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ABSTRACT

We review state and parameter estimation in the context of ensemble data assimilation methods. A common ap-
proach to estimating model parameters is to augment the state vector with the model parameters, and then to apply
a data assimilation system to the resulting augmented vector. We show that this method proves very effective for
estimating deterministic parameters that affect the mean forecast, but fails utterly for estimating stochastic param-
eters that affect the forecast variance. We propose a new approach based on Generalized Maximum Likelihood
Estimation (GMLE) theory and show that this approach can estimate stochastic parameters in low dimensional,
nonlinear, stochastic dynamical models.

1 Introduction

It has recently been shown that introducing parameterizations that are partly stochastic in coupled
atmosphere-ocean models can enhance forecast skill [1, 2, 3]. However, such parameterizations raise
the important question of how to estimate the parameters within the parameterizations. In general, the
most rigorous approach is to estimate these parameters within a comprehensive data assimilation sys-
tem. There are at least two approaches to doing this: augmentation methods [4] and adjoint methods
[5]. It turns out that neither of these approaches are capable of estimating parameters that control the
variance of a stochastic parameterization. The reasons forthis shortcoming will be discussed in sec.2.
A new method for estimating stochastic parameters based on Generalized Maximum Likelihood Esti-
mation is proposed and applied to simple low-order models insec. 4. The relation between GMLE,
the augmentation method, and adjoint parameter estimationis discussed in sec.5. We conclude with a
summary and discussion of our results.

The material reviewed here has been developed in collaboration with Dr. Xiaosong Yang. Most of the
results of this review have appeared previously in [6] and [7], to which we direct the reader for more
details. The only new result here is the demonstration in sec. 5.1that Generalized Maximum Likelihood
Estimation is effectively equivalent to the augmentation method when the model contains no stochastic
parameters, thereby providing a formal rational for this adhoc method.

2 State and Parameter Estimation

Let xt be the estimated state vector at timet, and let the model parameters estimated at timet be collected
into the vectorβ t . A very common approach to estimating model parametersβ t is to augment the state
vector with the unknown parameters and then apply the resulting augmented vector to a data assimilation
system [8, 9, 10, 4, 11]. That is, we define the new “state vector”

zt =

(

xt

β t

)

, (1)
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and then estimatezt using a standard data assimilation system. This approach requires defining an
evolution model forβ t , which in most applications is assumed the “persistence model”

β t = β t−1. (2)

Other parameter update models include random white noise and first order autoregressive models [12].

The augmentation method has been proven to be a convenient and effective way to estimate certain kinds
of model parameters. A spectacular example is presented in [7], where the augmentation method is used
to estimate the state and parameters of a modified form of the Lorenz-96 model [13]

dxi

dt
= (xi+1−xi−2)xi−1−

xi

1+di
+8+ fi, (3)

wherei = 1,2, . . . ,40, with cyclic boundary conditions, and the “true” values of fi anddi are chosen ran-
domly. Since the model is nonlinear, the covariances are noteasily computable and hence we employ
ensemble methods. However, the parameterdi is multiplicative, and it turns out that applying the aug-
mentation method to multiplicative parameters in the context of an ensemble filter is problematic. The
reason for this difficulty is that multiplicative parameters change the dynamical properties of the model,
and in particular can cause the model to become dynamically unstable for some ensemble members.
Such model instability can be avoided if the usual persistence model for parameter update is replaced
by a temporally smoothed version of the update model

β f
t = αβ f

t−1 +(1−α)βa
t−1, (4)

whereα is a “smoothing” parameter, and superscriptsf anda denote the forecast and analysis values,
respectively. By smoothing the prediction of theβ f

t in time, “wild” excursions into unstable regions of
parameter space are avoided.

To illustrate the method, we solve (3) numerically for a specific initial condition and call this “truth.”
The “observations” are generated by adding Gaussian white noise with zero mean and unit variance
to this truth. Note that there are no observations of the model parameters– all information about the
parameters are derived from observations of the state. In these experiments, we assume that every other
grid point is observed, so that only 20 observations are assimilated. The “forecast model” is (3), but
with fi anddi initially chosen to vanish. Thus, the forecast model differs from the model that generated
the truth because some model parameters differ from those used in the true model. In addition, we apply
covariance localization to both the state and the parameters fi anddi . Such localization is reasonable
when the parameters have a spatial interpretation. We then assimilate the “observations” using ensemble
forecasts generated by the forecast model. The goal is to seeif the assimilation system can recover the
true values of the model parameters. We emphasize the challenging nature of this experiment: there are
only 20 observations, but there are 120 unknown quantities being estimated, namely 40 state variables
x, 40 values offi , and 40 values ofdi .

