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ABSTRACT

This paper employs local, in physical space, diagnostics to analyze the contribution of model errors to the forecast
uncertainty in experiments with a reduced (T62L28) resolution version of the NCEP GFS model. It is shown that
in the extratropics the effect of model errors on the dominant patterns of medium range forecast uncertainty is
secondary compared to their effects on the magnitude of the errors. It is argued, that this result strongly supports
the development of post-processing techniques, which operate on the space of the local ensemble perturbations,
and the further development of Stochastic Kinetic Energy Backscatter (SKEB) schemes.

1 Introduction

The main goal of this paper is to demonstrate that the local diagnostic tools we introduced in (3; 4) pro-
vide a framework to diagnose the contribution of model errors to the forecast uncertainty. In particular,
we demonstrate that in the extratropics, in the medium forecast range and beyond (for forecast times
longer than about 72–h), model errors have only modest influence on the dominant error patterns; thus,
the most important error patterns can be well predicted by the dynamical instabilities identified under a
perfect model hypothesis. Model errors, however, have a strong effect on the magnitude of the forecast
errors, making the prediction of the magnitude of the total forecast error and the relative importance
of the different error patterns difficult. We argue that because the ensemble provides an efficient repre-
sentation of the error space, statistical post-processing techniques have great potential to provide useful
forecast information about the forecast uncertainty.

The structure of the paper is as follows. Section 2 briefly describes the local diagnostics employed in
this paper. Section 3 describes the design of the numerical experiments, while Section 4 presents the
key results of the experiments. The paper concludes with a brief discussion of the implications of our
results for the representation of the effects of model uncertainties in ensemble forecasting in Section 5.

2 Local diagnostics

The first paper to characterize the model dynamics by the behavior of an ensemble of analyses or fore-
casts in a local volume around each grid point was (2): the dynamics at model grid point ` are charac-
terized by the behavior of the ensemble in a local volume centered at `.

In what follows, we introduce local diagnostics by first defining the local state vector xV`
, whose com-

ponents are the grid point variables in a local volume V` centered at `. The dimension of xV`
is equal to

the MV`
number of grid-point variables in V`. We also assume the availability of a K-member forecast
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ensemble and introduce the notation xk
V`

, k = 1, . . . ,K, for the members of the ensemble of local state
vectors at location `. Then, the local ensemble perturbations, Xk

V`
, k = 1, . . . ,K, can be defined as

Xk
V`

= xk
V`
−xV`

, (1)

where

xV`
=

1
K

K

∑
k=1

xk
V`

(2)

is the local ensemble mean. (The local ensemble mean at ` is the mean state at grid points contained in
the local volume centered at `.) With the help of the ensemble of local ensemble perturbations, we can
define the local ensemble based error covariance matrix,

PV`
=

1
K−1

K

∑
k=1

Xk
V`

[
Xk

V`

]T
. (3)

The local state vector, local perturbations, and local error covariance matrix can be defined at any fore-
cast lead time, including the analysis time (forecast time zero). We treat the space of ensemble pertur-
bations, defined by the range of PV`

, as a linear (vector) space: we assume that a linear combination of
the local ensemble perturbations at an arbitrary location ` is also a local perturbation. We introduce the
notation SV`

for this vector space. The assumption that SV`
is a linear space implies that the addition of

a linear combination of the local ensemble perturbatins to the local mean xV`
results in a plausible local

atmospheric state. Further, a local state can be written,

xV`
= xV`

+XV`
wV`

, (4)

where, XV`
is a MV`

×K matrix, whose kth column is Xk
V`

and wV`
is a vector of linear weights. Introduc-

ing the notation Sw
V`

for the space of the K-dimensional weight vectors,wV`
, the matrix of local ensemble

perturbations, XV`
, represents a map from Sw

V`
to SK

V`
.

