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ABSTRACT

We review state and parameter estimation in the contextgdrable data assimilation methods. A common ap-
proach to estimating model parameters is to augment treevstator with the model parameters, and then to apply
a data assimilation system to the resulting augmented vab&t® show that this method proves very effective for
estimating deterministic parameters that affect the memstast, but fails utterly for estimating stochastic param
eters that affect the forecast variance. We propose a nemagpbased on Generalized Maximum Likelihood
Estimation (GMLE) theory and show that this approach caimegé stochastic parameters in low dimensional,
nonlinear, stochastic dynamical models.

1 Introduction

It has recently been shown that introducing parameteozstithat are partly stochastic in coupled
atmosphere-ocean models can enhance forecast 5Kd| B]. However, such parameterizations raise
the important question of how to estimate the parametetsimihe parameterizations. In general, the
most rigorous approach is to estimate these parametergwaittomprehensive data assimilation sys-
tem. There are at least two approaches to doing this: augtimmimethods4] and adjoint methods
[5]. It turns out that neither of these approaches are capdldstionating parameters that control the
variance of a stochastic parameterization. The reasorthifoshortcoming will be discussed in sét.

A new method for estimating stochastic parameters basedemer@lized Maximum Likelihood Esti-
mation is proposed and applied to simple low-order modelsem 4. The relation between GMLE,
the augmentation method, and adjoint parameter estimatidiscussed in se&. We conclude with a
summary and discussion of our results.

The material reviewed here has been developed in colldboraith Dr. Xiaosong Yang. Most of the
results of this review have appeared previously@hdgnd [7], to which we direct the reader for more
details. The only new result here is the demonstration inséd¢hat Generalized Maximum Likelihood
Estimation is effectively equivalent to the augmentatiogtimod when the model contains no stochastic
parameters, thereby providing a formal rational for thisqad method.

2 State and Parameter Estimation

Letx; be the estimated state vector at timand let the model parameters estimated at tibecollected
into the vectorB,. A very common approach to estimating model paramglgrs to augment the state
vector with the unknown parameters and then apply the iegudtigmented vector to a data assimilation
system 8, 9, 10, 4, 11]. That is, we define the new “state vector”

«=(5)
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and then estimate using a standard data assimilation system. This approaghires defining an
evolution model forB3;, which in most applications is assumed the “persistenceefiiod

Bt = Bt—l' (2

Other parameter update models include random white nogérahorder autoregressive model<].

The augmentation method has been proven to be a convengeaffantive way to estimate certain kinds
of model parameters. A spectacular example is presenté&d iwliere the augmentation method is used
to estimate the state and parameters of a modified form ofaheniz-96 model13]

%—Tz(&u—xaz)xal—%wﬁfi, 3)
wherei =1 2,...,40, with cyclic boundary conditions, and the “true” valuégjcandd; are chosen ran-
domly. Since the model is nonlinear, the covariances areasity computable and hence we employ
ensemble methods. However, the parameiés multiplicative, and it turns out that applying the aug-
mentation method to multiplicative parameters in the carméan ensembile filter is problematic. The
reason for this difficulty is that multiplicative parametehange the dynamical properties of the model,
and in particular can cause the model to become dynamicaByable for some ensemble members.
Such model instability can be avoided if the usual perststienodel for parameter update is replaced
by a temporally smoothed version of the update model

f f
Bi =aBy y+(1—-a)By, (4)
wherea is a “smoothing” parameter, and superscriptanda denote the forecast and analysis values,

respectively. By smoothing the prediction of tﬂé in time, “wild” excursions into unstable regions of
parameter space are avoided.

