for older RG
observations, due to the lack of information about instnuimeharacteristics and set-up. But still, in
view of the potential gain, further efforts should be dedadi® overcome these problems over the coming
months.
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APPENDIX 1

List of abbreviations used in the text

ECMWF = European Centre for Medium-range Weather Forecasts
EUMETSAT = European Organisation for the Exploitation oftet@ological Satellites
NCEP = National Centers for Environmental Prediction (USA)

MODIS = MODerate resolution Imaging Spectroradiometer

SSM/I = Special Sensor Microwave Imager

TRMM-PR = Tropical Rainfall Measuring Mission - Precipitat Radar

APPENDIX 2

Rain gauge representativity error formulation

In this study, each precipitation superob to be assimilatetD-Var is obtained by averaging individual
rain gauges inside the corresponding model grid box. Basddpezet al. (2011) and Morrissegt al.
(1995), the representativity errarep, assigned to each precipitation superob (in terms @ Rsh+ 1))
is specified as

O-r%ap = 5%pVRF[p(d)] (10)

wheredye, is the representativity error of a single rain gauge ARF is the so-called variance reduction
factor. Using Eq.(14) of Morrissegt al. (1995),VRF is expressed as a function pfd), the spatial
correlation between two rain gauges separated by the destarAccording to Lopezt al. (2011), the
representativity error for a single rain gauge is computed a

D-112
91

~ L
Orep(D) = 0o + Ao sm{—(

> )+ &emiw} (12)
whereD is the day of the year andhemisis equal to 0 for the northern hemisphere and 1 for the sauther
hemisphere. ParametessandAo depend on model grid resolution and geographical locatooraing

to Table4. Here, tropics are assumed to extend betweés 2fhd 28N and mid-latitudes between 25
and 60 in both hemispheres.

Mid-latitudes |  Tropics

Model grid resolution| gy Ao oy | Ao
15 km 0.220| 0.070| 0.290| O
40 km 0.285| 0.085| 0.370| O
80 km 0.350| 0.100| 0.450| O

Table 4: Values of the two parametess and Ao used in the parametrization of representativity error
for In(RReh+ 1) (see Eq. 11)), for various model grid resolutions and for mid-latitigdand tropics.

In Eqg. (L0), the spatial correlation between rain gauges is parareetids

p(d) = exp[b(M) d™] (12)
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whered is the separation distance (in km) ab@M) andc(M) are coefficients which depend on the
month of the yeanM, according to

b(M) = bo + Ab sin{’—J(MA;bm’) +6nemisn} (13)
M) = c + Ac sin{g (Mo memisn} (14)

Coefficientshy, Ab, my, Amy andcg, Ac, me, Am are given in Tablé, for both mid-latitudes and tropics.
In the tropicsb andc are assumed to be constant throughout the year.

Coefficient| Mid-latitudes| Tropics
bo —0.056 —0.164
Ab —0.036 0
my 4.803 /
Amy, 2.481 /
Co 0.672 0.623
Ac —0.078 0
Me 4711 /
Amg 2.548 /

Table 5: Values of the eight coefficients used to describenthrethly variations of the fitting coefficients
b and c for spatial correlations dh(RReh+ 1) (see Eq.12), Eq. @3) and Eq. (4)).

More details and graphs of the latter functions can be foaridpezet al. (2011).

APPENDIX 3

Precipitation scores used in this study are the EquitabledtiScore (ETS) and the False Alarm Rate
(FAR), defined as follows

H— He

ETS = 15
H+M+F—He (13
F

FAR = — — 16
H+F (16)

whereH is the number of correct hitd/ is the number of misses aridis the number of false alarms.
He is the number of correct hits purely due to random chancesodmputed as

(H+F)(H+M)

He = N (17)

whereN is the sample size.
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