Since, typically, MV`
� K, not all local state vectors can be (fully) represented in SV`

. The most straight-
forward approach to determine the projections of local state vectors is through computing the SVD-
expansion of XV`

,
XV`

= UV`
ΣV`

VT
V`

. (5)

In Eq. (5), the columns of the MV`
× r matrix UV`

are the first r left singular vectors of XV`
, where r

is the number of non-zero singular values of XV`
; the columns of the K× r matrix VV`

are the first r
right singular vectors of XV`

, while the diagonal entries of the r× r diagonal matrix ΣV`
are the non-

zero singular values of XV`
. [The left singular vectors of XV`

are also the orthogonal eigenvectors of
the covariance matrix PV`

, the square of the singular values of XV`
are the eigenvalues of PV`

, and r is
the rank of PV`

.] The u(1)
V`

. . . ,u(r)
V`

left singular vectors of XV`
span the range of XV`

; thus, they define
an orthonormal basis in SK

V`
. Since, according to Eq. (1), the sum of the ensemble perturbations is 0,

the columns of XV`
cannot be all linearly independent, which implies that r ≤ K− 1. Our experience,

accumulated by computing the singular value spectrum for different ensembles, suggests that while
some of the trailing singular values are typically small, they are sufficiently larger than round-off to be
considered non-zero. This motivates us to assume in what follows that r = K−1.

We apply diagnostics to the
δxt

V`
= xt

V`
− x̄V`

(6)

difference between the xt
V`

local model representation of the true state and the ensemble mean, x̄V`
. The

difference δxt
V`

is usually interpreted as the error in the ensemble mean forecast. This terminology is
justified in forecast applications that use the ensemble mean as a deterministic forecast. [For a perfect
ensemble, the deterministic forecast that has the smallest root-mean-square error is the ensemble mean
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(1)]. In our study, however, we strictly view x̄V`
as the prediction of the mean of the probability distribu-

tion of the forecast state. Since, except for the analysis time, δxt
V`

is expected to be nonzero even if x̄V`
is

a perfect prediction of the mean of the probability distribution, we simply refer to δxt as the difference
between the ensemble mean and the model representations of the true state. We measure the magnitude
of δxt

V`
by

TVV`
=
(
δxt

V`

)2 =
(
δxt

V`

)T
δxt

V`
. (7)

The δxt
V`

difference can be decomposed as

δxt
V`

= δxt(‖)
V`

+xt(⊥)
V`

. (8)

Here, δxt(‖)
V`

is the component of δxt
V`

that projects onto SK
V`

and xt(⊥) is the part of δxt that is orthogonal
to SK

V`
. The left singular vectors provide a convenient basis to compute δxt(‖) by

δxt(‖)
V`

=
K−1

∑
k=1

[
(δxt

V`
)T u(k)

V`

]
u(k)

V`
. (9)

The magnitude of δxt(‖)
V`

is

TV SV`
=
(

δxt(‖)
V`

)2
=
(

δxt(‖)
V`

)T
δxt(‖)

V`
. (10)

TV SV`
measures the extent to which the linear space spanned by the ensemble perturbations can rep-

resent the possible states of the atmosphere: TV SV`
≤ TVV`

and when TV SV`
= TVV`

, the vector space
SK

V`
correctly captures the space of forecast uncertainties. (The degree to which TV SV`

= TVV`
holds,

is not necessarily a measure of the quality of the ensemble, because it is not guaranteed that a state
computed by Eq. (4) from the the nonlinearly evolving ensemble perturbations is a possible state of the
atmosphere.) We compare TVV`

and TV SV`
to

V SV`
=

1
K

K

∑
k=1

(
Xk

V`

)T
Xk

V`
= trace(PV`

) =
1

K−1

K−1

∑
k=1

(
σ

(k)
)2

, (11)

which is a measure of the ensemble spread in the local volume V`. In Eq. (11),σ (1), . . . ,σ (r) are the first
K−1 singular values of Xk

V`
.

We introduce the notations TV , TV S and V S, respectively, for the expected values of TVV`
, TV SV`

and
V SV`

. For an ensemble that correctly represented the probability distribution of the state, or at least
the second moment of the probability distribution, V S = TV would hold, because from a probabilistic
point of view, the δxt

V`
perturbation is a random draw from the probability distribution that the ensemble

perturbations are supposed to estimate. In addition, when the ensemble correctly represents the variance
of δxt(‖)

V`
, V S = TV S. For a given ensemble system, V S can be either smaller or larger than TV S. In

the former case (V S < TV S), the ensemble underestimates the magnitude of the uncertainty that can be
explained by a linear combination of the ensemble perturbations, while in the later case the ensemble
overestimates the magnitude of the uncertainty that can be explained by linearly combining the ensemble
perturbations. The combination of V S = TV and V S > TV S indicates that a significant part of δxt

V`

does not project onto SK
V`

, which can be a result of either the specific nature of the nonlinearities in the
dynamics or imperfections of the ensemble (e.g., not having a sufficient number of ensemble members
or a design flaw in the generation of the initial conditions). For the ensemble we discuss in this paper,
V S < TV S.