To illustrate the method, we solv8)(nhumerically for a specific initial condition and call thigtth.”
The “observations” are generated by adding Gaussian whbite rwith zero mean and unit variance
to this truth. Note that there are no observations of the inpaemeters— all information about the
parameters are derived from observations of the stateebetbxperiments, we assume that every other
grid point is observed, so that only 20 observations arerdlséed. The “forecast model” is3], but
with f; andd; initially chosen to vanish. Thus, the forecast model difisom the model that generated
the truth because some model parameters differ from theskinghe true model. In addition, we apply
covariance localization to both the state and the paramétemdd;. Such localization is reasonable
when the parameters have a spatial interpretation. We gwmiate the “observations” using ensemble
forecasts generated by the forecast model. The goal is tif eeassimilation system can recover the
true values of the model parameters. We emphasize the eb@ltgnature of this experiment: there are
only 20 observations, but there are 120 unknown quantigésgbestimated, namely 40 state variables
X, 40 values off;, and 40 values od.

The performance of the resulting filter is shown as the soigih fig. 1. For comparison, we also show
the performance of the filter in which the model parametezdiged to their initial values (“imperfect”)
and to their true values (“perfect”). We see that the filtewinich model parameters are estimated
produces much more accurate analyses than the filter in whatel parameters are fixed at their
imperfect values. Indeed, the analyses are as accuratdtestifue forecast model had been used to
produce a traditional analysis. Thus, these resultsifitesshow effective and powerful the augmentation
approach to parameter estimation can be.

3 Estimation of Stochastic Parameters

Let us now apply the augmentation method to the simplesilgesstochastic dynamical model

X = QX%_1+ BW, (5)
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Figure 1. The root mean square difference between the aedlgnd true state of the mod@) as a function of
the ensemble size, where the analyzed state is derived fi@@ugmentation method with smoothed parameter
update equatioid) (solid curve denoted “Augmented”). Also shown is the rooamsquare difference between
the analyzed and true state in which the model parameterdied to their initial values (dot-dashed curve
denoted “Imperfect”) and to their true values (dashed cudemoted “Perfect”).

where|@| < 1, w is Gaussian white noise with varianog, and is a parameter to be estimated. We
call B a “stochastic parameter” because it controls the variaf@stochastic process. The result of
applying the augmentation method to estimpt@nd 3 separately are shown in left panels of fig.We
see that the filter produces accurate estimates of the psmagmebut fails utterly to produce accurate
estimates of the stochastic paramgierThe reason for this failure is explained in mathematicaitle
in [6]. The essence of the argument is as follows. The distributio for fixed @, 8, andx_1 is

P(%|®.B,%-1) ~ N(@x_1,B°03). (6)

This equation reveals that variations @faffect the ensemble spread, mt the ensemble mears

a result, it can be shown that the covariance betweemd 3, decays rapidly with time step, and in
fact vanishes if the initial covariance vanishes. This shinig covariance implies thag and 3; are
independent (under a normal distribution), and hence ttex fiannot estimate one variable based only
on knowledge of the other. This point does not appear to belwidkcognized in the literature, as
evidenced by the fact that some papers claim that the augti@ntmethod can estimate stochastic
parameters.

4 Generalized Maximum Likelihood Estimation

It is widely recognized that Bayes’ theorem provides thetngeseral and consistent basis for estimat-
ing unknown quantities. In the context of state and paranmeggmation, we want to know the joint
distribution of the state vectorand parameter vectd@ conditioned on all antecedent observations. For
convenience, we separate observations at the current tépég slenoted, from the set of all observa-
tions prior to timet, denotedd; the complete set of observations would be denoted@yThen, Bayes’

theorem states
P(Bx|0®) O p(oxBO) p(x|fO) Pp(B|O) )
Posterior likelihood forecast prior

where the traditional name for each term is indicated directderneath the respective term. Most data
assimilation schemes assume that the observation is snea fombination of the truth, plus noise:

0= HXx+r, (8)
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Figure 2: Results from four different data assimilation exments with the AR(1) modé&). Specifically, the
figure shows as a function of assimilation time: (a) the estéd value of the AR-parameterusing the aug-
mented EnSRF, (b) estimated valuepafsing the maximum likelihood method, (c) estimated valy®using the
augmented EnSRF, and (d) estimated valu@ asing the maximum likelihood method. In the case of estigati
B (i.e., panels c and d), two independent assimilation expenits were performed using the same initial condition
but different realizations of noise. The dashed lines iatdi¢he true parameter values, and shading indicates two
standard deviations of the predicted parameter uncenaint

whereH is a (linear) operator that maps the state space to obsmrsagpace andis Gaussian white
noise with zero mean and covariance maRixThis model immediately implies

p(olxB®) = (2m) M/2|R|2exp(~ (0~ HX)T R * (0~ Hx) /2), (©)

whereM, is the dimension of the observation vectomMNote that neithef nor © appear in this expres-
sion, indicating that is conditionally independent of these parameters giveérhe forecast distribution
also is assumed to be normally distributed with mﬁérand covariance matriR':

p(x|BO) = (2 ™/2P"| ™ 2exp(— (x— i) TP (x— pf) /2) (10)

whereMy is the dimension of the state vectarFinally, the prior distribution is assumed to be Gaussian
with meanyu ; and covariance matriXg:

-
p(B) = <2n>“”ﬁ/2|zp|1/2exp(— (B—np) =5 (B—u) /2> : (11)
whereMg is the dimension of the parameter vecfor

A standard result in statistical theory is that as the numbebservations increases, the posterior distri-
bution for the parameters tends toward a normal distribufid4], p224). Since the mean of a Gaussian
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also maximizes the density, the mean can be estimated liygstite derivative of the posterior to zero
and solving. This resulting mean is called tBeneralized Maximum Likelihood Estimate (GMLE)
differentiating the posterior distribution, the questamises as to which terms vary wixrand3. As we
found in the case of the simple stochastic dynamical mdsjelnfodel parameters can influence both
the meanu; and the covariance matriX". Therefore, the derivative of these terms will appear in the
GMLE.

In practice, it is simpler to deal with -2 times the log of thesferior, which is

—2logp(Bx|0®) =

(0—Hx)"R 1 (0—Hx)+log|R|+Molog2r+  Likelihood
T
(x le) P 1<x ux>+log]Pf\+MxlogZH+ Forecast (12)
(B ”B) <B _“B) +log|Zg| + Mglog 2 Prior

The generalized maximum likelihood estimate is found bfed&ntiating (2) with respect tox and 3
and setting the result to zero. This procedure yields

on

25 =—2HTR (0~ Hx) +2P tx—pfy =0 (13)
or AT f—1(?Pf -1 f |: f— 1an:|
2—=—(X— P "—P “(x— +1tr|P

f o ! -1

+2<251(B_“ﬁ))j _2<0B' ) pf (x—ui) =0, (14)
j
where the following identities have been used:

opf ! 10Pf 4 dlog|P'| (—10P"

=—P "—P and — =tr|lP . 15

The vectorx that satisfies3) is called the analysigt, and is given by the standard Kalman Filter
estimate L

pe=pf +PTHT (R+HPTHT) ™ (0—Hu). (16)
The fact that the Kalman Filter estimate emerges from mamintikelihood estimation is well known
[15]. Using (16) to eliminatex = 1, from (14) gives

—(0—HuHT (R+HPHT)" Hg—;HT(RJrHPH) (o—Hpu)
J
.
J Ux f -1 f
_2<0Bj> HT (R+HP'HT) " (0—Hpy)
-10 f
+tr[Pf 0BJ:|+2< (B—uﬁ))j:o (17)

This last equation depends only Bnand thus can be solved (in principle) for the maximum liketid
value. Once the maximum likelihood value Bfis determined, the forecast covariance maRixis
specified and the Kalman filter equations can be solved taropta

The above equations effectively specify the mean analyi@isspecify the analysis covariance matrix,
another set of equations must be derived by taking the seatmmghtive of the posterior distribution. The
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result of this calculation and the synthesis of these egustio formulate an ensemble data assimilation
system is given inq]. A key step in the new data assimilation scheme is estimaifahe derivative

of the background mean and covariance matrix with respettetparameters. We propose estimating
these derivatives with ensemble methods. Specifically, eneigate an ensemble with fixed parameter
B+ AB, whereAB is a small perturbation t@, and another ensemble with fixed parame8er AS.
Then, we estimate the first derivative Rf as

oP"  PY(B+AB)—PI(B—AB)
B 203 ’

(18)

and similarly foru;. The result of applying the new method to estimatipmgnd 3 in (5) are shown
in the right panels of fig2. Comparison with the left panels shows that the new methpletiorms
augmentation methods for estimating stochastic parameter

It should be noted that the above method is general and deesauire distinguishing between deter-
ministic or stochastic parameter estimation. In geneigtkmninistic parameter estimation is character-
ized by nonzero?uf(/dB, while stochastic parameter estimation is characterizeabobzerodP' /3.

