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ABSTRACT

NICAM ( Nonhydrostatic Atmospheric ICosahedral model ) is aglobal nonhydrostatic model for the climate
study by explicit cloud expression. In the model, the fully compressible equation system is discretized by the
finite volume method. To avoid the pole problem, it employs the modified icosahedral grid. The nonhydrostatic
scheme developed for this model ensures the conservation oftotal mass and energy. The advection scheme on the
icosahedral grid in NICAM is an upwind bias scheme with reduction of computational cost, having the consistency
with continuity ( CWC ). This paper gives a summary of currentstatus of NICAM dynamical core, focusing on
numerical techniques used on it. The future direction to theexa-scale computing is also discussed.

1 Introduction

In the last decade, NICAM ( Nonhydrostatic ICosahedral Atmospheric Model;Satoh et al.(2008) ) has
been continuously developed, aiming high-resolution global atmospheric simulations, by cooperative
effort of Research Institute for Global Change / Japan Agency for Marine Science and Technology and
Atmosphere and Ocean Research Institute / The University ofTokyo. This model has been employed for
the pilot study of the climate research by the global cloud-system resolving approach. The first global
cloud-system resolving simulation was performed by using this model(Tomita et al., 2005). Although
this simulation is an aqua planet experiment, it clarified that the global cloud-system resolving approach
is promising for the expression of hierarchical cloud organization and the diurnal cycle of precipitation.
The subsequent paper (Nasuno et al., 2007) analyzed multi-scale cloud organization with the interaction
of planetary-scale motion. An attempt for climate-sensitivity estimation by this model was also per-
formed in the context of the aqua planet experiment(Miura et al., 2005). As the simulation with the real
topography,Miura et al.(2007) successfully simulated the Madden Julian Oscillation event occurred in
December 2006 and demonstrated the usefulness of global cloud-system resolving model to investigate
such intra-seasonal variation.Oouchi et al.(2009,?) also performed relatively-long range simulation of
several months in order to examine the major tropical phenomena, including the monsoon onset, MJO
and tropical cyclone associated with it. Recently,Yamada et al.(2010) performed the first experiment
in the future warmed climate by the global cloud-system resolving approach to investigate the change
of tropical cyclone activity. The other NICAM activity is found in http://www.nicam.jp.

Thus, high-resolution simulations with global cloud-system resolving approach have great potential to
improve the model performance and are very useful to investigate the interaction between cloud dynam-
ics and large scale phenomena with cloud hierarchical organization. In the near future, global cloud-
system resolving model will be certainly a major tool for theclimate study and numerical weather fore-
casting. To enhance such research and forecasts, a crucial key is how we can obtain high computational-
efficiency and physical-performance. In this sense, the strategy on selection of equation systems and
numerical method would be very important in the nonhydrostatic modeling. In order to design the
model with high efficiency, we should consider the parallelization strategy also, considering the future
supercomputer architecture.
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Figure 1: (a) Standard grid with glevel-3. (b) Modified grid with glevel-3.

In this paper, we review the NICAM dynamical core(Tomita and Satoh, 2004; Miura, 2007; Niwa et al.,
2011), focusing on its numerical method, current problems, and future direction. In section 2 and 3, the
horizontal discretization and nonhydrostatic scheme in NICAM are described, respectively. In section
4, the tracer advection scheme, which is very important for cloud, chemical, and aerosol transport, is
described. Section 5 discuss the current scheme and the future direction of development. Finally, the
exa-flops computing for the climate model is overlooked in section 6.

2 Horizontal discretization

2.1 Grid refinement and discretization of differential operator

The grid refinement is done by the general recursive technique which is similar to that ofStuhne and Peltier
(1996). In this paper, the grid resolution obtained byl -th dividing operation is called “glevel-l ”, e.g.,
Figure1(a) gives glevel-3 grid. All the variables are defined at the vertices of triangular grid elements.
This arrangement is categorized into the Arakawa-A type grid. The control volume is defined as the
polygon constructed by connecting the gravitational centers of neighboring triangular grid elements.
The shape of control volume is hexagon except that it is pentagon at only twelve points inherited from
the original icosahedron.