3 Experiment design

Our experiment design is identical to that of (3; 4). All experiments are carried out with a reduced
resolution (T62L28) 2004 version of the model component of the operational NCEP GFS. Observations
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are assimilated with the implementation of the LETKF data assimilation scheme on the NCEP GFS,
which was described in detail in (5). We generate a K = 40 member analysis ensemble, which is then
used to generate the background ensemble of the next analysis cycle and to provide the initial conditions
of the 360-h ensemble forecasts used for the computation of TV , TV S and V S at the different forecast
times. All numerical experiments are carried out for the time period 1 January 2004 0000 UTC and 29
February 1800 UTC. The diagnostics are computed based on the forecasts started at 0000 and 1200 UTC
between 11 January and 15 February on a 2.5◦ × 2.5◦ resolution grid.

To analyze the effects of model errors on the diagnostics, two experiments are carried out under the
perfect model hypothesis, so the effects of model errors on the third (realistic) experiment can be as-
sessed. The true state for the perfect model experiments was generated by a continuous integration of
the model started from the operational analysis of NCEP at January 1 2004, 0000 UTC. The difference
between the two perfect model experiments is that one of them assimilates vertical soundings of the
model atmosphere at 2000 fixed, randomly selected locations, while the other assimilates observations
whose types and locations are identical to those in the realistic experiment. In the third experiment,
all non-radiance observations, which were assimilated at NCEP in real time, are assimilated with the
LETKF. To compute the diagnostics for this experiment , high (T254L64) resolution operational NCEP
analyses truncated to 2.5◦ x 2.5◦ resolution are used as proxy for the “true” state.

In our implementation of the LETKF, we apply a multiplicative covariance inflation at each analysis step
to increase the magnitude of the estimated analysis uncertainty. Thus, the covariance inflation factor
controls the magnitude of the analysis ensemble perturbations. In our code, the covariance inflation
factor, ρ = ρ(σ ,ϕ), is a function of the model vertical coordinate σ and the geographical latitude ϕ . We
tuned the covariance inflation factor independently for the three experiments, so that V ≈ TV S in each
experiment. We note that this tuning condition is different from the one used in the common practice
of ensemble forecasting, where the magnitude of the analysis ensemble perturbations is tuned to satisfy
V S≈ TV . Our motivation to use V ≈ TV S instead of V ≈ TV is that in our setting the magnitude of the
variance inflation affects, in addition to the analysis perturbations, the mean analysis: our experience
is that increasing V S beyond TV S, leads to an increase of the analysis error (see Figure 1 of (4)). This
increase results in an increase of TV at analysis time and at short lead times. Thus, increasing the
variance inflation not only has the undesirable effect of increasing the analysis error, but is also fails to
improve the relationship between V S and TV .

We define the local state vector by all temperature, wind, and surface pressure grid point variables in
a cube that is defined by 5x5 horizontal grid points and the entire column of the model atmosphere.
To properly weight the different model variables in the computation of the variances, we transform
the ensemble perturbations to ensure that all vector components have the same physical dimension. In
particular, we choose the transformation weights so that the variance has dimension of energy. The use of
this scaling to compute scalar products of perturbations of the state vector in a primitive equation model
was first suggested by (6), and has been routinely used in the generation of ensemble perturbations
at ECMWF. The expected value in the computation of TV , TV S and V S is estimated by the sample
mean over all locations (grid points), `, in the NH extratropics (ϕ ≥ 30◦N) and over all forecasts started
between 0000 UTC 11 January and 1200 UTC 15 February.

4 Results

Our results are summarized in Fig. 1. This figure extends the results of (3; 4) from a maximum forecast
time of 120-h to a maximum forecast time of 360-h. The shape of the curve that shows the time evolution
of TV is very similar in the three experiments, except that the initial value of TV becomes larger with
the addition of each new realistic feature, leading to a faster saturation of TV in the more realistic
experiments. The increase in the initial magnitude of TV is particularly large between the perfect model
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Figure 1: The time evolution of TV, TVS and VS for he perfect model experiment with randomly dis-
tributed observations (top); the perfect model experiment with realistically distributed observations
(middle); and the realistic experiment with observations of the real atmosphere.
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experiment with realistic observation distribution and the realistic experiment. This suggests that, as
expected, the contribution of model errors to the analysis uncertainty is larger than the contribution of
the nonuniform spatial distribution of the observations.

