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ABSTRACT

A natural strategy to check for errors in a complex code, such as a computer simulator of weather or climate, is to
make physically meaningful perturbations in the simulator parameters, and compare the results of the simulator
runs against intuition. Such a strategy must balance the competing demands for CPU cycles of (i) performing many
perturbations, and (ii) using long time-averages to suppress the effect of simulator noise. This paper proposes a
mathematical solution which can be use to sharpen the perturbation signal in a given ensemble, namely to project
the simulator output onto the column-space of linear combinations that maximise the signal-to-noise ratio. There
are more refined approaches, but ours is easy to understand and to compute.

1 Introduction

This workshop concerned model uncertainty. A major source of model uncertainty is code error, which
is not solving the equations that you thought you were solving. It is immediately apparent, from the
software updates that we so frequently receive, that even the most carefully implemented codes contain
errors. Large scientific coding projects such as the open-source statistical computing environment R (R
Development Core Team, 2004) are fortunate in having thousands of users every day, many of whom
have a clear expectation of what is correct behaviour and what is not. Consequently the core group for
R has a very effective strategy for catching errors, which is to wait for them to be reported (and often
fixed) by users.

Builders of specialist computer simulators for complex systems such as weather or climate, however, are
not so fortunate. The codes are often so unwieldy that only a handful of users have the resources to run
them. Moreover, in complex systems our intuition is often limited, and it is hard to spot an anomalous
output which bears further investigation. We will see the egregious errors, of course, because the run
will not complete, or its output fields will be obviously defective: all the ocean salinities might be zero,
for example. But how will we spot the class of ‘middling-sized’ errors?—those large enough to make a
difference to our projections, but too small to trigger our suspicions. For example, how will we spot a
coding error that raises all of the temperatures over North America in 2100 by 1 ◦C?

Only the most hubristic modeller would deny outright that such errors exist in a complicated code.
Anyone close to the code for a large climate simulator (a General Circulation Model, or GCM) expects
there to be errors—and will probably have found a few in his time—but hopes that they are all either
small enough not to matter, or large enough to be egregious. Or else, with a desperate lunge at the
Weak Law of Large Numbers in statistics, hopes that they all cancel out. Now that climate simulators
are being used to assess quantitatively the effect of interventions such as alternative energy futures
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and geo-engineering, a few middling-sized code errors would render the simulator-based assessment
nonsensical—except we would not know it.

If climate simulators are to be serious tools, then climate modelling groups need to have clearly-defined
strategies for checking for code errors. One very obvious strategy is to perturb the ‘physics’ in meaning-
ful ways, and check the code’s response; in practice, this is implemented by perturbing the simulator’s
parameters. The fly in the ointment of this strategy, and the subject of this paper, is the presence of
simulator noise. This is the convolution of the internal variability of the underlying equations and the
truncation errors of the discrete solver. This noise can be suppressed, in situations where the forcing is
time-invariant, by taking a time-average of the simulator outputs, rather than a single time-point. There-
fore a modelling team with a fixed budget of CPU cycles must balance the following two competing
demands:

1. More parameter perturbations to provide greater insight into simulator functioning and a greater
potential to uncover coding errors;

2. Longer time-averaging to suppress simulator noise, and reveal the signal caused by the perturbed
parameters.

Conventional practice in climate science is to use 20-, 30-, or 50-year averages.

This paper outlines a mathematical approach that addresses this trade-off, and allows us to extract much
of the signal of the parameter perturbations without having to perform very long time-averages. In
practice, many other factors will also contribute to the choice of parameter perturbations that will be
run. In fact, given the expense of running a large simulator, the ensemble of runs may well be designed
for an entirely different purpose, such as assessing the effect of parametric uncertainty on simulator-
based projections or reconstructions. In this case it will still be very useful to have a simple approach
that dampens the effect of simulator noise. But in this paper we are particularly advocating our approach
for the very first stage of the analysis: comparing perturbations with intuition, to sanity-check the code.