The performance of the resulting filter is shown as the solid line in fig. 1. For comparison, we also show
the performance of the filter in which the model parameters are fixed to their initial values (“imperfect”)
and to their true values (“perfect”). We see that the filter inwhich model parameters are estimated
produces much more accurate analyses than the filter in whichmodel parameters are fixed at their
imperfect values. Indeed, the analyses are as accurate as ifthe true forecast model had been used to
produce a traditional analysis. Thus, these results illustrate how effective and powerful the augmentation
approach to parameter estimation can be.

3 Estimation of Stochastic Parameters

Let us now apply the augmentation method to the simplest possible stochastic dynamical model

xt = φxt−1 + βwt , (5)
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Figure 1: The root mean square difference between the analyzed and true state of the model(3) as a function of
the ensemble size, where the analyzed state is derived from the augmentation method with smoothed parameter
update equation(4) (solid curve denoted “Augmented”). Also shown is the root mean square difference between
the analyzed and true state in which the model parameters arefixed to their initial values (dot-dashed curve
denoted “Imperfect”) and to their true values (dashed curvedenoted “Perfect”).

where|φ | < 1, w is Gaussian white noise with varianceσ2
w, andβ is a parameter to be estimated. We

call β a “stochastic parameter” because it controls the variance of a stochastic process. The result of
applying the augmentation method to estimateφ andβ separately are shown in left panels of fig.2. We
see that the filter produces accurate estimates of the parameter φ , but fails utterly to produce accurate
estimates of the stochastic parameterβ . The reason for this failure is explained in mathematical detail
in [6]. The essence of the argument is as follows. The distribution of xt for fixed φ , β , andxt−1 is

P(xt |φ ,β ,xt−1) ∼ N(φxt−1,β 2σ2
w). (6)

This equation reveals that variations ofβ affect the ensemble spread, butnot the ensemble mean. As
a result, it can be shown that the covariance betweenxt andβt decays rapidly with time step, and in
fact vanishes if the initial covariance vanishes. This vanishing covariance implies thatxt and βt are
independent (under a normal distribution), and hence the filter cannot estimate one variable based only
on knowledge of the other. This point does not appear to be widely recognized in the literature, as
evidenced by the fact that some papers claim that the augmentation method can estimate stochastic
parameters.

4 Generalized Maximum Likelihood Estimation

It is widely recognized that Bayes’ theorem provides the most general and consistent basis for estimat-
ing unknown quantities. In the context of state and parameter estimation, we want to know the joint
distribution of the state vectorx and parameter vectorβ conditioned on all antecedent observations. For
convenience, we separate observations at the current time step t, denotedo, from the set of all observa-
tions prior to timet, denotedΘ; the complete set of observations would be denoted byoΘ. Then, Bayes’
theorem states

p(β x|oΘ) ∝ p(o|xβ Θ) p(x|β Θ) p(β |Θ)
Posterior likelihood f orecast prior

, (7)

where the traditional name for each term is indicated directly underneath the respective term. Most data
assimilation schemes assume that the observation is some linear combination of the truth, plus noise:

o = Hx+ r, (8)
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Figure 2: Results from four different data assimilation experiments with the AR(1) model(5). Specifically, the
figure shows as a function of assimilation time: (a) the estimated value of the AR-parameterφ using the aug-
mented EnSRF, (b) estimated value ofφ using the maximum likelihood method, (c) estimated value ofβ using the
augmented EnSRF, and (d) estimated value ofβ using the maximum likelihood method. In the case of estimating
β (i.e., panels c and d), two independent assimilation experiments were performed using the same initial condition
but different realizations of noise. The dashed lines indicate the true parameter values, and shading indicates two
standard deviations of the predicted parameter uncertainty.

whereH is a (linear) operator that maps the state space to observations space andr is Gaussian white
noise with zero mean and covariance matrixR. This model immediately implies

p(o|xβ Θ) = (2π)−Mo/2|R|−1/2exp
(

−(o−Hx)T R−1(o−Hx)/2
)

