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ABSTRACT

In 2005, the ECMWF held a workshop on stochastic parameterisation, at which the convection was seen as being
a key issue. That much is clear from the working group reportsand particularly the statement from working group
1 that “it is clear that a stochastic convection scheme is desirable”. The present note aims to consider our current
status in comparison with some of the issues raised and hopesexpressed in that working group report.

1 Introduction

A good indication that some substantial progress have been made since the 2005 ECMWF workshop is
that this note will necessarily be a rather partial and somewhat subjective review. It aims to offer some
examples rather than attempting to be comprehensive. Six years ago it may have been unnecessary to
make that caveat. Fortunately various other contributionsto the current workshop also deal with stochas-
tic aspects of convection, and we recommend the reader to consult also the contributions by Majda and
by Randall in order to obtain a more complete picture of the current state of the art. In particular, to
avoid undue overlap, some useful work from their groups may be neglected, or else mentioned only in
passing here.

2 Typical convective parameterization

We begin with a reminder of some basic structural features ofthe parameterizations that are commonly
used in current NWP and climate models. Most current parameterizations belong to the tradition of
Arakawa and Schubert(1974) in which convection is characterised by an ensemble of clouds within
some area of tolerably uniform forcing (Fig.2). Each cloud is averaged over its life cycle and its vertical
structure is modelled as a “plume”, which is described in terms of the mass flux. The plumes interact
with their environment but in all other respects are assumedto be independent and non-interacting.
Given that the usual plume equations are (almost) linear in mass flux then a common simplification is
to make a summation over plumes, thereby representing the entire ensemble with an equivalent “bulk”
plume. The great strengths of this bulk, mass-flux approach are that it avoids any separate, explicit
consideration of each type of cloud that occurs in the ensemble and also of the cloud area and updraft
velocity within each type. Even assuming that we can accept the simplified picture in Fig.2, these are
clearly very strong simplifications of that picture. It is not surprising then that the great weaknesses
of the approach are exactly the same points. For example, a very crude treatment of cumulus cloud
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Figure 1: Schematic of the idealization of convection used in many current parameterizations: an ensemble of
cumulus clouds is contained within a grid box of the parent model. Taken fromArakawa and Schubert(1974).

microphysics (which is not linear and which does distinnguish between area and vertical velocity) is
required for consistency.

Given a description of the vertical structure, it then remains to provide an overall amplitude for the
strength of convective activity: in effect, to determine how many clouds are present within the grid area.
This can be determined by assuming “convective quasi-equilibrium,” the notion that the tendency of
the convective ensemble to stabilize the atmosphere is close to being in balance with the tendency for
destabilization (i.e., the convective “forcing”) arisingfrom large-scale processes, such as radiative or
advective cooling.

The uncertainties associated with parameterization are often considered in three categories:

1. Structural errors. Clearly there are some fundamental issues with and strong assumptions in the
methodology outlined above.

2. Parameter uncertainties. The results of massive multi-parameter experiments have highlighted the
entrainment rate of a bulk mass-flux scheme as being the largest source of parameter uncertainty
for climate projections (e.g.Knight et al., 2007).

3. Inherent process uncertainties. Given a particular state of the parent NWP or climate model, it may
not be possible, even in principle, to determine propertiesof the unresolved state sufficiently well
for the feedback to the resolved state to be unambiguous. An extreme example would be where
convective initiation is very marginal and sensitive to subtle, inhomogeneous details of boundary
layer structure (e.g.Hanley et al., 2011). More generally, various coarse-graining studies of CRM
simulations (e.g.Shutts and Palmer, 2007) have demonstrated that a given large-scale state is
consistent with many sub-grid states.

In the remainder of this note, we will discuss some aspects ofcategory 3. Before doing so, it may
be worth remarking that the distinction between categories1 and 2 is not clear. The bulk entrainment
rate (and any dependencies associated with it in some particular scheme) may itself be regarded as a
parmeterization embedded within the convective parameterization. Entrainment parameterizes cloud-
environment interactions, and in a bulk scheme it also implicitly encodes assumptions about the relative
occurence of different cloud types. Indeed, uncertaintiesfrom all three categories might reasonably be
considered to also apply to the treatment of entrainment.
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Figure 2: Time-averaged profiles of ensemble spread in temperature for: the deterministic MetUM with small
initial-condition perturbations (dashed); default multiplicative noise SPPT method, with random numbers chosen
for stochastic multipliers applied to the total parameterized tendencies of T and q (black); multiplicative noise
with separate uncorrelated random numbers chosen for the stochastic multipliers of each parameterized process
(blue); and, multiplicative noise with separate uncorrelated random numbers chosen for the stochastic multipliers
of ∂T/∂ t and∂q/∂ t (red).

