
ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 163 

The use of multiple parameterizations in ensembles 

P.L Houtekamer 

Meteorological Research Division, Environment Canada 
Dorval, Québec, Canada 

peter.houtekamer@ec.gc.ca 

 

Abstract 

In an ensemble prediction system, using different physical parameterizations for different members samples the 
uncertainty in the description of the physical processes. Having independent algorithms of equal quality permits 
a reduction of the model error and improved probabilistic predictions. 

The challenge is to arrive at an environment in which the ensemble of parameterizations gradually increases in 
quality while maintaining an appropriate amount of diversity. So far, unfortunately, multi-parameterization 
ensembles evolve in a fairly ad hoc manner based on what parameterizations happen to be available.  

The Ensemble Kalman Filter and other data-assimilation methods can be used to evaluate the quality of multi-
parameterization approaches. Multi-parameterization approaches are now used fairly commonly in both 
ensemble Kalman filters and short-range ensemble prediction systems.   

1. Introduction 

Since the beginning of numerical weather prediction, there has been a continuous encouraging 
improvement in the quality of forecasts. Since the early work in the sixties by e.g. Smagorinsky (1963, 
1969), people have wondered about the closing gap between the practical quality of forecasts and the 
inherent theoretical predictability limit of the atmosphere.  

Starting from a small error in the initial condition or analysis, forecast errors subsequently grow due to 
limitations of the weather prediction model and due to the chaotic nature of the atmosphere. Over the 
last decades, the initial conditions have become more accurate due to better analysis methods, better 
models and an improved observational network. Models have become better due to improved model 
dynamics, higher resolution and more realistic physical parameterizations. One would expect that the 
gap, which quantifies the improvement we can still hope to obtain, will close and become 
insignificant. This trend, however, is not born out by a long sequence of studies (Lorenz, 1982; 
Bengtsson and Hodges 2006). Thus, it would seem that we continue to live in an era in which weather 
forecasts can be improved substantially by our diligent work. 

The precise description and simulation of forecast errors is the task of ensemble prediction systems 
(EPSs). Historically, it has been difficult to obtain a sufficient amount of spread in EPSs (Buizza et al. 
2005). In recent years, however, the reliability of the EPSs has improved and it is not as evident as 
before that EPSs still suffer from under dispersion (e.g. Kipling et al. 2011). If an EPS contains 
accurate descriptions of all sources of error this informs us what we should work on to continue the 
improvement of our systems. On the other hand, an under dispersive ensemble suggests that we have 
unknown major sources of error in our system.    
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Modern EPSs often contain several methods to account for model error. The operational Canadian 
global EPS benefits from four different methods to account for model error (Houtekamer et al. 2009; 
Charron et al. 2010): 

1. the addition of isotropic random perturbation fields, 

2. the multi-parameterization method, 

3. stochastic Physical Tendency Perturbations  (denoted PTP, Buizza et al. 1999) and, 

4. Stochastic Kinetic Energy Backscatter (denoted SKEB, Shutts 2005). 

The first term, is a somewhat tuned description for sources of error of unknown origin and cannot 
directly be linked to a specific source of uncertainty. The second term samples among proposed 
physical parameterizations. The third term assigns a bulk uncertainty to all output of the model 
physics. It provides no insight into actual causes of the uncertainty. The fourth term relates to 
dissipation at the truncation limit and will become less important as model resolution increases.  

Of the four terms listed and briefly discussed above, only the multi-parameterization method gives 
actual insight into weaknesses of the model that could be improved by further non-trivial work on the 
forecast model. It is the subject of the current paper.  

2. Statistical considerations 

The use of multiple competitive parameterizations for different members in an ensemble can be 
justified in a simple manner. Suppose the competent scientist Alex is able to estimate the impact of 
some physical process with mean zero and variance one. The lack of perfection may, for instance, be 
due to: the use of finite vertical resolution, the use of a limited number of iterations, the specific way 
of closing the set of equations and the undesirable impacts of strong gradients at the boundary.  

Let us further assume that we have an equally competent scientist Bonnie who, in complete isolation 
of Alex, is working on a parametrization for the same process and produces an algorithm of the same 
quality. In her case, however, the error has different sources. She had access to a different set of 
observations and decided on a more accurate higher order closure. The performance of her scheme 
suffers, however, from an error in passing a parameter to a subroutine.  

