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ABSTRACT 

As far as representation of deep moist convection is concerned, only two kinds of model physics are used at 
present: highly parameterized as in the conventional general circulation models (GCMs) and explicitly 
simulated as in the cloud-resolving models (CRMs). Ideally, these two kinds of model physics should be unified 
so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. 
ROUTE I for the unification continues to follow the parameterization approach, but uses a unified 
parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and 
CRMs. A preliminary design and partial evaluation of the unified parameterization is presented. ROUTE II for 
the unification follows the “multi-scale modeling framework (MMF)” approach, which takes advantage of 
explicit representation of deep moist convection by CRMs. The Quasi-3D (Q3D) MMF is an attempt to broaden 
the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using 
a network of cloud-resolving grids with large gaps. An outline of the Q3D algorithm and highlights of 
preliminary results are presented. 

1. Introduction  

The rationale for the main theme of this paper is our recognition that the progress of our ability to 
represent cloud processes in climate models has been unacceptably slow (Randal et al. 2003). In 
particular, as far as representation of deep moist convection is concerned, only two kinds of model 
physics are used at present: highly parameterized and explicitly simulated. Correspondingly, besides 
those models that explicitly simulate turbulence such as Direct Numerical Simulation (DNS) and 
Large Eddy Simulation (LES) models, we use two discrete families of atmospheric models as shown 
in Fig.1: one is represented by the conventional general circulation models (GCMs) and the other by 
the cloud-resolving models (CRMs). In this figure, the abscissa is the horizontal resolution and the 
ordinate is a measure for the degree of parameterization, such as the reduction in the degrees of 
freedom, increasing downwards. These two families of models have been developed with applications 
to quite different ranges of horizontal resolution in mind.  

Naturally, there have been a number of studies examining a broader applicability of each family as 
shown by the horizontal arrows in Fig. 1: applicability of CRMs to lower resolutions and that of 
GCMs to higher resolutions. Weisman et al. (1997), for example, examined the applicability of a 
CRM to squall-line simulations for midlatitude-type environments with resolutions between 1 and 12 
km, and concluded that with resolutions coarser than 4 km, the evolution is characteristically slower 
and the resultant mature mesoscale circulation is stronger. 
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Figure 1: Two families of atmospheric models with different model physics 

With respect to the applicability of GCMs to high resolutions, the work of Williamson (1999) is 
particularly intriguing. The paper shows that, when the horizontal resolution of the NCAR CCM2 is 
increased for both the dynamics and physical parameterizations, the upward branch of the Hadley 
circulations increases in strength and there is no sign of convergence. When the horizontal resolution 
is increased for the dynamics but not for the parameterizations, the solution converges. But the 
converged state is similar to that obtained with the coarse resolution for both so that the increased 
resolution for the dynamics is wasted. Together with other evidence, he concludes, “the results raise a 
serious question – are the parameterizations correctly formulated in the model? . . . The 
parameterizations should explicitly take into account the scale of the grid on which it is based.” A 
similar question on parameterization was raised by Skamarock and Klemp (1993) in the context of 
adaptive grid refinement. Also, analyzing the impact of horizontal resolution increases on the error 
growth of ECMWF forecasts, Buizza (2010) suggested that rather than resolution, it is model 
improvements that might lead to better predictions and longer predictability limits.  

Strictly speaking, truncation of a continuous system can be justified only when the resulting error can 
be made arbitrarily small by using a higher resolution. Our problem is, therefore, more demanding 
than just a convergence; the GCM should converge to a physically meaningful high-resolution model 
such as a CRM applied to the global atmosphere. This requires that both the dynamics and physics of 
GCMs converge to those of the CRM as shown schematically by the dashed curve in Fig. 1. If the 
GCM and CRM share the same dynamics core, which must necessarily be nonhydrostatic, we expect 
that the convergence is not an issue as far as the model dynamics is concerned. Unfortunately, the 
same is not true for the conventional formulations of model physics, especially when cloud processes 
are involved.  