We employ the finite volume method for the discretization of differential operators. For example, the
divergence operator is discretized as follows. Figure2(a) gives the schematic figure of horizontal control
volume. If a set of vectorsu is given at all the vertices of trianglesPi, vectorsu at the vertices of control
volumeQi are interpolated as

u(Qi) ≃
αu(P0)+ βu(Pi)+ γu(P1+mod(i,6))

α + β + γ
, (1)

whereα , β , andγ are the areas ofQiPiP1+mod(i,6), QiP1+mod(i,6)P0, andQiP0Pi, respectively. The number
6 is replaced with 5 at the pentagonal control volumes. The divergence is calculated from the Gauss
theorem as

∇ ·u(P0) ≃
1

a(P0)

6

∑
i=1

bi
u(Qi)+u(Q1+mod(i,6))

2
·ni, (2)
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Figure 2: (a) Schematic figure of control volume. (b) Modification by the spring dynamics. (c)
Modification by the gravitational center reallocation.

wherebi andni denote the geodesic arc length ofQiQ1+mod(i,6) and the outward unit vector normal to
this arc at the midpoint ofQiQ1+mod(i,6). a(P0) is the area of control volume at the pointP0. The other
differential operators such as are formulated by the similar way.

2.2 Modified icosahedral grid

The combination of the standard grid and the discretizationin Eq.(2) has severe problems on the nu-
merical accuracy and stability.Tomita et al.(2001) proposed a modification method of icosahedral grid
in order to reduce the systematic grid noise and to improve the accuracy of operators. There are two
steps in this method. In the first step, we apply the spring dynamics as follows; Grid points are con-
nected by appropriate springs ( Fig.2(b) ). Starting from an appropriate initial condition, the equations
of spring dynamics are numerically solved until the dynamical system calms down. This modification
well reduces the grid-noise in the numerical integration ofequations.

In the second step, the locations of gridpoints are moved to the gravitational centers of control volumes
as in Fig.2(c). This modification gives second-order accuracy not onlyglobally but also locally. One
arbitrary parameter to make such a grid system is the naturallength of spring. Tomita et al.(2002)
examined its sensitivity to the generated grid and proposedan optimization method of the grid.

3 Nonhydrostatic framework

3.1 Governing equations

The governing equations employed in NICAM dynamical core are based on the Euler’s equations with-
out any approximation. In the traditional atmospheric models, the shallow atmosphere approximation
has been used conventionally. One may point out, however, that this approximation leads to inconsis-
tency for conservation of the absolute angular momentum unless several metric terms and the vertical
Coriolis term are neglected(Phillips, 1966; Kasahara, 1974; Staniforth and Wood, 2003); if the equation
of absolute angular momentum is constructed from the set of momentum equations, the global integra-
tion of the absolute angular momentum is not guaranteed for the sake of this approximation. NICAN
dynamical core avoids this inconsistency by considering the deep atmosphere. We introduce a “deep”
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factor :

γ ≡ r/a, (3)

wherer anda denote the distance form the center of earth and the earth radius at the sea level, respec-
tively.

For the treatment of topography, we employ the terrain-following coordinate with the metrics as

ξ =
zT(z−zs)

zT −zs
, G1/2 ≡

(

∂z
∂ξ

)

h
, Gz ≡ ∇h0ξ = −

∇̃h0z

G1/2
, (4)

wherezT and zs are the top of the model domain and the surface height and(∂/∂ξ )h denotes the
derivative along the vertical direction and∇̃h0 denotes the spherical gradient operator along a constant
ξ plane at the sea level (r = a ).

SinceG1/2γ2 is the factor of volume against the surface, we treat the prognostic variable multiplied by
this factor, i.e., the perturbation densityR= (ρ −ρre f )G1/2γ2 ( subscriptre f stands for the hydrostatic
reference state ), the horizontal momentumVh = ρG1/2γ2vh, the vertical momentumW = ρG1/2γ2w,
and the internal energyE = ρG1/2γ2e. The governing equations for these quantities can be written as

∂R
∂ t

+ ∇̃h0 ·
Vh

γ
+

∂
∂ξ

(

Vh

γ
·Gz +

W

G1/2

)

= 0, (5)