The only inputs to our approach are a perturbed parameter ensemble (a multi-model ensemble might
also do) and a long control run. A simple model of simulator signal and noise is presented in section 2,
a strategy for maximising the signal-to-noise ratio is given in section 3, and for visualising the resulting
simulator outputs as a map in section 4, while section 5 is a summary. The illustrations are taken from
the PalæoQUMP experiment, and concern the North American mid-Holocene anomaly in the mean
temperature of the warmest month (usually referred to as MTWA). These illustrations are best viewed
in colour.

2 Signal and noise

We are considering a time-slice experiment, or some other type of experiment in which the forcing
is changing sufficiently slowly that it is reasonable to take time-averages of the simulator outputs, to
suppress simulator noise. Thus, for a specified time-interval,

fi(r) = mi(r)+ξi(r) i = 1, . . . ,q (1)

where fi(r) is the time-averaged simulator output i at parameter values r, mi(r) is the unknown value
that would be uncovered if the run could be time-averaged over a very long time-interval, and ξi(r) is
the contribution from simulator noise, which must be treated stochastically.

A very simple statistical model for ξ (·) is that (i) it is independent of m(r), (ii) E{ξ (r)} = 0 for all r,
and

(iii) Cov{ξ (r),ξ (r′)}=

{
Ψ r = r′

0 otherwise.
(2)
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Figure 1: Signal-to-noise ratio in decibels, eq. (3), North American mid-Holocene anomaly, mean
temperature of the warmest month. Using an ensemble of 47 runs from the PalæoQUMP experiment,
perturbing 32 parameters; see Murphy et al. (2004) and Table 1 in Rougier et al. (2009), for 31 of
the parameters, the final one is a switch between a slab and a dynamical ocean. The time-averaging
was over 20 years.

In other words, the mean and variance of simulator noise are invariant to the value of r, and the noise
is uncorrelated across runs. This statistical model is obviously deficient, in that we fully expect inter-
nal variability, a component of ξ (·), to depend on the value of the parameters, r, and also boundary
conditions; McWilliams (2007) refers to this as structural instability. But in fact we have very little
evidence concerning this effect in GCMs, as the only runs we have that are long enough to estimate reli-
ably the variance of ξ (·) are at the standard parameterisation of the simulator, at pre-industrial boundary
conditions.

Obviously, we would like to recover m(r), the signal, but we see f (r), the signal plus noise. The crucial
question of this paper is how to maximise the signal-to-noise ratio in our ensemble of runs. In order to
consider a whole ensemble, imagine that the parameter value is a random value with some distribution
over the parameter space, denoted r̃. Then we define the signal-to-noise ratio for output i as

STNi := 10log10
Var{mi(r̃)}
Var{ξi(r̃)}

= 10log10
Σii−Ψii

Ψii
= 10log10

(
Σii

Ψii
−1
)

, (3)

measured in decibels (dB), where the variance matrix in the numerator, Σ := Var{ f (r̃)}, can be estimated
directly from the perturbed parameter ensemble.

Unfortunately, if i indexes a grid-cell, this signal-to-noise ratio can be very low for a GCM with a time-
average over 20 years, as shown in Figure 1. Generally, we might take anything below 10dB as too
small to be useful. Figure 1 shows a swathe running from north-west to south-east that has a useful
signal-to-noise ratio, and perhaps the far south-west, but the rest of the continent has grid-cell signal-to-
noise ratios of below 5dB. Frankly, in this experiment the outputs at the grid-cell scale are dominated
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by simulator noise. This finding might have implications for dynamical downscaling approaches using
regional climate models driven by GCM output at the boundaries.

Important note for anomalies: If the variance of simulator noise is estimated from one integration of
a control run, then the estimated Ψ for an anomaly is twice this estimated variance, as there is one
contribution from each integration.