, (9)

whereMo is the dimension of the observation vectoro. Note that neitherβ nor Θ appear in this expres-
sion, indicating thato is conditionally independent of these parameters givenx. The forecast distribution
also is assumed to be normally distributed with meanµ f

x and covariance matrixP f :

p(x|β θ) = (2π)−Mx/2|P f |−1/2 exp
(

−
(

x−µ f
x

)T
P f −1(

x−µ f
x

)

/2
)

, (10)

whereMx is the dimension of the state vectorx. Finally, the prior distribution is assumed to be Gaussian
with meanµ f

β and covariance matrixΣβ :

p(β ) = (2π)−Mβ /2|Σβ |
−1/2exp

(

−
(

β −µ f
β

)T
Σ−1

β

(

β −µ f
β

)

/2

)

, (11)

whereMβ is the dimension of the parameter vectorβ .

A standard result in statistical theory is that as the numberof observations increases, the posterior distri-
bution for the parameters tends toward a normal distribution ([14], p224). Since the mean of a Gaussian
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also maximizes the density, the mean can be estimated by setting the derivative of the posterior to zero
and solving. This resulting mean is called theGeneralized Maximum Likelihood Estimate (GMLE). In
differentiating the posterior distribution, the questionarises as to which terms vary withx andβ . As we
found in the case of the simple stochastic dynamical model (5), model parameters can influence both
the meanµ f

x and the covariance matrixP f . Therefore, the derivative of these terms will appear in the
GMLE.

In practice, it is simpler to deal with -2 times the log of the posterior, which is

−2logp(β x|oΘ) =

(o−Hx)T R−1(o−Hx)+ log|R|+Mo log2π+ Likelihood
(

x−µ f
x

)T
P f −1

(

x−µ f
x

)

+ log|P f |+Mx log2π+ Forecast
(

β −µ f
β

)T
Σ−1

β

(

β −µ f
β

)

+ log|Σβ |+Mβ log2π Prior

. (12)

The generalized maximum likelihood estimate is found by differentiating (12) with respect tox andβ
and setting the result to zero. This procedure yields

2
∂Π
∂x

= −2HTR−1(o−Hx)+2P f −1
(x−µ f

x) = 0 (13)

2
∂Π
∂β j

= −(x−µ f
x)TP f −1∂P f

∂β j
P f −1

(x−µ f
x)+ tr

[

P f −1∂P f

∂β j

]

+2
(

Σ−1
β (β −µ f

β )
)

j
−2

(

∂ µ f
x

∂β j

)T

P f −1(
x−µ f

x

)

= 0, (14)

where the following identities have been used:

∂P f −1

∂β j
= −P f−1∂P f

∂β j
P f −1

and
∂ log|P f |

∂β j
= tr[P f −1∂P f

∂β j
]. (15)

The vectorx that satisfies (13) is called the analysisµa and is given by the standard Kalman Filter
estimate

µa
x = µ f

x + P f HT
(

R + HP f HT
)−1(

o−Hµ f
x

)

. (16)

The fact that the Kalman Filter estimate emerges from maximum likelihood estimation is well known
[15]. Using (16) to eliminatex = µa from (14) gives

− (o−Hµ f
x)

T (R + HP f HT)−1
H

∂P f

∂β j
HT (R + HP f HT)−1

(o−Hµ f
x)

−2

(

∂ µ f
x

∂β j

)T

HT (R + HP f HT)−1
(o−Hµ f

x)

+ tr

[

P f −1∂P f

∂β j

]

+2
(

Σ−1
β (β −µ f

β )
)

j
= 0 (17)

This last equation depends only onβ , and thus can be solved (in principle) for the maximum likelihood
value. Once the maximum likelihood value ofβ is determined, the forecast covariance matrixP f is
specified and the Kalman filter equations can be solved to obtain µa.

The above equations effectively specify the mean analysis.To specify the analysis covariance matrix,
another set of equations must be derived by taking the secondderivative of the posterior distribution. The
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result of this calculation and the synthesis of these equations to formulate an ensemble data assimilation
system is given in [6]. A key step in the new data assimilation scheme is estimation of the derivative
of the background mean and covariance matrix with respect tothe parameters. We propose estimating
these derivatives with ensemble methods. Specifically, we generate an ensemble with fixed parameter
β + ∆β , where∆β is a small perturbation toβ , and another ensemble with fixed parameterβ −∆β .
Then, we estimate the first derivative ofP f as

∂P f

∂β
=

P f (β + ∆β )−P f (β −∆β )

2∆β
, (18)

and similarly forµ f
x . The result of applying the new method to estimatingφ andβ in (5) are shown

in the right panels of fig.2. Comparison with the left panels shows that the new method outperforms
augmentation methods for estimating stochastic parameters.

