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1. Introduction 
The representation of convection in large-scale models remains one of the most difficult problems in 
atmospheric science. This is due to the need for this representation to be of conceptual nature as 
convective processes act on scales much smaller than the grid-spacing of global weather and climate 
models. As a consequence, convective processes need to be parametrized, i.e., the behaviour of 
variables on the (relatively) small convective scales must be described in relation to that of the 
variables on the (relatively) large scales resolved by the model. The ideas and concepts that underpin 
parametrizations of convection date back more than 40 years and were originally developed for 
descriptions of tropical cyclones (e.g., Ooyama (1969), Kuo (1965)) before being introduced in a more 
general context (e.g., Arakawa and Schubert (1974), Kuo (1974)). The basic ideas of traditional 
convection parametrization as well as recent developments are summarized in the review by Arakawa 
(2004).   

The parametrization of convection is inherently complex and it is perhaps not surprising that many of 
the existing shortcomings in contemporary global models ranging from errors in the mean climate 
(e.g., Zhang et al. (2007)) to the models inability to simulate modes of tropical variability (e.g., Lin et 
al. (2006)) have been linked to shortcomings in the representation of convection. Many improvements 
in model behaviour are also often associated with changes to the convection parametrization. Recent 
examples range from improved El Niño / Southern Oscillation behaviour (Neale et al. (2008)) to 
improved extratropical forecast performance (Bechtold et al. (2008)).  

A recent criticism leveled at the model descriptions of convection is that they are behaving in what is 
termed a “deterministic” fashion, in that identical large-scale states (if they could be found) would 
result in identical corresponding convective states, when this is unlikely to be true in the real world. 
All traditional parametrizations, not just those of convection, behave in this way leaving no room for 
variability around the parametrized mean relationship between scales. Several studies using cloud-
resolving models (CRMs) have investigated the large- to small-scale relationships and have identified 
significant variability around the mean relationships traditionally used in parametrizations (e.g., Cohen 
and Craig (2006), Shutts and Palmer (2007), Plant and Craig (2008)). Attempts to alleviate the 
limitations of traditional deterministic parametrizations date back to the introduction to what is usually 
referred to as “stochastic physics” in the ECMWF model by Buizza et al. (1999). They showed that 
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the application of a multiplicative noise to the tendencies from physical processes improved the 
spread-skill relationship of the ECMWF ensemble prediction system. Several approaches to stochastic 
parametrizations have since been proposed most of which target in particular the behaviour of 
convection. Those approaches range from the introduction of a stochastic backscatter from small to 
large scales (e.g, Berner et al. (2009)), the use of empirical relationships to adjust the behaviour of the 
convection parametrization (e.g., Lin and Neelin (2003)), the use of a Markov chain lattice to 
stochastically describe the evolution of convective cloud types in a grid-cell (e.g., Khouider and Majda 
(2006)) to a fully stochastic description of convection (e.g., Plant and Craig (2008)). It is worth noting 
that all of the efforts so far rely on either ad-hoc empirical relationships or on the use of other models, 
most prominently CRMs, to study the degree of stochasticity in the large-scale to convection 
relationship. To our knowledge, none of the existing stochastic physics approaches has used 
observations in its derivation or evaluation. It is the main purpose of this study to alleviate this severe 
limitation in the field of stochastic physics. 

 

Before deriving an observational data set that is suitable to investigate the relationships between 
convective and large scales it is worth clarifying what exactly we mean when classifying behaviour 
into deterministic and stochastic. While the words “stochastic physics” are now in wide-spread use, 
their meaning is not always clear as many if not all “stochastic” physics schemes acknowledge the 
presence of deterministic relationships. For instance the multiplicative approach of Buizza et al. 
(1999) relies first on the existence of a non-zero tendency from physical processes derived with a 
traditional, and hence deterministic, set of parametrizations. Figure 1 schematically shows how the 
terms “deterministic” and “stochastic” will be interpreted throughout this study. The left hand panel of 
the figure shows a distribution function of a small-scale variable, such as convective precipitation or 
convective heating. It is assumed that this distribution function has been derived from a large sample 
of cases collected in either space or time, each being representative for an area equivalent to a model 
grid-box. To identify if this distribution is the result of a deterministic or stochastic relationship with 
larger scale processes means to sub-sample the distribution for classes of large-scale state. In the case 
of convection one can imagine that the large-scale state might be described by dynamic and/or 
thermodynamic characteristics, such as convergence/divergence or measures of atmospheric stability, 

