
Workshop on Model Uncertainty, 20 – 24 June 2011 271 

The Limits of Convection Parameterization 

David Randall and Todd Jones 

Department of Atmospheric Science 
Colorado State University 

Fort Collins, Colorado 80523, USA 
randall@atmos.colostate.edu 

 

Abstract 

Cloud-resolving models (CRMs) can be used to investigate the non-deterministic and non-equilibrium statistics 
of deep convection. Results suggest that even a “perfect” cumulus parameterization will have large expected 
errors for grid sizes used by current global models. It is also possible to use a CRM as a stochastic, non-
equilibrium “super-parameterization.” Tests of this approach have demonstrated major improvements in climate 
simulations, especially when coupled with an ocean model. 

 

1. Introduction  
The resolution of the ECMWF model has dramatically increased in recent years. The same is true of 
other forecast models, and also, to a lesser extent, of climate models. Increased resolution allows 
better simulation of the basic fluid dynamics, and it also permits a more realistic depiction of 
topography, coastlines, etc. It does raise some issues, however, in connection with the 
parameterization of convection.  

For parameterization to work, the model’s grid spacing must be large enough, but not too large. 
Arakawa and Schubert (1974) wrote: “Consider a horizontal area … large enough to contain an 
ensemble of cumulus clouds, but small enough to cover only a fraction of a large-scale disturbance. 
The existence of such an area is one of the basic assumptions of this paper.” A parameterization 
determines the “expected” collective effects of many clouds over a large area. When the expected 
value of the convective heating is well controlled by the large-scale forcing, parameterization works 
well. This case is illustrated in the upper panel of Figure 1.  

One of the issues is that, in practice, the number of large clouds within a model’s grid column is not 
very large. In that case, the spatial scale of the convection is not well separated from the grid scale. 
This occurs when the area is not “large enough to contain an ensemble of cumulus clouds” -- at least, 
not a big enough ensemble. The problem becomes worse as the grid spacing becomes finer. On a fine 
grid, the statistical approach that we call parameterization is not appropriate, and random fluctuations 
can dominate. The middle panel of Figure 1. illustrates an intermediate case in which fluctuations are 
significant but not completely dominant. 

A second issue is that the time scale of the convection may not be sufficiently separated from the time 
scale for variations of the weather systems that are resolved on the grid. In this case, the convection 
may systematically lag the changes in the resolved weather, and “quasi-equilibrium” closures 
(Arakawa and Schubert, 1974) are not appropriate. Note, however, that as the grid spacing is reduced, 
and the resolved weather systems become smaller, the time scales of these systems also decrease. For 
this reason, the issue of time scale separation also becomes worse as the grid spacing becomes finer. 
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It is also possible for the spatial scale separation to be adequate even though the temporal scale 
separation is not. An example is the externally forced and very important diurnal cycle of convection, 
especially as it relates to deep clouds. With a large grid spacing, parameterization of diurnally varying 
convection is deterministic (i.e., not dominated by random fluctuations), but not in equilibrium.  

Parameterization is still possible, but quasi-equilibrium must be replaced by a prognostic approach 
(e.g., Pan and Randall, 1998), with built-in memory. This is the case illustrated in the bottom panel of 
Figure 1. 

 

 

Figure 1: a) Deterministic convection, which responds 
in a highly predictable way to time-varying forcing. 
The forcing is plotted on the horizontal axis, and the 
convective response on the vertical axis. b) Partially 
stochastic convection, in which random fluctuations, 
represented by the grey fan, limit the accuracy of the 
parameterization. c) Deterministic but non-
equilibrium convection, represented by the dashed 
curve, which lags the time-varying forcing, presented 
by the solid curve. The horizontal axis is time. From 
Jones and Randall (2011). 
 