∂Vh

∂ t
+ ∇̃h

P
γ

+
∂

∂ξ

(

GzP
γ

)

= −Ãh− C̃h, (6)

∂W
∂ t

+ γ2 ∂
∂ξ

(

P

G1/2γ2

)

+Rg=
(

−Ãz−C̃z
)

, (7)

∂E
∂ t

+ ∇̃h0 ·

(

h
Vh

γ

)

+
∂

∂ξ

[

h

(

Vh

γ
·Gz +

W

G1/2

)]

−

[

vh ·

(

∇̃h0
P
γ

+
∂

∂ξ

(

GzP
γ

))

+w

(

γ2 ∂
∂ξ

(

P

G1/2γ2

)

+Rg

)]

+Wg= Q̃heat, (8)

whereP = (p− pre f )G1/2γ2 is the perturbation pressure,h enthalpy,g the gravitational acceleration,
andQ̃heat the heating rate.

Ã(= Ãh+ Ãzk) andC̃(= C̃h+C̃zk) are momentum advection term and Coriolis term, respectively Here,
we introduce an orthogonal basis{e1,e2,e3}, which is independent of space withe3 being in the same
direction as the angular velocity of the earth(0,0,Ω). We definev1, v2, andv3 as the components of
the three-dimensional velocityv with regard to the basise1, e2, ande3, respectively.Ã andC̃ can be
expressed as

Ã ≡
3

∑
i=1

[

∇̃h0 ·

(

vi
Vh

γ

)

+
∂

∂ξ

[

vi

(

Vh

γ
·Gz+

W

G1/2

)]]

ei , (9)

C̃ ≡ 2ΩρG1/2γ2(−v2e1 +v1e2) . (10)

3.2 Numerical method

Since the set of governing equations we solve is the elastic system, it may contain all of the waves
realized in the actual atmosphere. The acoustic waves and the high-frequency gravity waves together
with the Lamb waves are contained as the fast modes. If a fullyexplicit method is employed to solve
Eqs.(5)-(8), the time interval is severely restricted due to the vertical propagation of the acoustic waves.
On the other hand, if an implicit method is employed for both in the horizontal and vertical directions,
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Figure 3: Schematic diagram of temporal integration.

one has to solve a three-dimensional Helmholtz equation forpressure or vertical momentum. The com-
putational cost would be high in solving a multi-dimensional Helmholtz equation especially for high
resolution simulations1. In order to avoid solving a multi-dimensional Helmholtz equation, we integrate
the equations implicitly just in the vertical direction andexplicitly in the horizontal directions. This
method is called the Horizontally Explicit and Vertically Implicit scheme ( HEVI ). This formulation
leads to one dimensional Helmholtz equation, which is easy to be solved by the direct method, because
the matrix system is tridiagonal.Satoh(2002, 2003) proposed a new nonhydrostatic scheme in the
context of the HEVI scheme. In order to use it for climate simulations, he formulated the scheme by
taking the conservation of mass and total energy into consideration. We extend this scheme to the global
domain using the icosahedral grid.

In Eqs.(5)-(8), the left-hand side terms are associated with fast propagating waves in space, while the
right-hand side terms are related to relatively slow motions. We integrate the prognostic variables with
the time-splitting method, namely, the fast mode terms are evaluated at every small time step∆τ , while
the slow mode terms are evaluated at larger time step∆t. For the small time step integration we use the
forward-backward scheme based on the HEVI scheme, while forthe large time step integration we use
the second-order or third-order Runge-Kutta scheme. Figure 3 shows the time integration procedure by
the second-order Runge-Kutta scheme. Let Eqs.(5)-(8) be described schematically as

∂Ψ
∂ t

−F = S, (11)

whereΨ, F, andS represent the prognostic variable, the fast mode term, and the slow mode term,
respectively. IfΨ at t = tA is known, we can evaluate the slow mode tendencyS(tA). The variable is
integrated fromtA to tB by usingS(tA)+F(tA +m∆τ) as the forcing att = tA +m∆τ with the fast mode
tendencyF(tA + m∆τ) being updated at every small step, wherem represents the index of small time
step. Thus, the temporary value of the prognostic variableΨ∗ at tB can be obtained. Using this value,
we can evaluate the slow mode tendencyS∗(tB). Returning tot = tA, the variable is integrated fromtA to
tC by usingS∗(tB)+F(tA +m∆τ).