Figure 1: Schematic of the definition of the terms “deterministic” and “stochastic” for the 
purpose of this study. See text for details. 
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such as Convective Available Potential Energy (CAPE). It is assumed in this schematic that each 
large-scale state can be sampled many times. If the scale-relationship is deterministic, each large scale 
state would correspond to exactly one small scale state and the overall distribution would be the result 
of a large number of delta functions, one for each large-scale state (top right). If on the other hand, the 
relationship was entirely stochastic, the (normalized) distribution for each large-scale state would 
resemble the overall distribution, indicating that the large-scale state has no influence at all on the 
small-scale behaviour (middle right). A third possibility is that there is a mixture of deterministic and 
stochastic behaviour in the scale-relationship, so that each large-scale state corresponds to a 
distribution of small-scale states which changes with the large-scale state itself (bottom right). 

It is a key purpose of this paper is to investigate from observations which, if any, of the conceptual 
models outlined in Figure 1 is appropriate to describe the large-scale to convection relationship in the 
tropics. We also aim to quantify some of the aspects of the relationships and in particular we 
investigate the validity of some common assumptions in existing stochastic physics approaches. 
Section 2 describes the derivation of the observational data sets necessary to carry out this study. 
Section 3 provides insight into some basic relationships between large and small scales in a convecting 
atmosphere. Section 4 focuses on identifying just how much stochasticity there is in the scale-
relationships. A particular focus of this section will be to highlight how the relative importance of 
deterministic to stochastic behaviour can be a strong function both of the choice of model to describe 
that relationship, as well as the large-scale state itself. Section 5 will provide the main conclusions of 
this study. 

2. A long-term data set to study large-scale to small-scale relationships 
in a convecting atmosphere 

The use of observations to study the relationships between large and small scales requires concurrent 
long-term data sets of the relevant variables on both scales. For the study of convection such data sets 
need to include both thermodynamic and dynamic variables, in particular large-scale convergence and 
divergence patterns, as well as a description of the statistical distribution of convective properties 
within the large-scale area. 

Providing reliable estimates of the large-scale variables required to study tropical convection has 
proven challenging. The most common and most readily available source of large-scale information 
are analyses provided by Numerical Weather Prediction (NWP) centres, such as the commonly used 
reanalysis products (e.g., Uppala et al. (2005); Kanamitsu et al. (2002)). However, due to the lack of 
both observations and large-scale constraints in the analysis process, the quality of these analyses is 
poorest in tropical latitudes and for variables that are key to convection, such as convergence.  

Another common source of large-scale information are analyses of arrays of radiosondes and 
associated observations as they are frequently applied during field experiments (e.g., Yanai et al. 
(1973); Houze and Betts (1981); Ciesielski et al. (1997)). A particularly powerful method to analyze 
such data is the variational budget analysis approach developed by Zhang and Lin (1997), as it 
combines the use of radiosonde information with surface and top-of-the atmosphere (TOA) 
observations that are used to constrain the vertically integrated heat and moisture budgets. It has been 
shown that in particular the use of surface precipitation as a constraint improves the analysis quality 
significantly (Zhang et al. (2001)). Unfortunately, much of the large-scale information derived using 
radiosonde arrays is limited to short periods of infrequent field experiments.  
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Xie et al. (2004) developed a hybrid approach that used NWP analysis data as a surrogate for 
radiosonde observations and combined this information with surface and top-of-the-atmosphere 
(TOA) observations taken at the Atmospheric Radiation Measurement program’s (ARM, Ackerman 
and Stokes (2003)) site in the U.S. Southern Great Plains (SGP) using the variational technique of 
Zhang and Lin (1997). They demonstrated that for this extratropical location this hybrid approach can 
successfully provide estimates of the large scale state of the atmosphere for long and continuous 
periods of time, provided that long-term observations of surface precipitation and TOA radiation are 
available. 

Here, we extend the hybrid approach of Xie et al. (2004) to a tropical location. We make use of the 
availability of long-term, high-quality radar observations at Darwin, Australia. The radar observations 
are taken by a C-band polarimetric research radar (CPOL, Keenan et al. (1998)) located at Gunn Point 
and have been converted to surface rainfall estimates making full use of the polarimetric observations 
by using the algorithm of Bringi et al. (2004). The advantage of the use of radar data over rain gauges 
lies in the superior spatial sampling. It’s disadvantage is in the need to retrieve rainfall from the radar 
observations, which in the case of CPOL is somewhat mitigated by the additional measurements from 
the polarimetric capabilities of the radar. 