3 The physics of fluctuations

There is now good evidence from various studies that introducing some stochastic component to an
ensemble weather forecasting model may be helpful, in that the spread-error relationship of the ensemble
can be improved without any undue damage to skill measures. Since such outcomes have been achieved
for various forms of the stochastic component, one might therefore be tempted to adopt a purely practical
approach towards specifying that component. However, it isworth stressing that one can never become
completely agnostic about the relevant physics. In other words, introducing a stochastic component to
the model automatically carries with it assumptions about the physics that require some justification.

As a trivial example, let us consider a possible additive noise contribution,ε , to the potential temperature
equation:

∂θ
∂ t

+u.∇θ = Pθ(X,α)+ ε (1)

wherePθ represents deterministic parameterizations that depend upon a set of parametersα and on the
resolved-scale stateX. Suppose now that we decide to reformulate our model in termsof the transformed
variableη = eθ . This evolves according to

∂η
∂ t

+u.∇η = Pη(X,α)+ εη (2)

so that additive noise has become multiplicative noise. Of course, such phrases are quite meaningless
in themselves: it is necessary to specify for what variable the noise is to be considered additive or
multiplicative. And, such a choice of variable cannot be made without consideration of the physics.

To give a specific example, let us consider some variations onthe SPPT method as used at ECMWF. In
that method, multiplicative noise is applied to the total parameterized tendencies of∂T/∂ t and∂q/∂ t.
Ball and Plant(2008) studied the method, amongst others, in a single-column model experiment with
the Met Office Unified Model (MetUM) for the TOGA-COARE test case. As an extension to that study,
Fig. 3 shows the ensemble spread in temperature for the SPPT methodand some simple modifications of
it. There is little impact from treating each parameterization separately but a strong impact from treating
the temperature and moisture tendencies separately. Indeed, the spread produced by decorrelating the
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Figure 3: Auto-correlation function for parameterized mass flux, and the convection-scheme tendencies for mois-
ture and potential temperature. Results taken from a simulation with the MetUM at N48L38 resolution. Taken
from Stiller (2009).

noise in the two tendencies is larger than that produced by quenched1 random noise (not shown). The
reason for such artificially large spread is that the parameterized increments toT and q are strongly
negatively correlated. Condensation and evaporation are key parameterized processes, and a scatter plot
of the total parmeterization tendencies reveals that many of the total increments lie on or very close to
the lineCp∆T = −L∆q which would indicate a pure phase change. Decorrelating thenoise applied to
the two increments obscures that fundamental physical relationship, and so damages the fidelity of the
simulations.

Let us now return to the working group report 1 from the earlier ECMWF workshop (Craig et al., 2005)
and reconsider issues highlighted there.

3.1 Physical and artificial noise

When a mass-flux convective parameterization is used in an NWP or climate model, it does not behave
in a smooth way but rather exhibits strong on/off behaviour with strong timestep-to-timestep variabil-
ity. This remains the case even in highly-idealized single-column model experiments performed by the
authors in which the forcing for convection is specified and constrained to be time invariant. This small-
scale, high-frequency variability has not been well characterized or studied, and there is rather little in
the journal literature that explicitly addresses the issue. One exception isStiller (2009) who highlights
the problem that it produces for data assimilation. Figure3.1shows that there is a very rapid fall off of
the auto-correlation function for parameterized convective tendencies, on a timescale that appears to be
set by the model timestep rather than anything physical. There is almost no correlation in the tendencies
at neighbouring timesteps.

Such artificial on/off noise is present in many NWP and climate models and may be having upscale ef-
fects. It would seem to be worthy of dedicated study, not least because artificial noise in the output from
one physics scheme implies that artificial noise is present in the input to other physics schemes. That
may potentially lead to systematic errors in respresenting(say) cloud-radiation effects. For the purposes
of the present discussion, however, we will content ourselves with noting an important consequence. If
one wishes to develop an explicit representation for some physical source of inherent convective fluc-
tuations then a naive application of that representation will not necessarily produce fluctuations in the
parent model with the desired characteristics. Certainly it will be essential to make careful checks that

1i.e., using the default method and randomly choosing tendency multipliers at the first timestep only which are then left
fixed throughout the model integration
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those characteristics are reproduced in practice, and possibly it may be necessary to take steps to remove
the artificial noise.

3.2 Scale-dependence of parameterization

The purpose of a parameterization scheme such as that for convection is to represent the effects of pro-
cesses that take place below the parent model’s filter scale.It immediately follows that any change to the
filter may require a change in the appropriate representation of what is sub-filter. Most parameterizations
in operational use contain no explicit recognition of the length and timescales on which they operate.
That may well be an acceptable approximation over a wide range of the filter length and timescales, at
least for the mean response of the unresolved processes. It is however less plausible as an acceptable
approximation for the stochastic aspect of a parameterization, as the simple considerations below indi-
cate. The consequence is that ideally a parameterization (but particularly a stochastic parameterization)
should adapt automatically to the grid size of the parent model. This is important in the sense that one
test for a good representation of the fluctuations is an ability to capture their variation with lengthscale.
It may also be important for practical reasons, certainly ifparameterization is to be handled in a satis-
factory way in conjunction with some of the new dynamical cores that are being developed, which have
adaptive grids.