3 Using linear combinations

Long time-averaging is a good way to improve the signal-to-noise ratio in simulator output, but it is
often inappropriate for a perturbed parameter experiment, where a better exploration of the parameter
space is the alternative. So one possibility is to use spatial averages instead, in the situation where i
indexes location. We formulate this in terms of a vector of spatial weights, α , and then

STNα := 10log10
Var{αT m(r̃)}
Var{αT ξ (r̃)}

= 10log10

(
αT Σα

αT Ψα
−1
)

. (4)

The value STNi is just the special case where α = ei, the unit vector that picks out the ith component.
For any given α , STNα is a scalar value, and it is not clear at this stage how to visualise this value; we
return to this below, in section 4.

Consider the problem of choosing α to maximise the signal-to-noise ratio. This is a standard problem
in multivariate statistics; see, e.g., Mardia et al. (1979), Appendix A.9. The answer is that if γ1 is the
first eigenvector of Q−1ΣQ−1 (i.e. has the largest eigenvalue), where Q is the symmetric square root of
Ψ, then the maximum is found at α1 := Q−1γ1, and

STNα1 = 10log10(λ1−1) (5)

where λ1 is the first eigenvalue of Q−1ΣQ−1. By extension of the same argument, the set of the first k
transformed eigenvectors,

A := Q−1
Γ1, where Γ1 = [γ1, . . . ,γk], (6)

say, will contain spatial averages with high signal-to-noise ratios.

One catch with this approach to maximising the signal-to-noise ratio is that it presupposes Ψ is non-
singular (i.e. invertible). Indeed, we expect both Σ and Ψ to be non-singular, but our estimates, being
constrained by resources, probably will not be. The simplest solution is to regularise both estimates
so that they are non-singular. This type of regularisation can be implemented in many different ways,
incorporating different judgements about the nature of the underlying variance matrix. We prefer to use
a simple and neutral approach at this stage. A similar attitude is found in optimisation, where hessian
matrices have to be constrained to be positive-definite through the stages of a numerical minimisation;
see, e.g., Nocedal and Wright (2006), section 3.4. We simply add 10−5 to the diagonal of each estimated
variance matrix, which is small relative to the scale of the individual diagonal elements. The simplest
statistical justification for this approach is that the effect of the adjustment is so small that the regularised
estimate of Ψ (or Σ) almost certainly still lies in the 95% confidence region for Ψ based on the estimated
value.

The scree plot in Figure 2 shows that there is plenty of signal in our ensemble, if we know where to
look: more than 60dB in some linear combinations. Figure 3 shows the loadings of the first four linear
combinations, A(1), . . . ,A(4). The loadings are spatially structured, which is not surprising as both the
simulator output and the simulator noise are spatially coherent. However, we do not expect to be able
to interpret them in terms of the simulator physics or in terms of the spatial structure of the simulator
noise, since they combine these two effects. Furthermore, if there is a pattern it is likely to be mixed in
the first few loadings, and then the orthogonality of Γ, which is a numerical property with no physical
origin, makes the individual loadings harder to interpret.
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Figure 2: Scree plot of the signal-to-noise ratio of the linear combinations in A. All linear combina-
tions after this had negligible eigenvalues.

Other approaches

Other authors in climate modelling have pursued similar approaches, although not in the context of
uncovering code errors. For example, Piani et al. (2005) work with the same raw materials. Here
we focus on Sexton et al. (2011), who consider the QUMP ensemble from the UK Met Office (the
precursor of the PalaeoQUMP ensemble used in this paper), in the context of climate projections. In
order to constrain the parameter values of their climate simulator, HADCM3, Sexton et al. compare the
simulator output at different choices of r with measured values, to introduce a weighting scheme over
the ensemble, as outlined in Rougier (2007). (Here we are simplifying slightly, by neglecting the crucial
role of their emulator.)

For each simulator run, there are thousands of outputs to be compared with measured values, and some
form of dimensional reduction is required. Sexton et al. use the first few variance-maximising linear
combinations from the ensemble; what we would refer to as the first few eigenvectors of Σ. However,
according to the analysis in this paper, their approach may well find linear combinations with moderate
signal and a reasonably large component of noise; e.g. their fourth eigenvector had an emulator R2

of only 0.65. This will lead to flatter weights across the ensemble of perturbations, and, typically,
conservative projections with more uncertainty—effectively some of the simulator noise is making it
through into the projections. Note that these uncertainties are not ‘wrong’; like all uncertainties they are
the consequence of a particular set of choices for the statistical model. But there is an opportunity here
to produce tighter projections with a small change of technique.