To test the suitability of our methodology, we first apply it to the data taken during the Tropical Warm 
Pool International Cloud Experiment (TWP-ICE, May et al. (2008)), which took place in the Darwin 
area in 2006. This allows us to compare the results of an analysis that uses the extensive TWP-ICE 
radiosonde array (detailed in Xie et al. (2010)) with those from an experiment where the radiosonde 
data, specifically vertical profiles of zonal and meridional wind, temperature and specific humidity, 
are replaced by grid-point information from the ECMWF operational analysis.  

Figure 2 shows time-height slices of the area-averaged vertical velocity from the radiosonde-based 
TWP-ICE analysis (top), the hybrid variational approach using ECMWF profiles and radar-derived 
rainfall (middle), and the ECMWF operational analysis (bottom). It is evident that the ECMWF 
operational analysis does not provide a good match with the best-estimate of vertical velocity derived 
from the full TWP-ICE data set. While there is some qualitative agreement in the early period, which 
was dominated by the presence of a strong monsoon trough, the less active middle period as well as 
the strongly diurnally varying final period of the experiment are not well-captured. Using ECMWF 
profiles as a radiosonde surrogate as well as the radar rainfall observations in the variational technique 
leads to very good agreement with the analysis using all the observations. Encouraged by these results 
we apply the hybrid variational approach to three wet seasons at Darwin (2004/05; 2005/06; and 
2006/07) providing us with reliable estimates of the large scale atmospheric state for approximately 
1900 six-hourly samples.  

To study the large-scale to convection relationships requires a data set that describes the statistical 
properties of convection in the area for which the large-scale is known. Here we take advantage of the 
CPOL radar once again. First, we use the algorithm of Steiner et al. (1995) to separate the rainfall field 
into its convective and stratiform components. Having done so we can calculate area-averaged 
convective and stratiform rain rates, the convective and stratiform fractional rain area as well as 
convective and stratiform rainfall intensities (defined as rainfall per unit raining area). As convective 
rainfall and convective area (through its inclusion in the convective mass-flux) are key variables in 
convective parametrization schemes, we proceed to investigate the large- to small-scale relationships 
using those variables. Note that we consider this a starting point of our investigation and we are 
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actively pursuing the derivation of further small-scale variables from the radar observations, including 
the vertical velocity in convective updraughts. 

 

3. Some basic relationships between large and small scales in a 
convecting atmosphere 

We use the concurrent data sets of large and small scales derived in the previous section to study some 
basic relationships between processes acting on the two scales. These relationships will then guide our 
discussion on the relative importance of deterministic (“signal”) and stochastic (“noise”) elements in 
these relationships in the next section. Figure 3 shows the relationship between area-mean convective 
rainfall and vertically integrated moisture convergence and CAPE.  

Figure 2: Time-height cross-section of vertical velocity using all TWP-ICE observations 
(top), from direct output of the ECMWF analysis (middle) and using the hybrid approach 
(bottom). See text for details. 
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It is evident that there is quite a strong relationship between moisture convergence and convective 
rainfall while the relationship with CAPE is rather poor. Strong moisture convergence is associated 
with larger amounts of convective rainfall, while little to no rainfall is observed when moisture 
convergence is negative, indicating a net divergence of moisture from the domain and hence very 
likely subsiding conditions. While the relationship is strong, there is considerable scatter indicating at 
least some stochastic elements in the relationship. It is worth noting that the relationships identified in 
Figure 3 must not be interpreted as causal in any way. In the case of convergence and convection it is 
well known that strong feedbacks between the two do exist, with convective heating inducing 
convergence and convergence inducing convection. The fact that the relationship between convective 
rainfall and CAPE is poor, while not entirely surprising, is of some importance, as many of today’s 
cumulus parametrization schemes heavily rely on the existence of such a relationship. We will return 
to this issue in Section 4. 

Before doing so we further investigate the nature of the relationship between rainfall and moisture 
convergence. The area-averaged convective rainfall, Rc, used in Figure 3 can be written as  

 c cR Iσ= , 

where σ is the fractional area covered by convection and Ic is the local rainfall intensity. Figure 4 
shows the two quantities on the right hand side as a function of vertically integrated moisture 
convergence. It is evident that most of the relationship in Figure 3 is the result of a relationship 
between convective area and convergence, while the relationship to convective rainfall intensity is 
weak. It has been postulated in the past based on CRM simulations that convection may react to an 
increase in the strength of the large-scale “forcing” through an increase in convective area (e.g., Cohen 
and Craig (2006)). Figure 4 provides observational support for this hypothesis. The physical 
mechanisms that control this behaviour are not fully understood and will be subject to further 
examination.