 

This discussion suggests that parameterization errors can actually become worse at higher resolution, 
and that beyond some limit increases in resolution will not lead to better results. Support for this idea 
can be found in the work of Buizza (2010). He analyzed the systematic errors of the ECMWF model 
as a function of resolution. He worked with ensembles of forecasts based on various resolutions, all 
with the same physical parameterizations. Figure 2 is taken from his paper. The open circles in the 
figure show the times required for the systematic errors to reach 71% of saturation (i.e., the 
asymptotic error for large times), in forecasts of the real world, as a function of resolution, out to 
T799. All of the values are between 9 and 10 days. There is no systematic improvement with 
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increasing resolution. Buizza also used lower-resolution versions of the model to forecast the results 
produced by the T799 model. The results are represented by the black diamonds in Fig. 2. In contrast 
with the forecasts of the real world, the times to reach 71% of the saturation error increase 
systematically as the resolution increases. This means that increases in resolution do indeed lead to 
better forecasts, when the model is used to forecast a higher-resolution version of itself. The time to 
reach 71% of the saturation error would be infinite for the T799 model, because it is a perfect model 
of itself; there would be no forecast errors at all.  

 

 
Figure 2. The dependence of systematic forecast error on resolution, from Buizza (2010). See text for details. 
 
 
In the closing section of his paper, Buizza commented that “rather than resolution, it is model 
improvements that might lead to better predictions and longer predictability limits.” The model 
improvements in question are improved parameterizations of physical processes, including moist 
convection.  

The cartoon in Figure 3 illustrates an interpretation of this conclusion. The vertical axis in the figure is 
the systematic error, and the horizontal axis is horizontal grid spacing, with a logarithmic scale. The  
 

 
 
Figure 3. An interpretation of Buizza’s (2010) results. As resolution increases, parameterization errors become 
dominant at lower resolutions for climate than for NWP. See text for details.  
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blue curve (labeled NWP, for “numerical weather prediction”) shows that short-range (a few days) 
forecast errors can decrease with resolution, out to a grid spacing close to what ECMWF is using 
operationally now. Evidence of this is presented, for example, by Buizza (2010). At long range, 
however, the story is different. In the limit of climate simulation (very long-range forecasts), the 
systematic errors stop decreasing at somewhat larger values. At sufficiently high resolution, the long-
range errors come mostly from the physical parameterizations, and further increases in resolution 
don’t help. The point is that although increasing resolution can be useful for both NWP and climate 
simulation, as resolution increases the parameterization errors become dominant at lower resolutions 
for climate than for NWP.  The issues discussed in connection with Figure 1 can partly account for 
this. 

2. Experiments with a cloud-resolving model 
Jones and Randall (2011) used the three-dimensional cloud-resolving model (CRM) of Jung and 
Arakawa (2008) to explore the errors of convection parameterization as functions of both resolution 
and the time scale for variations of the resolved-scale weather, extending the work of Xu et al. (1992) 
by using a three-dimensional model (the model of Xu et al. was two-dimensional), and by analyzing 
the dependence of the results on subdomain size and forcing period. Jones and Randall simulated 
tropical deep convection using a domain 18 km tall and 256 km on a side, with 2 km horizontal grid 
spacing and moderate wind shear. The domain-averaged wind was relaxed to the GATE Phase 3 
mean. The large-scale forcing, interpreted as advective cooling and moistening, was loosely based on 
GATE Phase 3, and was prescribed as a sinusoidal function of time, with various periods. Radiative 
cooling was also prescribed rather than computed. The results were sampled on subdomains of 
various sizes. 

Figure 4. summarizes a few of the results. The red curve in each panel shows the phase of the 
prescribed advective forcing, for reference. The black curve shows the ensemble mean of the surface 
precipitation rate, and the shaded region shows the range encompassed by plus or minus one standard 
deviation. The top-right panel of the figure shows a “long” (120-hour) forcing period, sampled over 
the full domain (256 km square). The precipitation lags the forcing by a small fraction of the 120 hour 
period, and the standard deviation is fairly small compared to the mean. This case therefore 
corresponds to deterministic convection in quasi-equilibrium, as in the top panel of Figure 1.  

A perfect deterministic parameterization of the CRM, with a perfect prognostic (non-equilibrium) 
closure, should reproduce, perfectly, the ensemble means, shown by the black curves. The figure 
shows that individual realizations depart significantly from the ensemble means, especially for the 
smaller subdomain sizes. In other words, the ensemble mean is not necessarily a good estimate of 
what will happen in a particular realization (a particular forecast). 

The central panel of the figure shows the results for forcing with a 30 hour period (comparable to the 
length of the diurnal cycle), sampled over a subdomains 128 km square. The lag of the convective 
response, relative to the forcing, is now very obvious, and the standard deviation is comparable to the 
mean. The figure also shows seven additional combinations of forcing period and subdomain size. 
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Figure 4: Surface precipitation rate as a function of time, for three different forcing periods and three different 
subdomain sizes. From Jones and Randall (2011). See text for details. 
 