5 Reéation Between GMLE and Other Parameter Estimation M ethods

Since the above method can estimate either stochastic dedmilgstic parameters, or both, it is of
interest to understand its relation to other parametemasibn methods.

5.1 Relation Between GMLE and Augmentation Methods

As discussed earlier, the augmentation method is basedfimindethe augmented state vectd) and
then applying a standard data assimilation system to thenentgd vector. The forecast covariance

matrix for the augmented vector is
f f
P P

Bx
WhereP;ﬁ is the cross-covariance matrix betweeand . In the context of parameter estimation, the
parameter itself is never observed, implying that the nragppperator between model and observation
space is
H,=(Hx 0). (20)

The standard update equation for the mean is
-1
pe=pl+PIHI (HPIH] +R) ™ (0—Hapuf). (21)

It is straightforward to substitutel®) and @O) in the mean update equatio@l1) to derive the mean
update for:

f f -1
Mg = Mg +PLHT (HPIHT +R) ™ (0— Hyptl). (22)
This equation therefore defines the mean update for the mpadaineterg in the augmentation method.

The GMLE for 3 is the solution to17). However, we have seen that the augmentation method does no
work for stochastic parameters, so we consider only the icastaich no stochastic parameters occur.
This assumption is tantamount to assumaRf /d = 0, in which case17) can be manipulated to the
form

i T
ug—u;+zﬁ‘2‘g HT (R+HPTHT) ™ (0—Hy). (23)
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Comparison betweer2®) and @3) shows that the two expressions would be equal if

.
S5 ’;’;3; ~PL. (24)
Recall that the forecast is merely the conditional distidouof x; given 8 andx;_1; that is,
Hy = E]x|Bx 1. (25)
It is a standard result thatX, 3,x;_1 are joint normally distributed, then
EX|Bxt_1] — Uy = P;BZE1 <B — uﬁ) + linear terms inx;_1. (26)
Therefore, f
’;—’;3* =3P, (27)

which is equivalent toZ4). Thus, these considerations show that the GMLE of detastiinmodels
is effectively equivalent to the augmentation method, fghed that the covariance of the parameter
ensemble in the augmentation method is identified Wjgh

5.2 Relation Between GMLE and Adjoint Parameter Estimation

As reviewed in §], adjoint parameter estimation attempts to estimate thte sind parameters that
minimize the cost function

J = (0-HX)'RYo-Hx) + (x—p)) P (x—pf) + (B—u;)T251(B—u;). (28)

This expression is precisely the leading termsl@) (If all covariances are independentodnd3, then

Jis the only part of the log-posterior that dependsxaand 3. Thus, the maximum likelihood method
leads to the same cost function that is used in traditionarpater estimation when the covariances are
fixed. However, when the parameter being estimated is sstichthe covariance matriR’ varies with

the parameter and the full posterior distribution need®toded. These considerations show that adjoint
methods based or2§) are fundamentally incapable of estimating stochastiaipaters, because these
methods ignore variations in forecast covariances duertatians in the model parameters.

6 Limitations

The most challenging aspect of the proposed data assionilatiethod is that it requires estimating
the derivative of the forecast covariance matrix with respge the model parameters. We proposed
estimating these derivatives by generating extra ensambith different (but fixed) parameters, and
then taking suitable finite differences of the resulting pkmtovariance matrices. For small sample
sizes, the differences between estimated covarianceaestare likely to be dominated by sampling
errors and hence very inaccurate.
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