Figure 2 schematically illustrates the qualitative difference of model physics between the two families 
of models. For a given observed large-scale condition, we can identify the apparent heat source, 1 Q , 

and the apparent moisture sink, 2 Q , from the residuals in large-scale heat and moisture budgets (e.g., 
Yanai et al. 1973). Here the heat source and moisture sink refer to the source of the sensible heat,
 pc T , and the sink of the latent heat,  Lq , respectively. The left panel of Fig. 2 schematically shows 

typical profiles of 1 Q , 2 Q  and 1 2 Q Q−  for disturbed tropical conditions. The difference 1 2 Q Q−  gives 
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the apparent moist static energy source. Here the moist static energy is defined by  pc T Lq gz+ + , 

where  gz  is the geopotential energy. As we can see in the figure, the profile of 1 2 Q Q−  typically has 
negative values in the lower troposphere and positive values in the middle to upper troposphere, 
suggesting the dominant role of vertical eddy transport of moist static energy. Since GCMs must 
produce this type of profiles when deep moist convection is dominant, we call this type the “GCM-
type”.  

 

Figure 2: Schematic illustration of typical vertical profiles of moist static energy source under 
disturbed tropical conditions. 

In contrast, the local cloud microphysical processes produce practically no moist static energy 
source/sink except near the freezing level. This is because moist static energy is conserved under 
moist-adiabatic processes and thus there is no significant source/sink of moist static energy above the 
surface except where the ice phase is involved. Within updrafts and downdrafts/precipitation, there 
are sources immediately above the freezing level due to freezing and sinks immediately below that 
level due to melting, respectively. These are illustrated in the right panel of Fig. 2. Cloud 
microphysics in CRMs is expected to produce this type of profiles, which we call the “CRM-type”.  

As Arakawa (2004) emphasized, it is important to recognize that any space/time/ensemble average of 
the CRM-type profiles does not give a GCM-type profile. This means that the cumulus 
parameterization problem is more than a statistical theory of cloud microphysics. Also, it is not a 
purely physical/dynamical problem because it is needed as a consequence of mathematical truncation. 
Finally, it is not a purely mathematical problem since the use of a higher resolution or an improved 
numerical method does not automatically improve the result. A complete theory for cumulus 
parameterization must address all of these aspects in a consistent manner including the transition 
between the GCM-type and CRM-type profiles.  

We can think of two routes to achieve the unification of the two families of models. ROUTE I 
continues to follow the parameterization approach, but uses a unified parameterization with which the 
GCM converges to a global CRM (GCRM) as the grid size is refined. ROUTE II, on the other hand, 
replaces the parameterization of deep moist convection with a partial simulation of cloud-scale 
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processes by CRMs and formulates the coupling of GCM and CRMs in such a way that the coupled 
system converges to a GCRM as the GCM grid size is refined.  

The rest of this paper is organized as follows: Section 2 discusses ROUTE I, which follows the 
unified parameterization approach, while section 3 discusses ROUTE II, which follows the coupled 
GCM/CRM approach. Finally, section 4 presents summary and further discussions.  

2. ROUTE I: the unified parameterization 

2.1. Identification of the problem 

The starting point of Route I is the fact that most of the existing cumulus parameterization schemes 
including Arakawa an Schubert (1974) assume 1σ << , either explicitly or implicitly, where σ  is the 
fractional area covered by all convective clouds in the grid cell. With this assumption, the temperature 
and water vapor to be predicted are essentially those for the cloud environment. Then, as illustrated by 
the red arrows in Fig. 3(a), relevant physical processes are the “cumulus-induced” subsidence in the 
environment and the detrainment of cloud air into the environment. [Here it is important to note that 
the “cumulus-induced subsidence” is a hypothetical subsidence. The true subsidence is the sum of the 
blue and red arrows in Fig. 3(a), which tend to compensate each other under normal circumstances. In 
such a case, the true subsidence occurs in another grid cell, which may well be far away, whose 
position is determined by the grid-scale dynamics, not by the parameterization.] 

As the grid size becomes smaller, however, the cloud may eventually occupy the entire grid cell so 
that there is no “environment” within the same grid cell. Then, as Fig. 3(b) indicates, the probability 
density function of σ  becomes bimodal in this limit, consisting of 1σ =  and 0σ =  (Krueger 2002, 
Krueger and Luo 2004). It is then clear that a key to open ROUTE I is to include a transition to this 
limit by eliminating the assumption of 1σ << . 

 

Figure 3:  Schematic illustration of circulations associated with clouds for (a) coarse and (b) fine 
resolutions. 