 

Figure 3: The relationships of 6-hourly convective rainfall and vertically integrated large-
scale moisture convergence (left) and CAPE (right) for the Darwin area. 
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4. How stochastic is convection? 
In the previous section we demonstrated the utility of concurrent observations of large and convective 
scales derived for a GCM grid-box size area around Darwin in Northern Australia. Figures 3 and 4 
illustrate that i) there are potentially strong relationships between the large and convective scales; and 
ii) that none of these relationships is entirely free of some “stochastic” variations around the “mean” 
relationship. This justifies the notion that conceptual models of convection as they are used in 
parametrizations should contain a stochastic component. However, the figures also illustrate that the 
strength of the “deterministic” component in the relationship is a strong function of the model 
variables. In Figure 3 it is immediately obvious that a model based on CAPE behaves more 
stochastically than one based on moisture convergence. We will investigate this issue further by 
considering the relationships between vertical motion in pressure coordinates, whose vertical 
derivative is directly related to convergence through the continuity equation, and the apparent heat 
source, Q1, whose vertical integral is directly related to rainfall and which has been shown to be 
strongly related to convective heating. Here, Q1 is defined in the traditional way (e.g., Yanai et al. 
(1973)).  

 

Figure 5 shows a selection of so called beanplots (Kampstra (2008)), which are used to qualitatively 
illustrate the shape of a sample distribution. In particular the plot allows to depict a number of such 
distributions at the same time. We show distributions of apparent heat source Q1 as a function of 
CAPE (top panels) and pressure vertical velocity at 500 hPa, ω500 (bottom panels). The left panels of 
Figure 5 show the distributions of Q1 as a function of pressure for the lower (red) and upper (blue) 
terciles of CAPE and and upward (red) and downward (blue) ω500 respectively. When Q1 is separated 
into high and low CAPE, there is no distinguishable difference in its distributions at any level of the 
atmosphere. In contrast, if Q1 is separated using ω500 terciles a strong separation between upward and 
downward motion is immediately apparent. Apart from the lowest level, downward ω500 is associated 
with diabatic cooling, most likely from radiation. Upward ω500 on the other hand shows distinctly 
different distributions of heating, with strong heating in the middle and upper troposphere and a low 

Figure 4: The relationships of 6-hourly vertically integrated large-scale moisture 
convergence and fractional area covered by convection (left) and local convective rainfall 
intensity (right) for the Darwin area. 
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level distribution that is slightly skewed towards cooling, most likely from convective downdrafts and 
the evaporation of precipitation. 

 

 

The right panels on Figure 5 show Q1 at 500 hPa separated into deciles of CAPE (top) and ω500 

(bottom). In these panels, the lower (blue) distributions represent the total distribution of Q1 at 500 hPa 
independent of the large-scale variables, while the upper (red) distributions represent the distribution 
in each decile individually. It is evident that using CAPE each individual decile-distribution looks 
almost identical to the overall distribution. In other words, the sample distribution of Q1 is entirely 
independent of CAPE, giving the impression that the relationship between the large scales 
(represented by CAPE) and convection (represented by Q1) is entirely stochastic similar to the second 
panel in Figure 1. Using ω500 as the large-scale variable gives an entirely different result. There is a 
very strong separation between the individual decile and the overall distributions with a clear 
progression from cooling for the lower deciles to strong heating in the upper deciles. Note that the sign 

Figure 5: Beanplots of the relationships of the apparent heat source Q1 and CAPE (top 
panels) and pressure vertical velocity at 500 hPa, ω500, (bottom panels). The left panels 
depict the estimated shape of the Q1-distribution as a function of pressure for the high 
(blue) and low (red) CAPE terciles (top) and downward (blue) and upward (red) ω500 
terciles (bottom). The right panels depict Q1 at 500 hPa as a function of CAPE (top) and 
ω500 (bottom) deciles. The total Q1-distribution is depicted in blue, while the distribution 
within each decile is depicted in red. 
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of ω500 has been switched so that lower deciles represent downward (positive) and upper deciles 
upward (negative) ω500. This behaviour is much more akin to the third panel in in Figure 1 and hence 
represents quasi-deterministic behaviour with a certain amount of stochastic variability 