Convective instability is released in a discrete fashion, afinite number of clouds appearing in a finite
area in response to some large-scale destabilization mechanism. For a typical GCM grid box of size
(say)(100km)2 the number of deep convective clouds that are typically found in the box is on the order
of a few, or maybe less, and certainly far from being large enough to produce a steady response to a
steady forcing (Plant and Craig, 2008; Shutts and Palmer, 2007). The fluctuations in mass flux about a
mean response can be determined theoretically from a statistical mechanics approach, subject to certain
assumptions (Craig and Cohen, 2006). Fortunately the key assumptions required are very familiar ones
from the perspective of a traditional deep convective parameterization (Sec.2): specifically, that there
is an equilibrium between the large-scale forcing and the ensemble-mean convective response and that
the clouds can be assumed to be non-interacting. Moreover, the predictions are in good agreement
with CRM simulations, even in organized and time-varying cases where one might expect the main
assumptions to have broken down (Cohen and Craig, 2006; Davoudi et al., 2010).

Notice that the key point of this analysis is the need for a clear distinction to be made between ensemble
and spatial averaging. Only for a strong enough forcing and alarge enough grid box do the two coincide,
but more generally, the spatially-averaged convective state is a sample from the full cloud ensemble that
is the basis of a mass-flux convective parameterization.

TheCraig and Cohen(2006) theory has been translated into a practical parameterization byPlant and Craig
(2008). Their scheme uses the mass-flux formalism, and operates asfollows.

1. An average in the horizontal and over time is performed to determine the large-scale state.

2. Properties of equilibrium statistics are determined dependent upon the large-scale state: the ensemble-
mean cloud-base mass flux is determined from the scheme’s CAPE-based closure, and the mean
mass flux of a single cloud must also be determined. This latter quantity is important in setting a
scale for the fluctuations. In principle, it may be a functionof the large-scale state (Davies, 2011,
personal communication) but available CRM data seem to suggest that at cloud base it is a weak
function, and so a constant value is used in the parameterization.

3. Given the above quantities, the theoretical pdf’s are then fully specified for the number and prop-
erties of the clouds within a single grid box. Those pdf’s aresampled randomly.

4. Output tendencies are computed for the sampled set of clouds.
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Figure 4: PDFs of total parameterized mass flux over a horizontal area of (64km)2 in RCE simulations with
32km grid length with the MetUM. Left: a simulation in which a large-scale state for input to thePlant and Craig
(2008) scheme has been computed by averaging over∼ (160)km2 and for∼ 1hr. Right: with no such averaging.
Crosses show simulation data and the solid line is the theoretical prediction.
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Figure 5: Normalized standard deviation in a trial of thePlant and Craig(2008) parameterization in MOGREPS.
Results (green) and compared to those from the MetUM standard deterministic parameterization (blue). The
convcetive rainfall was averaged over(48km)2 (left) and(120km)2 (right).

Notice that the parameterization distinguishes between the grid-scale state and the large-scale state, with
the pdfs being a function of the latter. In order to demonstrate the practical importance of the distinction
Keane and Plant(2011) performed idealized radiative-convective equilibrium experiments in a three-
dimensional domain with parameterized convection. This isa controlled situation that matches well
with the picture of convection in Fig.2, so it is an important test of any parameterization that it should
be able to describe the situation well (i.e., in good agreement with equivalent CRM experiments). The
underpinning theoretically-predicted pdf for mass flux over a finite area can be successfully reproduced
(Fig. 3.2) regardless of the grid length used. That is not the case, however, if grid-scale input is used. In
essence, fluctuations (whether physically-based or otherwise) in the input state can damage the closure
calculations for determining the mass flux that is required to balance the imposed forcing.

The scheme is currently being trialled in the Met Office MOGREPS ensemble system, and some pre-
liminary results are shown in Fig.3.2. This indicates that enhanced variability remains on scales longer
than the 24km grid length.
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Figure 6: An example solution of the ordinary differential equations ofPan and Randall(1998) (blue) is shown
alongside numerical results from an equivalent, individual-level stochastic model. The system size was such that
there are an average of 10 clouds present at equilibrium within the simulated system. The green line shows a
single realization of the individual-level model and the red line the ensemble mean from 100 realizations.