It should be noted that the above method is general and does not require distinguishing between deter-
ministic or stochastic parameter estimation. In general, deterministic parameter estimation is character-
ized by nonzero∂ µ f

x/∂β , while stochastic parameter estimation is characterized by nonzero∂P f /∂β .

5 Relation Between GMLE and Other Parameter Estimation Methods

Since the above method can estimate either stochastic and deterministic parameters, or both, it is of
interest to understand its relation to other parameter estimation methods.

5.1 Relation Between GMLE and Augmentation Methods

As discussed earlier, the augmentation method is based on defining the augmented state vector (1) and
then applying a standard data assimilation system to the augmented vector. The forecast covariance
matrix for the augmented vector is

P f
z =

(

P f
x P f

xβ
P f

βx P f
β

)

, (19)

whereP f
xβ is the cross-covariance matrix betweenx andβ . In the context of parameter estimation, the

parameter itself is never observed, implying that the mapping operator between model and observation
space is

Hz =
(

Hx 0
)

. (20)

The standard update equation for the mean is

µa
z = µ f

z + P f
zHT

z

(

HzP f
zHT

z + R
)−1(

o−Hzµ f
z

)

. (21)

It is straightforward to substitute (19) and (20) in the mean update equation (21) to derive the mean
update forβ :

µa
β = µ f

β + P f
βxH

T
x

(

HxP f
xHT

x + R
)−1(

o−Hxµ f
x

)

. (22)

This equation therefore defines the mean update for the modelparametersβ in the augmentation method.

The GMLE forβ is the solution to (17). However, we have seen that the augmentation method does not
work for stochastic parameters, so we consider only the casein which no stochastic parameters occur.
This assumption is tantamount to assuming∂P f /∂β = 0, in which case (17) can be manipulated to the
form

µa
β = µ f

β + Σβ
∂ µ f

x

∂β

T

HT (R + HP f HT)−1(
o−Hµ f

x

)

. (23)
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Comparison between (22) and (23) shows that the two expressions would be equal if

Σβ
∂ µ f

x

∂β

T

= P f
βx. (24)

Recall that the forecast is merely the conditional distribution of xt givenβ andxt−1; that is,

µ f
x = E[xt |βxt−1]. (25)

It is a standard result that ifxt ,β ,xt−1 are joint normally distributed, then

E[xt |βxt−1]−µx = P f
xβ Σ−1

β

(

β −µβ

)

+ linear terms inxt−1. (26)

Therefore,
∂ µ f

x

∂β
= Σ−1

β P f
βx, (27)

which is equivalent to (24). Thus, these considerations show that the GMLE of deterministic models
is effectively equivalent to the augmentation method, provided that the covariance of the parameter
ensemble in the augmentation method is identified withΣβ .

5.2 Relation Between GMLE and Adjoint Parameter Estimation

As reviewed in [5], adjoint parameter estimation attempts to estimate the state and parameters that
minimize the cost function

J = (o−Hx)T R−1(o−Hx) +
(

x−µ f
x

)T
P f −1(

x−µ f
x

)

+
(

β −µ f
β

)T
Σ−1

β

(

β −µ f
β

)

. (28)

This expression is precisely the leading terms of (12). If all covariances are independent ofx andβ , then
J is the only part of the log-posterior that depends onx andβ . Thus, the maximum likelihood method
leads to the same cost function that is used in traditional parameter estimation when the covariances are
fixed. However, when the parameter being estimated is stochastic, the covariance matrixP f varies with
the parameter and the full posterior distribution needs to be used. These considerations show that adjoint
methods based on (28) are fundamentally incapable of estimating stochastic parameters, because these
methods ignore variations in forecast covariances due to variations in the model parameters.

6 Limitations

The most challenging aspect of the proposed data assimilation method is that it requires estimating
the derivative of the forecast covariance matrix with respect to the model parameters. We proposed
estimating these derivatives by generating extra ensembles with different (but fixed) parameters, and
then taking suitable finite differences of the resulting sample covariance matrices. For small sample
sizes, the differences between estimated covariance matrices are likely to be dominated by sampling
errors and hence very inaccurate.
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