 

Further results are summarized in Table 1. The numbers shown are “coefficients of variation,” which 
are defined as the ratios of the standard deviation to the mean, for the surface precipitation rate, for 
various forcing periods and averaged over various subdomain sizes. For the full domain, 256 km 
square, the standard deviation is on the order of 10% of the mean. For the 128 km subdomains, the 
standard deviation increases dramatically, to about two thirds of the mean. For smaller subdomains, 
the standard deviation is even larger relative to the mean.  

These results suggest that, for the GATE-based case considered here, a model with a grid spacing of 
256 km can be expected to produce at least a 10% error in the surface precipitation rate, for individual 
realizations. The 10% error would apply for a perfect deterministic non-equilibrium parameterization, 
in the sense discussed above. With a 128 km grid spacing, the expected errors for individual 
realizations increase to about 65%. These numbers represent rather discouraging upper bounds on the 
accuracies of deterministic convection parameterizations. Non-deterministic or “stochastic” 
parameterizations are, therefore, required (e.g., Palmer and Williams, 2008).  
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3. Super-parameterization as a stochastic parameterization 
One approach to stochastic parameterization is “super-parameterization,” in which moist convection, 
stratiform clouds, and radiative transfer are represented by embedding a simplified two-dimensional 
CRM in each grid column of a large-scale model. The large-scale model supplies advective 
tendencies to the CRM, and the CRM feeds back by providing heating and drying rates to the large-
scale model. Early examples of the super-parameterization approach were described by Grabowski 
and Smolarkiewicz (1999), Grabowski (2001), and Khairoutdinov and Randall (2001). For a more 
complete and up-to-date list of publications relating to super-parameterization, see 
http://www.cmmap.org/research/pubs-mmf.html. Results to date show that, relative to conventional 
parameterizations, super-parameterization leads to major improvements in the simulation of the 
Madden-Julian Oscillation, the diurnal cycle of precipitation, and the Asian summer monsoon. A 
super-parameterized atmosphere model gives better results when coupled to an ocean model than 
when driven by prescribed sea surface temperatures (Stan et al., 2010; DeMott et al., 2011).  

 

 Subdomain Side Length (km) 

Period (hr) 256 128 64 32 16 

15 0.125 0.698 1.205 1.745 2.215 

30 0.113 0.656 1.177 1.693 2.185 

60 0.116 0.664 1.222 1.760 2.227 

120 0.147 0.707 1.282 1.815 2.257 
Table 1. For the surface precipitation rate, the ratio of the standard deviation to the mean, for various forcing 
periods (shown in the left-most column) and subdomain size lengths From Jones and Randall (2011). 
 
 
A super-parameterization is based on a nonlinear CRM, so it exhibits sensitive dependence on its past 
history, just like the CRM used by Jones and Randall (2011). It therefore behaves stochastically, and 
it can be viewed as a stochastic parameterization. Because of the CRM’s assumed two-
dimensionality, the number of grid columns in the CRM domain is too small (usually 64 or 32) to 
give a good sample of the convective activity, so the CRM probably exaggerates the stochastic 
component of the convection. We do not know to what extent this stochastic behavior is important for 
the successes of the method. 

Because each embedded CRM has a “memory,” which comes from its prognostic equations and the 
various forms of inertia in the system, a super-parameterization can simulate the lag between the 
large-scale forcing (as provided by the large-scale model) and the convective response. This non-
equilibrium behavior may be important for the super-parameterization’s ability to simulate the diurnal 
cycle of precipitation.  

 

http://www.cmmap.org/research/pubs-mmf.html
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4. Conclusions 
CRMs can be used to analyze the non-deterministic and non-equilibrium aspects of convection, as 
functions of subdomain size and forcing period. Our results suggest that parameterizations of deep 
convection have large expected errors with grid spacings of 128 km and finer. We are currently 
performing additional studies similar to that of Jones and Randall (2011), using interactive radiation 
and alternative forcing scenarios.  

CRMs can also be used directly as non-deterministic and non-equilibrium “super-parameterizations.” 
The computational cost is high, but the results obtained are interesting and may lead to future 
improvements in conventional parameterizations.  
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