A more attractive option than using the eigenvectors of Σ is to use the linear combinations from a
Canonical Correlation Analysis (CCA) of the simulator inputs (parameter perturbations) and the simu-
lator outputs; for details of CCA see, e.g., Mardia et al. (1979, ch. 10). CCA has been used extensively
in meteorology, but primarily for relating patterns in two different spatial regions, i.e. studying telecon-
nections (see, e.g., Nicholls, 1987). In our suggestion, linear combinations of the simulator outputs must
be ‘explained’ by the parameter perturbations, and will therefore be relatively free of simulator noise.
This approach does not require an estimate of the simulator noise variance. But if such an estimate is
available, then it too can be incorporated through the use of an emulator. CCA provides a more prin-
cipled and flexible approach to choosing the linear combinations in A than our approach, but it comes
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First, STN = 67.1 Second, STN = 63.0

Third, STN = 60.8 Fourth, STN = 60.1

Figure 3: Loadings of the first four signal-maximising linear combinations, A(1), . . . ,A(4). These are
shown with a colour-scale of blue to red through white, but they are not orthogonal or normalised,
see (6).

with more statistical and computational overhead.

4 Recovering maps of simulator output

We would like to visualise the low-noise component of the simulator output, as this will approximate
m(r) in our decomposition (1). One way to do this is to project the simulator output f (r) onto the
column-space of the linear combinations with high signal-to-noise, i.e. onto the column-space of A.
Formally, if A+ is the Moore-Penrose inverse of A, then the projection onto A’s column-space is given
by the matrix P := AA+; this is discussed in textbooks on matrix theory, such as Piziak and Odell (2007,
section 8.2). It is important to centre the projection, e.g. around the ensemble mean f̄ , giving

m(r)≈ m̄(r) := f̄ +P{ f (r)− f̄}. (7)

Another way to interpret the centering is in terms of the equivalent expression m̄(r) = (I−P) f̄ +P f (r).
As I−P is the projection onto the orthogonal complement of the column-space of A, (7) is equivalent
to filling the column-space of A with information from f (r), and its orthogonal complement (where the
noise is) with information from f̄ . Not to centre would imply shrinkage towards zero.

As A has full column rank, its Moore-Penrose inverse is also its left inverse, A+ = (AT A)−1AT (Piziak
and Odell, 2007, section 4.4). Hence P = A(AT A)−1AT . Eq. (7) allows us to plot any simulator run,
filtering it via an operation that preserves the linear combinations with high signal-to-noise. Figure 4
shows a schematic of the procedure, with a two-dimensional simulator output and a one-dimensional
projection.
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Figure 4: Schematic showing the projection onto the column-space of A in the case where the sim-
ulator output is two-dimensional, and the projection is one-dimensional (i.e. k = 1). The scales are
chosen for easy visualisation; A in this case has a signal-to-noise ratio of only 5.5dB (contrast with
the values in Figure 2).

We have to decide how many linear combinations to use, k in (6). There is no reason not to keep them
all if they have good signal-to-noise, as ours do, although using fewer may give similar results. Fig-
ure 5 shows the simulator run at its standard parameterisation, both the original output which includes
simulator noise, and the filtered output, with three different values for k. In this case k = 10, the value
we might have inferred from the slight dog-leg in Figure 2, seems to perform similarly to larger values.
The filtered maps are clearly different from the original, with a mean reduction in temperature of about
0.5 ◦C, and changes of up to 2.5 ◦C in some grid-cells. The heuristic explanation is that the western cen-
tral large-scale positive anomaly in the original simulator output looks like a fluctuation in the simulator
noise, in terms of its spatial structure, and so is filtered out (also see below, Figure 7).