Having identified at least some stochastic behaviour in the relationship between convection and the 
large scales, it is worth posing the question if the “noise” in the relationship is itself a function of the 
“signal”. In the multiplicative approaches to stochastic model physics by Buizza et al. (1999) by 
definition, the “signal-to-noise” ratio is constant and hence independent of the signal itself. We 
investigate the validity of this assumption by distributing convective rainfall into bins of ω500 and 
calculating the mean and standard deviation in each bin. The results are shown in Figure 6. The mean 
rainfall (blue line) is small for downward ω500 but increases strongly with decreasing (upward) values 
of ω500. The standard deviation (red line) of convective rainfall in each bin also increases steadily as 
ω500 becomes more and more strongly upward. However, the increase in the mean proceeds 
significantly faster than that in the standard deviation. At downward and weakly upward ω500 the 
standard deviation is larger than the mean, indicative of the strongly stochastic character of convection 
when it is weak and/or weakly forced. For medium and strong upward motion, the standard deviation 
becomes significantly smaller than the mean indicating a much more deterministic behaviour of 
convection in that regime. The overall behaviour is summarized in the ratio of standard deviation and 
mean (black line), which decreases rapidly from values above 1.5 at downward motion to 0.5 at strong 
upward motion. 

 

5. Conclusions 
There has been significant recent debate on the degree to which the relationship between large and 
convective scales is governed by deterministic relationships and how much of a stochastic component 
is required in representations of convection in models. Several approaches to introduce stochastic 
elements into models have been proposed and implemented over the last few years. Most if not all of 
the current approaches rely on ad-hoc relationships or information obtained from CRMs, while 

Figure 6: Mean (blue) and standard deviation (red) of convective rainfall as a function of 
ω500. Both lines refer to the left y-axis. Also shown is the ratio of standard deviation and 
the mean (black), using the right y-axis. 
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observations have been largely ignored in the debate. It was the main purpose of this study to 
overcome this gap by constructing a long-term data set of concurrent large- and convective scale 
information and to use this data set to investigate the behaviour of the scale relationship. In doing so 
we assessed several of the commonly used assumptions in stochastic physics implementations in 
models. The main conclusion of our work are: 

1. While complex, the construction of the data sets that are required to investigate the stochastic 
aspects of convection with respect to large-scale behaviour is possible at least at some sites. 
Building such data sets requires frequent radar observations from which both rainfall and 
other small-scale quantities can be derived as well as standard NWP analyses. Few such sites 
in the tropics exist to date. 

2. Early results of analyzing the data at the Darwin site indicate poor relationships between 
stability-based measures and the small-scale behaviour but much stronger links between 
convergence-based variables and convective heating. Care must be taken when interpreting 
these relationships as cause and effect as convection is both affected by and affects the 
convergence field. Nevertheless, there are indications that all strong convective events are 
associated with significant convergence, while weaker events occur under a wider range of 
convergence/divergence conditions. 

3. A key finding of this study is that the strength of stochastic behaviour in the relationship 
between large-and convective scales is strongly dependent on the “model” chosen in 
connecting the two scales. Here, CAPE is shown to be a poor predictor of convection and as a 
consequence we would postulate convection to be a very stochastic process, while the use of 
ω500 largely alleviates the poor relationship and provides an altogether different picture of 
convection. It is worth noting that many of the convection parametrizations in use today as 
well as some of the proposed stochastic approaches heavily rely on CAPE. Our results 
indicate that this may i) lead to poor descriptions of the convective scales and ii) overstate the 
case of the stochastic behaviour of convection.  

4. Stochastic physics schemes using a multiplicative noise approach assume that the signal-to-
noise ratio in the large- to small-scale relationship is independent of the large-scale state itself. 
We demonstrate that at least for the location of our study this is not the case. We find a strong 
dependence of this ratio on the large-scale state, with weak upward or downward mid-
tropospheric vertical motion showing small signal and significant noise, while strong upward 
vertical motion is associated with stronger signals and significantly reduced scatter (in the 
relative sense). These results imply that stronger convection has a more deterministic link to 
larger scales, while weaker convective events show much more stochastic behaviour, a fact 
well-known to forecasters in tropical locations when predicting rainfall on a daily basis. 

In using observations in the stochastic physics debate this study also raises several interesting 
questions for future research. As the strength of the large- to small-scale relationships is clearly a 
function of the variables chosen, how do we know when a strongly stochastic signal indicates a bad 
model assumption and when the problem is truly stochastic? Can we use the observations to derive 
better parametrization approaches than those in use today? How do we optimally blend information 
from observations, theory and process models, such as CRMs, to advance the field of convection 
parametrization? Are the results presented here specific to the Darwin location or do they hold more 
broadly? Several efforts are underway to answer at least some of these questions. However, this study 
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and the workshop it was part of demonstrate the need for a more comprehensive, strategic and 
determined community approach to stochastic physics in models. 
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