To visualize the problem raised above, we have analyzed datasets simulated by a CRM as Krueger 
(2002) and Krueger and Luo (2004) did. The simulations we used are performed by applying the 3D 
anelastic vorticity equation model of Jung and Arakawa (2008) to a horizontal domain of 512 km × 
512 km with a 2 km horizontal grid size. Other experimental settings are similar to the benchmark 



ARAKAWA, A. ET AL.: TOWARD UNIFICATION OF GENERAL CIRCULATION AND CLOUD-
RESOLVING MODELS 

 

Workshop on Non-hydrostatic Modelling, 8 – 10 November 2010 21 

simulations used by Jung and Arakawa (2010). Two 24-hour simulations are made, one with and the 
other without background shear. Figure 4 shows snapshots of vertical velocity w at 3km height at the 
end of these simulations. As is clear from these snapshots, the two simulations represent quite 
different cloud regimes. For the analysis presented in this paper, datasets are taken from the last 2-
hour period of each simulation with 20-min intervals. 

 

Figure 4: Snapshots of vertical velocity w at 3 km height at the end of two simulations with and 
without background shear. 

To analyze the resolution dependency of the statistics of data, we divide the original 512 km domain 
into sub-domains of equal size. The selected side lengths of the sub-domains are 1512 km / 2n

nd −= ,

 2, 3, 4, . . , 9n = . The original domain can then be identified by  1n = . Figure 5 shows the original 
and examples of the sub-domains. In the analysis presented here, grid points that satisfy w > 0.5 m/s 
are considered as “cloud points”. 

 

Figure 5:  The original domain and examples of the sub-domains used for analysis. 

Figure 6 shows σ  at 3km height averaged over all cloud-containing (i.e.,  0σ ≠ ) sub-domains and its 

standard deviation against the sub-domain sizes  nd  for the shear case (a) and non-shear case (b). It is 

clear that for both cases, 1σ <<  can be a good approximation only for coarse resolutions, say,  nd ≥ 32 

km, and σ  tends to increase as  nd  decreases and becomes 1 for  nd  = 2 km, which is the grid size 
used by the CRM. The standard deviation is very large for high resolutions, but it is expected since 
there is no reason to believe that σ  is a unique function of  nd . In spite of the large standard deviation, 
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however, the tendency toward a bimodal distribution consisting of 1σ =  and 0σ =  can be seen for 
high resolutions. We see that σ  tends to be larger for the shear case than the non-shear case. The 
number of cloud-containing sub-domains is, however, smaller for the shear case (not shown).  

 

Figure 6: Dependence of the mean fractional cloud cover at 3 km height on the sub-domain size 
and its standard deviation. 

2.2. Expressions for vertical eddy transport 

Recall that the vertical eddy transport of moist static energy is responsible for the difference between 
the GCM-type and CRM-type profiles illustrated with Fig. 2. We now attempt to formulate the 
vertical eddy transport of thermodynamic variables in a way that is applicable to any values of σ  
including 1. In this paper, we consider the vertical eddy transport of water vapor mixing ratio, q, as an 
example. As is commonly done in conventional cumulus parameterization schemes, we assume that 
the cloud and environment values of q, denoted by  cq  and  q , respectively, are horizontally uniform 

individually. The existence of convective-scale downdrafts is ignored at this stage.  

Let an overbar denote the mean over the entire area of grid cell. Then,  

  ( ) 1cq q qσ σ= + − . (1) 

Further let  cw  and  w  be the averages of w over the clouds and the environment, respectively. Then, 

  ( )1cw ww σ σ= + −  (2) 

and 

  ( )1c cq w q wqw σ σ= + − . (3) 

from (3) with (1) and (2), we find  

  ( ) ( ) ( )1 c cq wq w w q qw σ σ− = − − − . (4) 
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The left hand side of (4) is the vertical eddy transport of q per unit horizontal area and density, which 
we simply call the “eddy transport” of q. As expected, the eddy transport vanishes for  0σ =  and
 1σ = . The expression (4) is, however, not convenient to use due to the appearance of the 
environment values,  w  and  q , which are not well defined for situations 1σ  . We thus eliminate 

these variables using (1) and (2). After some manipulations, we find  

  ( )( )1 c cq wq w w q qw
σ

σ
− = − −

−
. (5) 

2.3. Requirement for convergence 

We now introduce the requirement that the parameterization converge to explicit simulations of cloud 
processes as  1σ →  and thus  