Perhaps the most interesting feature in Fig. 1 is the behavior of the curves that shows the time evolution
of TVS: while TVS is initially smaller than TV, the two quantities become very similar after about 72-
120-h in all three experiments. In a statistical sense, the linear space SK

V`
provides, after an initial transient

period, an almost perfect representation of the space of forecast uncertainties, where the difference
between the ensemble mean and the true system may fall. In (4), we showed that by the end of the initial
(72-120-h long) transient period, synoptic scale patterns dominate both the difference between the truth
and the ensemble mean and and the ensemble perturbations [see Figure 3 of (4)]. This result suggests
that the dominant uncertainties are associated with synoptic scale features and SK

V`
provides an efficient

representation of these patterns of uncertainties. The behavior we find is in good agreement with that of
(7), who found that forecast uncertainties in spectral space were propagating toward the synoptic scale
with time, where the growth of their magnitude became exponential.

It is important to note, that even at analysis time, where SK
V`

does a relatively poor job of capturing δxt
V`

compared to the longer forecast lead times, it provides a sufficiently accurate representation of the error
space for an efficient data assimilation. (In essence, the LETKF data assimilation scheme seeks for an
analysis increment that best fits the projection of the vector of innovations on SK

V`
.)

The fact, that the presence of model errors does not have an important effect on the efficiency of SK
V`

at
capturing the dominant patterns of forecast uncertainties, indicates that model errors have little effect
on these patterns. A further examination of Fig. 1 reveals, however, that model errors have an important
effect on the magnitude of the patterns of forecast uncertainty: while the ensemble spread (V S) under-
estimates TV S in all three experiments, the problem is most severe for the case, in which errors are
present. This behavior suggests that model errors make an important contribution to the growth of TV S;
or in other words, to the amplification of the errors in SK

V`
.

5 Discussion

Our results suggest that the dominant patterns of medium range forecast uncertainties in the extratropics
can be efficiently captured by a small (K < 100) ensemble generated without explicitly accounting for
the model uncertainty, even if model errors are present. The results also show, however, that model
errors contribute to the underestimation of the forecast uncertainty in the ensemble space. Since the
ensemble underestimates the magnitude of the forecast uncertainty in the ensemble space even in the
perfect model scenario, we conjecture that the underestimation of the magnitude of the uncertainty is,
in part, due to the lack of a representation of the effects of the initial condition uncertainties that fall
outside of the ensemble space. While the magnitude of the uncertainty in the individual directions is
small, their combined effect on the later evolution of the dominant patterns of uncertainty is important.
In addition, we conjecture that model errors play a similar role to the initial condition uncertainties that
fall outside of the ensemble space, with the important addition that model error related uncertainties are
generated continuously at all forecast times.

On the practical side, our results show that while the dominant patterns of forecast uncertainty in the
extratropics can be efficiently predicted without accounting for the model uncertainties, predicting the
magnitude of the patterns of uncertainties remains a major challenge, which cannot be addressed with-
out the development of techniques for the representation of the effects of model errors on the magnitude
of the dominant forecast error patters. Our results suggest two potential approaches to improve the
prediction of the magnitude of the forecast uncertainties. First, since the ensemble provides a good
representation of the local space of uncertainties, linear post-processing techniques operating on SK

V`
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may have great potential to improve the prediction of the magnitude of the uncertainties. Second, the
development of stochastic parameterization schemes that can correctly represent the bulk effect of the
physics-related uncertainties in the many state space directions on the dominant directions of uncer-
tainties would be highly desirable. Refining the existing Stochastic Kinetic Energy Backscatter(SKEB)
schemes would be a logical first step in that direction.

Finally, we note that extending our results to the tropics is not trivial, as the dynamics of uncertainties in
the tropics is dominated by convectively coupled waves instead of the synoptic scale baroclinic waves
that dominate the evolution of forecast uncertainties in the extratropics.
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