The fast mode solver is the main part of dynamical core. We divide the prognostic variables into the
portions at the current large stept ( tA or tB in Fig.3 ) and the deviations from them. Let the value of a
prognostic variableφ at the current large time step beφ t and the deviation from it beφ∗(= φ −φ t).

1 This is still debatable. Some technique such as the multi-grid solver may resolve it or not. Anyway, it is a safe strategy to
avoid the solution of multi-dimensional Helmholtz equation.

ECMWF Workshop on Non-hydrostatic Modelling, 8-10 November 2010 175



TOMITA , H. ET AL: NOHYDROSTATIC MODELING ONNICAM

Based on the HEVI scheme, we temporally discretize Eqs.(5)-(8) by expanding the fluxes around the
time t as

R∗ τ+∆τ −R∗ τ

∆τ
+ ∇̃h0 ·

V∗ τ+∆τ
h

γ
+

∂
∂ξ

(

V∗ τ+∆τ
h

γ
·Gz +

W∗ τ+∆τ

G1/2

)

=

−

[

∇̃h0 ·
Vt

h

γ
+

∂
∂ξ

(

Vt
h

γ
·Gz +

Wt

G1/2

)]

, (12)

V∗ τ+∆τ
h −V∗ τ

h

∆τ
+ ∇̃h0

P∗ τ

γ
+

∂
∂ξ

(

Gz P∗ τ

γ

)

= −

[

∇̃h0
Pt

γ
+

∂
∂ξ

(

Gz Pt

γ

)]

− Ãt
h− C̃t

h, (13)

W∗ τ+∆τ −W∗ τ

∆τ
+ γ2 ∂

∂ξ

(

P∗ τ+∆τ

G1/2γ2

)

+R∗ τ+∆τg = −γ2
[

∂
∂ξ

(

Pt

G1/2γ2

)

+Rtg

]

+
(

−Ãt
z−C̃t

z

)

, (14)

E∗ τ+∆τ −E∗ τ

∆τ
+ ∇̃h0 ·

(

ht V∗ τ+∆τ
h

γ

)

+
∂

∂ξ

[

ht

(

V∗ τ+∆τ
h

γ
·Gz +

W∗ τ+∆τ

G1/2

)]

+ g̃tW∗ τ+∆τ

= Q̃heat−

[

∇̃h0 ·

(

ht Vt
h

γ

)

+
∂

∂ξ

[

ht
(

Vt
h

γ
·Gz +

Wt

G1/2

)]]

+
Vt

h

ρ tG1/2γ2
·

(

∇̃h0
Pt

γ
+

∂
∂ξ

(

Gz Pt

γ

))

− g̃tWt , (15)

where

g̃t = g−
1

ρ tG1/2γ2

[

γ2 ∂
∂ξ

(

Pt

G1/2γ2

)

+Rtg

]

. (16)

The work by the pressure gradient force and the buoyancy force ( the last two terms in Eq.(15) ) is
evaluated with Eq.(16) at the large time step. The enthalpy in the advection terms that relates to the
acoustic wave speed (c2

s = (Rd/Cv)ht ) is evaluated also at the large time step.

In small-step integration, we first solve Eq.(13) by the forward method. UsingV∗ τ+∆τ
h thus obtained,

Eqs. (12), (14), and (15) can be arranged forR, W, andP as

R∗ τ+∆τ −R∗ τ

∆τ
+

∂
∂ξ

(

W∗ τ+∆τ

G1/2

)

= SR, (17)

W∗ τ+∆τ −W∗ τ

∆τ
+ γ2 ∂

∂ξ

(

P∗ τ+∆τ

G1/2γ2

)

+R∗ τ+∆τg = SW, (18)

P∗ τ+∆τ −P∗ τ

∆τ
+

Rd

Cv

∂
∂ξ

[

ht
(

W∗ τ+∆τ

G1/2

)]

+
Rd

Cv
g̃tW∗ τ+∆τ = SP, (19)

where we use the proportional relation betweenP∗ andE∗:

E∗ =
Cv

Rd
P∗. (20)

The tendency terms in Eqs.(17)-(19) can be written as

SR = −∇̃h0 ·
V∗ τ+∆τ

h

γ
−

∂
∂ξ

(

V∗ τ+∆τ
h

γ
·Gz

)

−

[

∇̃h0 ·
Vt

h

γ
+

∂
∂ξ

(

Vt
h

γ
·Gz +

Wt

G1/2

)]

, (21)

SW = −

[

γ2 ∂
∂ξ

(

Pt

G1/2γ2

)

+Rtg

]

+
(

−Ãt
z−C̃t

z

)

, (22)

SP =
Rd

Cv
Q̃heat−

Rd

Cv
∇̃h0 ·

(

ht V∗ τ+∆τ
h

γ

)

−
Rd

Cv

∂
∂ξ

[

ht

(

V∗ τ+∆τ
h

γ
·Gz

)]

−
Rd

Cv

[

∇̃h0 ·

(

ht Vt
h

γ

)

+
∂

∂ξ

[

ht
(

Vt
h

γ
·Gz +

Wt

G1/2

)]]

+
Rd

Cv

Vt
h

ρ tG1/2γ2
·

(

∇̃h0
Pt

γ
+

∂
∂ξ

(

Gz Pt

γ

))

−
Rd

Cv
g̃tWt . (23)
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Figure 4: Schematic diagram for the upwind bias scheme on thehexagonal cell

Combination of Eqs.(17)-(19) gives the one-dimensional Helmholtz equation forW as

−
∂

∂ξ

[

1

G1/2γ2

∂
∂ξ

(

∆τ2 Rd

Cv
ht W

∗ τ+∆τ

G1/2

)]

−

[

∂
∂ξ

(

∆τ2 Rd

Cv
g̃

W∗ τ+∆τ

G1/2γ2

)

+ ∆τ2 g
γ2

∂
∂ξ

(

W∗ τ+∆τ

G1/2

)]

+
1
γ2W∗ τ+∆τ =

W∗ τ + ∆τSW

γ2 −∆τ
∂

∂ξ

[

1

G1/2γ2
(P∗ τ + ∆τSP)

]

−
∆τ
γ2 (R∗ τ + ∆τSR)g. (24)

W∗ τ+∆τ andR∗ τ+∆τ are obtained by solving Eqs.(24) and (17), respectively.

For the evaluation of internal energyE∗ τ+∆τ , Satoh(2002, 2003) proposed several schemes from the
viewpoint of conservation; the “non-correction method” that does not consider the conversion of internal
and kinetic energies, the “correction method” that modifiesthe conversion term between the two energies
by deliberately choosing the discretization of the work done by the pressure gradient force, and the
“conservation method” that perfectly guarantees the sum ofthe two energies by solving its flux form
equation. He compared the physical performance as well as the computational performance between
these schemes and concluded that the “conservation method”is the best. In this method, the conservation
of total energy is guaranteed by solving the flux form equation of the total energy:

Eτ+∆τ
tot −Eτ

tot

∆τ
+ ∇̃h0 ·

[

(h+ Φ+k)t
V∗ τ+∆τ

h

γ

]

+
∂

∂ξ

[

(h+ Φ+k)t
(

V∗ τ+∆τ
h

γ
·Gz +

W∗ τ+∆τ

G1/2

)]

= Q̃heat, (25)

whereΦ(= gz) is the potential energy,k(= v ·v/2) is the kinetic energy, andEtot = E+ρG1/2γ2(Φ+k).

Since
[

ρG1/2γ2(Φ+k)
]τ+∆τ

is known,Eτ+∆τ can be calculated by

Eτ+∆τ = Eτ+∆τ
tot −

[

ρG1/2γ2(Φ+k)
]τ+∆τ

. (26)

The deviationE∗ τ+∆τ is derived from

E∗ τ+∆τ = Eτ+∆τ −Et . (27)

The more detail formulation of this method is described inTomita and Satoh(2004); Satoh et al.(2008).