  
1

lim cw w
σ →

=    and   
1

lim cq q
σ →

= . (6) 

This means that both  cw w−
 
and  cq q−  are the order of 1 σ−  (or higher) so that ( )( )c cw w q q− −  is 

the order of ( )2 1 σ−  (or higher) near this limit. The simplest choice to satisfy this requirement is  

  ( )( ) ( ) ( )( )2 **1c c c cw w q q w w q qσ− − = − − − , (7) 

where an asterisk represents a value expected when 1σ << .  Substituting (7) into (5), we obtain 

  ( )( )( )**1 c cq wq w w q qw σ σ− = − − −  . (8) 

Equation (8) represents the basic structure of the unified parameterization. 

For the convenience in practical applications, we rewrite (5) as follows. Using * cw  and * cq  for  cw  and

 cq  in (5), respectively, the vertical eddy transport expected when 1σ <<  is given by  

  ( ) ( )( )** *
1 c cq wq w w q qw

σ
σ

− = − −
−

. (9) 

Then (8) may be rewritten as 

  ( ) ( )2 *1q wq q wqw wσ− = − − . (10) 

When  σ  is finite, (10) shows that the actual eddy transport is less than ( )* q wqw −  due to the factor

( )2 1 σ− , giving  0q wqw − =  for  1σ = . To complete the design of the unified parameterization, we 

must decide on ways to determine  σ  and ( )* q wqw − . 
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2.4. A partial evaluation of the unified parameterization 

Before proceeding to the design of algorithms to determine  σ  and ( )* q wqw − , we present a partial 

evaluation of the unified parameterization again using the dataset mentioned in subsection 2.1. The 
evaluation is designed to examine the validity of the formal structure of the parameterization in a way 

independent of the errors from particular choices of the algorithms to determine  σ  and ( )* q wqw − .  

Let X be a variable defined for each sub-domain. For a compact presentation of the results, we define 
a weighted ensemble average  X  by the average of  Xσ  over all sub-domains divided by the average 

of  σ  itself. We use the weight  σ  to reduce or eliminate the contribution from sub-domains that have 
few or no clouds. The weighted ensemble averages of (5), (7) and ( ) 1σ σ− × (7) are 

  ( )( )1 c cwq wq w w q qσ
σ

− = − −
−

, (11) 

  ( )( ) ( ) ( )( )2 **1c c c cw w q q w w q qσ− − = − − −  (12) 

and 

  ( )( ) ( ) ( )( )* *1
1 c c c cw w q q w w q qσ σ σ

σ
− − = − − −

−
, (13) 

respectively. In deriving (12) and (13), we have ignored the difference of ( )( )**c cw w q q− −  between 

the sub-domains because it represents a hypothetical property of clouds (relative to the mean field) for 

the situation  1σ << . Eliminating ( )( )** c cw w q q− −  between (12) and (13) and using the result in (11), 

we obtain  

  
( )

( )
( )( )2

1

 1
c cwq wq w w q q

σ σ

σ

−
− = − −

−
. (14) 

The partial evaluation presented here specifically examines the validity of the relation (14) using the 
values diagnosed from the dataset. The right hand side of (14) depends on the resolution through the 

two factors, ( ) ( )2 1 1σ σ σ− −  and ( )( ) c cw w q q− − .  The open triangles in Fig. 7 show the 

dependency through the latter by replacing  σ  in the former with prescribed constant values, 0.1~0.5. 
Not surprisingly, this quantity strongly depends on the value of  σ .  For coarse resolutions with small 
values of  σ , it is rather insensitive to the sub-domain size  nd , but it rapidly decreases from the 

medium to high resolutions as  cw  and  cq  become closer to  w  and  q . As expected, it eventually 

vanishes when  nd  becomes 2 km, which is the grid size of the CRM used. It is interesting to see that 
the non-shear case transports water vapor more efficiently than the shear case. 
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Figure 7: Weighted ensemble average of the eddy transport of water vapor at 3 km height 
estimated with the right hand side of (14) using a prescribed constant σ.  