Figure 6 shows simulator outputs for several different runs, ranked from smallest to largest according
to the mean anomaly, with their filtered maps using k = 40. Unsurprisingly, the runs with the largest
absolute mean anomalies tend to be filtered the most; this is an example of regression to the mean,
as a plausible explanation for a large anomaly, either positive or negative, is a large fluctuation in the
simulator noise.

Finally, consider again the control run (simulator parameters at their standard settings) shown in Fig-
ure 5. In this case we do actually have longer time-averages for both the pre-industrial boundary con-
ditions (150 years) and the mid-Holocene boundary conditions (200 years). Thus we can visualise the
mid-Holocene anomaly with a smaller amount of simulator noise, although the degree to which noise
is reduced relative to a 20-year time-average will depend in a complicated way on the autocorrelation
structure of the simulator noise, which we cannot accurately assess. Nevertheless, Figure 7 shows the
result, and indicates that the filtered run does seem to have improved the representation of the simulator
smooth component, at least in damping out the large positive excursion in the western central region,
while preserving localised large anomalies in the north-east.
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Figure 5: Original and filtered values for the simulator run at its standard parameter settings, with
three different values of k, the number of linear combinations retained. This happens to be the
warmest run in the ensemble, with a mean anomaly of +1.5 ◦C. The mean anomaly after filtering is
+1.1 ◦C, for k = 40.

5 Summary

Our confidence in the correct implementation of a complex code like a weather or climate simulator
comes in part from checking that its behaviour conforms to our intuition. This typically involves per-
turbing the parameters in the simulator in physically meaningful ways, and examining the simulator
response. With limited resources, however, we must trade off the number of perturbations against the
length of the time-interval used to suppress simulator noise. Seldom will we have the resources to
perform a sequence of perturbations where every run is time-averaged over an interval long enough to
recover the smooth function underneath the noise. Furthermore, this would not be possible in experi-
ments with time-varying forcing.

This paper has proposed a mathematical solution, using nothing but the perturbed parameter ensemble
to hand, and a separate estimate of the simulator’s noise variance. The idea is to keep only those
linear combinations of the original simulator output that have a high signal-to-noise ratio. The filtering
operation to remove the noise is to project the original simulator output onto the column-space of the
linear combinations which have the highest signal-to-noise ratio.

One has to say that this approach is somewhat ad hoc, requiring no judgements on the part of the
modeller at all, except in how many spatial averages to use in the projection, which might be assessed
from the scree plot, and by comparing original and filtered simulator output. The underlying statistical
model given in eq. (2) is naı̈ve. And the approach is sensitive to the estimates of the two variance
matrices: that of the ensemble and that of the control run. For a large collection of simulator outputs,
possibly both estimates will be singular, and the choice here has been to regularise them in the crudest
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possible way. The variance of the ensemble will depend on the nature of the perturbations, and it would
clearly be better to have perturbations that conform, at least approximately, to a space-filling design in
the parameter region, such as a Latin Hypercube Design; see, e.g., Santner et al. (2003, section 5.2).

However, there is always room in a tool-box for a technique that is quick and ‘not totally daft’, and
that is the spirit in which this approach is advanced. Establishing confidence in a complex code needs
much more than this, of course, but sometimes one will get lucky—or unlucky depending on the point of
view—and find a middling-sized code error with a quick and not totally daft method. This has certainly
been the authors’ experiences on a number of complex simulation projects.
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Run afcja, −0.1 degC, Original Run afcja, +0.5 degC, Filtered

Run affig, +0.8 degC, Original Run affig, +1.0 degC, Filtered

Run afjbj, +1.1 degC, Original Run afjbj, +1.0 degC, Filtered

Run afcra, +1.4 degC, Original Run afcra, +1.2 degC, Filtered

Figure 6: Original and filtered values for four simulator runs, stratified by mean temperature
anomaly (shown in the panel title), with k = 40. The colour scale is the same as Figure 5.
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Original (20 years) Filtered, k=40 combinations

Using a longer time−average (150 years)

Figure 7: The original and filtered maps for the simulator at its standard parameterisation, plus the
original simulator output after performing a longer time-averaging. The colour scale is the same as
Figure 5.
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