4 The advection scheme and consistency with continuity

The time evolution of tracer is given as

∂
∂ t

(ρq)+ ∇ · (ρqv) = 0 (28)
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Note that the metric term for the topography is omitted in this section for simplicity. In the original
version of NICAM, the tracer advection scheme is the same as one in the continuity equation. That
is, the horizontal divergence operator of Eq.(2) is used. Although this scheme has the second order
accuracy, the dispersion error is large and many spurious ripples appear consequently. In order to reduce
this error,Miura (2007) developed a third order upwind scheme on the icosahedral grid. Even on the
distorted hexagonal-pentagonal grid, this scheme ensuresat least second order accuracy. Conceptually,
this scheme is based on the val Leer’s scheme I for estimationof the mass flux on the cell boundaries.
Figure4 gives the schematic diagram of this scheme. As in Fig.4(b), the mass flux passing through
the edgeQiQi+1 during one time step is estimated as the integration of quantity in the parallelogram (
rectangle )Q′

iQ
′
i+1QiQi+1. The total amount of flux passing through the edgeQiQi+1 during the time

step∆t is approximated by the amount of a tracer inside the rectangle:
(

l iρRi qRi v
t+∆t
Ri

·ni

)

∆t =
∫

Si

ρqdS (29)

The distribution of quantities in the cell is expressed by the linear distribution using the gradient op-
erator. With some algebraic calculation, these assumptions drastically reduce the computational cost
without degradation of accuracy. For example, the averagedq during the time step at the center of cell
edge can be expressed as

qRi = qCi = q0 +(∇q)P0
· (Ci −P0) . (30)

To guarantee the perfect monotonicity, the flux limiter developed byThuburn(1996) is applied.

The extension of this scheme to the thee dimension is very tight work and it would spoil the virtue of
less computational cost of this scheme. Therefore, NICAM applies the scheme just in the horizontal
direction and employs the central difference scheme in the vertical direction with the flux limiter.

However, if we calculate both of the advection terms at the same time, the monotonicity is no longer
ensured. So, NICAM employs the directional-splitting method dividing into the horizontal and vertical
advection. At this moment, we must take care of the consistent way of the tracer advection scheme with
the continuity equation, so-called consistency with continuity ( CWC ) condition. In order to satisfy the
CWC condition on this method,Niwa et al.(2011) extended the intermediate density method (Easter,
1993) to the icosahedral grid. To avoid the directional bias, thefollowing three step are applied;

1. The vertical advection process during the first∆t/2

QI = Qt −
∆t
2

[

q̃t
k+1/2W̃

∗
k+1/2− q̃t

k−1/2W̃
∗
k−1/2

∆zk

]

(31)

ρ I = ρ t −
∆t
2

[

W̃∗
k+1/2−W̃∗

k−1/2

∆zk

]

(32)

qI = QI/ρ I (33)

2. The horizontal advection process during the∆t using theMiura (2007)’s scheme.

QII = QI −
∆t
A

6

∑
i=1

(

l i q̂
I
i V̂

∗
i ·ni

)

(34)

ρ II = ρ I −
∆t
A

6

∑
i=1

(

l iV̂∗
i ·ni

)

(35)

qII = QII /ρ II (36)

Qt+∆t = QII −
∆t
2

[

q̃II
k+1/2W̃

∗
k+1/2− q̃II

k−1/2W̃
∗
k−1/2

∆zk

]

(37)

3. The vertical advection process during the last∆t/2.

ρ t+∆t = ρ II −
∆t
2

[

W̃∗
k+1/2−W̃∗

k−1/2

∆zk

]

(38)
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qt+∆t = Qt+∆t/ρ t+∆t (39)

In the above processes, the mass flux are time-averaged during the large time step, i.e.,

V̂∗
i ≡

1
∆t

Ns−1

∑
n=0

(

ρ̂ t+n∆τ
i v̂t+n∆τ

i ∆τ
)

=
1
Ns

Ns−1

∑
n=0

(

ρ̂ t+n∆τ
i v̂t+n∆τ

i

)

(40)

W̃∗
k±1/2 ≡

1
∆t

Ns−1

∑
n=0

(

ρ̃ t+n∆τ
k±1/2w̃t+n∆τ

k±1/2∆τ
)

=
1
Ns

Ns−1

∑
n=0

(

ρ̃ t+n∆τ
k±1/2w̃t+n∆τ

k±1/2

)

, (41)

The use of time-averaged mass flux is crucial to satisfy the CWC condition. We can easily understand
that the combination of Eq.(32), (35), and (38) are perfectly same as the discretization of continuity
equation.