The open circles in Fig. 8 show the values of  wq wq−  at 3 km height estimated with the right hand 

side of (14) using  σ  diagnosed from the dataset. Drastic differences of the resolution dependence 
from those shown in Fig. 8 are apparent. The qualitative differences for coarse resolutions are due to 

the small values of  σ . For verification, the values of  wq wq−  directly calculated from the dataset 

without using the assumptions behind (5) and (7) are shown by the solid circles. Amazingly, the 
resolution dependence of the estimated values is very similar to that of the directly calculated values. 
The magnitude of the estimated values are, however, systematically smaller than that of the directly 
calculated values. This is not surprising in view of the various idealizations used, such as neglecting 
convective downdrafts and possible coexistence of different types of clouds and different phases of 
cloud development. In any case, the results presented here underscore the importance of including the 
effect of variable  σ  in cumulus parameterization. 

 

Figure 8: Weighted ensemble average of the eddy transport of water vapor at 3 km height. Open 
circles: estimated with the right hand side of (14) using diagnosed σ. Closed circles: Diagnosed 
from data using the left hand side of (14). 
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2.5. Determination of σ 

The closure of conventional cumulus parameterization schemes determines the apparent source of 

thermodynamic prognostic variables. For q, for example, it is given by ( ) /qS q wq zwρ ρ− ∂ − ∂ , 

where  qS  is the true source of q per unit mass due to sub-grid cloud processes and  ρ  is the density. 

From this together with  qS  determined by the parameterization, the eddy transport  q wqw −  can be 

calculated. Let the value of  q wqw −  determined in this way be ( )adj
 q wqw − . Here the suffix adj is 

used because most of the conventional schemes can be interpreted as adjustment schemes (Arakawa 

2004). We then assume that ( )adj
 q wqw −  can be used for ( )* q wqw −  in (9) so that  σ is given by 

  
( )

( ) ( )( )
adj

*
adj

*c c

q wqw

q wq w w q qw
σ

−
=

− + − −
. (15) 

The unified parameterization uses  σ  determined in this way. We see that the condition  0 1≤ σ ≤  is 

automatically satisfied by (15), as long as ( )adj
 q wqw −  and ( )( )** c cw w q q− −  have the same sign, 

with  0σ →  as ( )adj
 0q wqw − →  and  1σ →  as ( )adj

 q wqw − → ∞ .  

As far as the basic reasoning is concerned, the above approach to determine  σ  is in parallel to 
Emanuel (1991) in the sense that the following two information are combined: vertical profiles of 
cloud properties determined by a cloud model and the total vertical transport necessary to maintain a 
quasi-equilibrium. 

2.6. Anticipated impact of the unified parameterization and remaining problems 

In this section, we have presented a new framework for cumulus parameterization in which the result 
of parameterization converges to an explicit simulation of cloud processes as the resolution increases. 
Thus the new parameterization unifies parameterizations in GCMs and those in CRMs as far as 
representation of deep moist convection is concerned. With the unified parameterization, the error of 
the GCM solution in satisfying the CRM equations can be made arbitrarily small by using a higher 
resolution. In this way, multi-scale numerical methods such as multiply-nested grids and adaptive 
mesh refinement (AMR) methods, for example, can be used with no problem in model physics. We 
emphasize that this drastic broadening of the applicability of cumulus parameterization can be 
achieved by a relatively minor modification of the conventional mass-flux based parameterization 

schemes. However, a good cloud model to determine ( )( )** c cw w q q− −

 

and a reasonable closure 

applicable to coarse resolutions to determine the magnitude of ( )adj
 q wqw −  are prerequisites to the 

success of the unified parameterization. Also, the dynamics and formulations of cloud microphysics, 
turbulence and radiation must be such that they are applicable to a wide range of resolutions.  



ARAKAWA, A. ET AL.: TOWARD UNIFICATION OF GENERAL CIRCULATION AND CLOUD-
RESOLVING MODELS 

 

Workshop on Non-hydrostatic Modelling, 8 – 10 November 2010 27 

There are two main sources for uncertainty in the results of the unified parameterization: one is the 

non-deterministic nature of the closure, as discussed by Xu and Arakawa (1992), and the other is 

estimating cloud properties with huge dimensions by a simple cloud model. This may suggest the 

necessity of including a stochastic component in the parameterization. We note, however, that such a 

component is not needed near the limit of  1σ →  because the explicit simulation by the CRM can act 

as a random-process generator by itself.    

When it is successfully implemented, the practical merits of the unified parameterization will be great. 