3.3 Prognostic closures

Non-equilibrium closures for convective parameterizations have been explored on the basis of the convective-
energy-cycle equations. The first attempt to do this was byPan and Randall(1998) who considered the
equation set

dAi

dt
= Fi − γi j M j ;

dKi

dt
= AiMi −

Ki

τi
(3)

supplemented by an ansatz

Ki = αM2
i (4)

HereA is the cloud work function ofArakawa and Schubert(1974) (a generalization of the CAPE),M
is the mass flux,K the convective kinetic energy,F the forcing andγ andτ are vertical-structure and
dissipation parameters that are treated as constants. The subscripts label cloud types. In the past few
years there has been a revival of interest in these and other related equation sets (Davies et al., 2009;
Wagner and Graf, 2010; Yano and Plant, 2011).

A natural question to ask is how one might treat stochastic effects from finite cloud number in out-of-
equilibrium systems such as these. One possibility is to consider a model formulated at the individual
cloud level using simple birth and death probabilities suitably modulated by the evolving cloud work
function. RecentlyPlant(2011) showed that such models can be formulated so that they are completely
equivalent to the above ordinary differential equations, in the sense that the ode’s are reproduced in the
limit of infinite system size. A numerical example is given inFig. 3.3. Moreover, the birth–death rules
used and the associated probabilities are very strongly constrained by making the link to appropriate
ode’s. The individual level model can also be made consistent with the equilibrium fluctuations in a
finite-size system that were predicted byCraig and Cohen(2006).

Note that stochastic birth–death processes have previously been used to describe deep convection (e.g.
Majda and Khouider, 2002), albeit in a rather different context and motivated by uncertainties in the
triggering process. See also the contribution to this workshop from Majda for details of a further appli-
cation.

ECMWF Workshop on Model Uncertainty, 20-24 June 2011 239



PLANT ET AL : STOCHASTIC PARAMETERIZATION: UNCERTAINTIES FROMCONVECTION

Perturbation at 2000 UTC, 8 km
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Figure 7: On the left is shown an example of a perturbation field applied to the temperature within the boundary-
layer in a convective-scale simulation of a case of widespread convection across the UK. On the right are shown
the fractions of rainy grid points in a control (without boundary layer perturbations) and a perturbed simulation.

3.4 Effects of sub-grid variability

There have been various demonstrations in the recent literature from simulations at convective-scale
resolution (i.e., without convective parameterization) that small boundary layer fluctuations can easily
shift the locations of precipitating convective cells . An example is given in Fig.3.4, taken from the study
by Leoncini et al.(2010). Such fluctuations provide a source of ensemble spread for NWP forecasts at
convective-scale resolution. It may be needless to remark that this provides a simple example of how
the absence of a convective parameterization certainly does not mean that we remove the uncertainties
associated with convection.

In terms of accounting for boundary layer fluctuations when using a convective parameterization, we
refer the reader to earlier work byMajda and Khouider(2002) andBright and Mullen(2002), the for-
mer study having been mentioned earlier and the latter applying stochastic perturbations to the trig-
gering function in the Kain-Fritsch parameterization. Development of theMajda and Khouider(2002)
approach has been reported byMajda et al.(2008) but we are not aware of any other recent studies
explicitly dealing with this issue.

It may be worth noting, however, that there seems to be increasing interest in mass flux closures related
to the quantity exp(−CIN/TKE). See for example the poster contribution to this workshop from Ho-
henegger. Such closures are strongly motivated by ideas about boundary layer fluctuations, but so far at
least do not seem to have been considered in a stochastic sense.

More generally, this topic clearly raises important issuesabout the coupling between the boundary-layer
and the convective parameterizations, which remain to be addressed.

3.5 Propagation

There are longstanding and well documented issues in NWP andclimate models regarding propaga-
tion and organization of convection. At least in part, this may be due to the lack of communication
between grid cells. At the 2005 workshop, there were two possibilities raised. One was that a cellular-
automata approach might provide a suitable mechanism for inter-cell communication. Some work along
these lines has recently been conducted byBengtsson-Sedlar et al.(2011) and is further described in her
contribution to this workshop.

The other possibility was that communication could be achieved by allowing for cold pool propagation
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between grid boxes. A recent study to mention in this contextis Grandpeix and Lafore(2010) who
proposed a density current parameterization for cold pools, coupled to a convective parameterization.
The authors suggest that it might be extended to provide a mechanism for horizontal propagation. Their
approach is not stochastic, although a stochastic aspect would appear natural in any such extension,
given that the cold pool propagation out of a grid box must to some extent depend on where within the
grid box the downdraft source is assumed to occur.

4 Summary

Some issues in the stochastic parameterization of convection have been discussed. It is clear that there
has been considerable progress made since the 2005 ECMWF workshop. However, some important is-
sues raised then remain important issues now, while other issues identified then have still to be addressed
in any concerted way.
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