5 Discussion

In this paper, we summarize the current status of NICAM dynamical core. The horizontal discretization
is the second order finite volume method with modified icosahedral grid(Tomita et al., 2001, 2002).
The developed nonhydrostatic scheme conserves the total mass and energy(Satoh, 2002, 2003). The
tracer advection by the upwind bias scheme ensures the second order accuracy not only globally but
also locally(Miura, 2007). To satisfy the consistency with continuity, the techniques combined time-
averaged mass flux and intermediate density is used(Niwa et al., 2011).

NICAM dynamical core is now in the mature stage as the first-generation version. As described in sec-
tion 1, many fruitful results have been obtained by this model. However, during those experiments, we
also found several problems, which should be overcome in thesecond-generation version of NICAM.
The most concern is on the vertical discretization. NICAM isnow employing the terrain-following
coordinate. As pointed out in many literature, the pressuregradient force error becomes larger if the
horizontal resolution increases. In the regional model, this problem is not so severe because the actual
field does not so differ from the reference hydrostatic state. On the other hand, the difference from the
reference state in the global model is larger than in the regional model. This leads to the large error
of the pressure gradient force at the steep topography and occasionally the model blows up due to this
error. Since the steepness of the mountain becomes severer at the higher resolution, we are insisted to
change the vertical coordinate from the terrain-followingcoordinate to the height-based coordinate (
e.g. Yamazaki and Satomura(2010)). The Arakawa-A grid in the horizontal direction that we employ
with the spring grid has no fatal problem. The A-gird is free from the computational mode that appears
when the degrees of freedom for mass and momentum are different. The implementation and paral-
lelization are simpler than other grid types. However, it isalso true that there remains the problem for
the geostrophic adjustment with short wavelength. The change of other grid type is controversial in the
near future in NICAM development.

6 Toward the exa-scale computing

Since NICAM was designed so as to bring out the high performance of massively parallel super-
computers in the high resolution simulation. it has good computational performance at this moment.
Toimta et al.(2008) examined the computational performance on the Earth Simulator, which is a vector-
parallel machine, and confidently remarked that the approach has enough potential to obtain the scala-
bility on the future massive parallel machine.

The basic idea of the approach in NICAM dynamical core is the use of icosahedral grid to avoid the
pole problem and horizontal explicit method to avoid the possibility of increase of iteration process
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in the implicit method. From the viewpoint of the algorithm,this idea essentially does not degrade
the computational performance in the future massive parallel machine. However, recent trend of the
hardware is now in the transition phase and is not always optimistic for the geophysical application. The
assumed problems toward the exa-scale computing are as follows:

• Memory band width problem
Many cores are implemented in one CPU, so that the peak performance becomes tremendously
high. On the other hand, increase of memory band width is slow, comparing to the CPU power. In
order to obtain high performance on the scalar CPU, the efficient use of cash memory is necessary.

• Hybrid architecture
To realize the exa-scale machine, it may be impossible to useonly general-purpose chips. The
help of the accelerator such as GPU may be needed. At the same time, there is a possibility
of hybrid architecture of accelerator and general-purposechip. This may insist on complicated
programming to model developers. The compiler and middle-ware for reduction of this hard-work
is needed.

• Network bottleneck
The inner network is the most anxious concern for the scalability. Its speed is a crucial issue.
The network topology is also important. The torus type of topology seems to be better for the
gridpoint method.

• Fault tolerance
The increase of number of CPUs causes to the increase of failure rate. It is unrealistic to frequently
output restart files during the calculation. One remedy is toduplicate a memory image even on
another computer node and allocate the memory image to a backup node immediately at the
node failure. However, it is very hard for the application programmer to be insisted on such
implementation. Middle-ware to provide the mechanism without such awareness is required.

The design of exa-scale computer is not yet clear and still debatable. To overcome the above undesir-
able problems, much more communication between the meteorology/climate simulation community and
computer scientists are necessary.
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