But we should remember that it has a limit as a “parameterization”, which inevitably requires a 

number of idealizations to reduce the degrees of freedom. When sufficient computer resources are 

available, therefore, we should pursue the other approach, ROUTE II, for more realistic numerical 

weather prediction and climate simulations as discussed in the next section.  

3. Route  II: Quasi-3D Multiscale Modeling Framework 

We have developed Quasi-3D Multi-scale Modeling Framework (Q3D MMF) following ROUTE II 

for unification of GCMs and CRMs through explicitly simulating the details of cloud processes at 

least partially. The Q3D MMF is described in detail by Jung and Arakawa (2010) so that this paper 

gives only a brief outline of the framework and some highlights of its preliminary results.  

 

Figure 9: Examples of grid-point arrays used in the Prototype and Q3D MMFs. 

MMF recognizes that we currently have two kinds of model physics, the GCM type and the CRM 

type. Correspondingly, MMF uses two grid systems, one for the GCM and the other for the CRM. 

Model physics is almost entirely determined by the statistics of CRM solutions, replacing the 

conventional parameterizations in GCMs. In contrast to many other multi-scale numerical methods, 

MMF gains computing efficiency by sacrificing full representation of cloud-scale 3D processes. This 

is motivated by the fact that 2D CRMs are reasonably successful in simulating thermodynamical 

effects of deep moist convection. The prototype MMF is called “Cloud Resolving Convective 



ARAKAWA, A., ET AL.: TOWARD UNIFICATION OF GENERAL CIRCULATION AND CLOUD-
RESOLVING MODELS 

 

28 Workshop on Non-hydrostatic Modelling, 8 – 10 November 2010 

Parameterization” (Grabowski and Smolarkiewicz 1999; Grabowski 2001) or “Super 

Parameterization” (Khairoutdinov and Randall 2001; Randall et al. 2003). It replaces the cloud 

parameterization by a 2D CRM embedded in each GCM grid cell as shown in Fig. 9(a) for a portion 

of the horizontal domain. The MMF is still called “parameterization” because it inherits the structure 

of conventional GCM; i.e., the CRM is forced by the GCM and the GCM recognizes only the domain-

averaged values of the CRM results. 

The Quasi-3D (Q3D) MMF we have developed is an attempt to broaden the applicability of the 

prototype MMF without necessarily using a fully three-dimensional CRM. The horizontal domain of 

the Q3D MMF consists of a network of perpendicular sets of channels, each of which contains grid-

point arrays as shown in Fig. 9(b). The grey areas in the figure represent the gaps of the network. For 

computing efficiency, the gaps are chosen to be large by using a narrow width for the channels, barely 

enough to cover a typical cloud size in the lateral direction. Thus, a channel may contain only a few 

grid-point arrays, whose minimum number required for resolving local 3D processes is two as in Fig. 

9(b). 

 

Figure 10: Schematic illustration of the convergence of the Q3D MMF grid to a 3D CRM grid. 

Because the channels are so narrow, it is crucial to select a proper lateral boundary condition to 
realistically simulate the statistics of cloud and cloud-associated processes. Among the various 
possibilities, a periodic lateral boundary condition is chosen for the deviation from a background field 
obtained through interpolation from GCM grid points. We design the coupling of the two grid systems 
in such a way that the deviation vanishes as the GCM grid size approaches that of the CRM.  Thus the 
whole system of the Q3D MMF can formally converge to a fully 3D global CRM as schematically 
shown in Fig. 10. Consequently, the horizontal resolution of the GCM can be freely chosen depending 
on the objective of application without changing the formulation of model physics. For more details 
of the Q3D algorithm, see Jung and Arakawa (2010).  
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To evaluate the Q3D CRM in an efficient way, idealized experiments are performed using a small 
horizontal domain. First, benchmark simulations are made using a fully 3D CRM. Then a Q3D 
simulation is made for the situation corresponding to each of the benchmark simulations. The grid 
used in these tests is similar to that in the central GCM grid cell of Fig. 9(b), consisting of only one 
pair of perpendicular channels with only two grid points across each channel. Since the horizontal 
domain is so small, the GCM component is made inactive in these tests. Thus the GCM grid point 
values are taken from the benchmark simulations after horizontal smoothing. These values are then 
interpolated to provide the background field. With the domain size and the CRM grid size used, the 
ratio of the number of grid points of the Q3D and 3D CRMs is only 3%. In the figures shown below, 
red and black lines represent the results of the Q3D and corresponding benchmark (BM) simulations, 
respectively, averaged over the respective horizontal domain. 

Figure 11 shows time series of precipitation, evaporation and sensible heat flux at the surface. The 
Q3D results fluctuate more than those of the BM because the sample size of the former is much 
smaller than that of the latter. The time averages of the Q3D results are, however, quite close to those 
of the BM. 

 
Figure 11:  See text for explanation. 

The upper panels of Fig. 12 show vertical profiles of the time- and domain-averaged vertical 
transports of potential temperature and water vapor mixing ratio. The vertical transport of potential 
temperature, which is a measure of the buoyancy generation of kinetic energy, is slightly under-
predicted by the Q3D. On the other hand, the vertical transport of water vapor shows an almost 
perfect agreement with the BM. The lower panels of Fig. 12 show vertical profiles of the time- and 
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domain-averaged transports of the horizontal components of vorticity. The positive sign in the figure 
is chosen to represent the acceleration of mean flow. These figures show that the transports of 
vorticity components are also well simulated in the Q3D runs. This is especially encouraging because 
it indicates that the Q3D CRM simulates the cloud-scale 3D processes reasonably well in spite of the 
use of the highly limited number of grid points across the channels.  

 

 

Figure 12: See text for explanation. 

More details of these tests are shown in Jung and Arakawa (2010) including comparisons with 2D and 
coarse 3D runs. Overall, Route II with the Q3D CRM is extremely promising since its results are 
close to that of a 3D CRM while computationally it is more efficient by almost two orders of 
magnitude.  

4. Summary and conclusion 

As far as representation of deep moist convection is concerned, conventional GCMs and CRMs have 
quite different formulations of model physics, each of which is applicable to only a limited range of 
horizontal resolution. These two kinds of model physics should be unified so that a continuous 
transition from one kind to the other takes place as the resolution changes.  Then a resolution between 
those typically used by GCMs and CRMs can be freely chosen depending on the objective of the 
application. 
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This paper suggests two possible routes to achieve the unification. ROUTE I uses a new framework 
for cumulus parameterization in which the result of parameterization converges to an explicit 
simulation of cloud processes as the resolution increases. In this way the framework unifies 
parameterizations in GCMs and CRMs as far as representation of deep moist convection is concerned. 
With the unified parameterization, the error of the GCM solution in satisfying the CRM equations can 
be made arbitrarily small by using a higher resolution. It is shown that a key to construct a unified 
parameterization is to eliminate the assumption of small fractional area covered by convective clouds, 
which is commonly assumed in the conventional cumulus parameterizations either explicitly or 
implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that 
such an assumption could be eliminated through a relatively minor modification of the existing mass-
flux based parameterizations. A partial evaluation of the unified parameterization is also presented. 

When it is successfully implemented, the practical merits of the unified parameterization will be great. 
But it has a limit as a “parameterization”, which inevitably requires a number of idealizations to 
reduce the degrees of freedom. When sufficient computer resources are available, therefore, we 
should pursue the other approach, ROUTE II, which follows the MMF approach to statistically couple 
GCM and CRM grids. The Quasi-3D (Q3D) MMF is an attempt to broaden the applicability of the 
prototype MMF without necessarily using a fully three-dimensional CRM. A great advantage of the 
Q3D MMF is that it converges to a 3D CRM as the GCM’s resolution is refined while maintaining the 
same CRM physics throughout. An outline of the Q3D algorithm and highlights of preliminary results 
are presented. Comparing the simulation results with the corresponding benchmark simulation 
performed with a 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important 
statistics of the 3D solutions, including precipitation rate and heat fluxes at the surface and vertical 
profiles of vertical transports of major prognostic variables. 

The Q3D MMF and GCMs with the unified parameterization still represent different families of 
models. As shown in Fig. 13, however, the both can converge to the same model, a GCRM, as the 
GCM resolution approaches the CRM resolution. Comparisons of simulated results from these models 
with those from a GCRM will greatly enhance our understanding of the multiscale role of cumulus 
convection in the global atmosphere.  

 

Figure 13: Two routes to unify coarse- and fine-resolution models. 
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