Suppose further that scientist Charley, in charge of the development of an operational EPS, can use the 
computer codes of both Alex and Bonnie. Taking the average output of the two codes will lead to an 
estimate with mean zero and variance 0.5. In addition, the difference between the two 
parameterizations is an estimate of the uncertainty. Reducing the variance by 50 % is evidently going 
to be very tempting for Charley.  

This simple story is a big part of the motivation for using multi-parameterization ensembles or multi-
model ensembles. The individual members of a multi-parameterization ensemble cannot to be seen as 
perturbations to an existing unperturbed model and consequently the mean estimate is better than 
anything one could otherwise obtain.  
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In practice, it is not evident that one can find N equally competent scientists working independently on 
the same process. In fact, for a multi-parameterization ensemble using a single modeling environment, 
perhaps only the US and Europe have the necessary critical size. For smaller centers, even maintaining 
N=1 may be a challenge and the operational exchange of ensemble forecasts with other operational 
centers may be an alternative to an in-house multi-parameterization approach. 

From the sources of error mentioned above, some are legitimate in the sense that they reflect an 
existing choice or uncertainty on how to best model a process. If, for instance, the process is like the 
throwing of a die, there is a natural range of possibilities one always has to consider and coming up 
with a unique answer would be suboptimal in the context of an EPS. Other sources of error, such as 
coding errors, are not legitimate in the sense that they do not correspond to any inherent uncertainty in 
nature and they can likely be reduced when more people work together on exactly the same code. 

3. The absence of a perfect model 

By using pairs of integrations, it is possible to quantify the difference between two models or two 
parameterizations. It is more difficult to make statements about the magnitude of model error that is 
legitimate and inevitable. It has been argued on more theoretical grounds, however, that some level of 
approximation is an inherent part of model development.  

As expressed by experts, a substantial amount of uncertainty is related to closure and turbulence.    

It is, for instance, noted in the textbook by Tennekes and Lumley (1972) on page 4 that: 

Statistical studies of the equations of motion always lead to a situation in which there are more 
unknowns than equations. This is called the closure problem of turbulence theory: one has to 
make (very often ad hoc) assumptions to make the number of equations equal to the number of 
unknowns. Efforts to construct viable formal perturbation schemes have not been very 
successful so far. The success of attempts to solve problems in turbulence depends strongly on 
the inspiration involved in making the crucial assumption. 

An overview of turbulence closure techniques is given in chapter 6 of the book by Stull (1988). It is 
seen that one may want to select different closure schemes for the atmospheric boundary layer in 
different applications. According to Stull the closure problem is one of the unsolved problems of 
classical physics.   

The same type of consideration also arises in the context of the parameterization of deep convection as 
described by Arakawa (1993, page 1, left-hand side column): 

“Physical processes associated with condensation of water vapor are inherently nonlinear 
and, therefore, their collective effects can directly interact with larger-scale circulations. But 
most individual clouds, in which condensation takes place, are subgrid-scale for the 
conventional grid size of general circulation and numerical weather prediction models. 
Then, for a set of model equations to be closed, we must formulate the collective effects of 
subgrid-scale clouds in terms of the prognostic variables of grid scale. This is the problem of 
cumulus parameterization in numerical modeling of the atmosphere.” 
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As stated again by Arakawa  (1993, page 1, right-hand side column), cumulus parameterization is a 
closure problem: 

“Since cumulus parameterization is an attempt to formulate the collective effect of cumulus 
clouds without predicting individual clouds, it is a closure problem in which we seek a 
limited number of equations that govern the statistics of a system with huge dimensions. The 
core of the parameterization problem is, therefore, in the choice of appropriate closure 
assumptions.” 

Finally, according to Arakawa (1993, page 14), different legitimate parameterizations of cumulus 
convection do exist: 

“It is also emphasized that cumulus parameterization is a closure problem, in which the 
choice of appropriate closures is crucial. The conceptual framework for cumulus 
parameterization, however, is still in its developing stage, and there exist great uncertainties 
in choosing appropriate closures. Correspondingly, a number of parameterization schemes 
with different closures have been proposed.” 

In the work by Grell and Dévényi (2002), a number of different closure hypotheses is made available 
in the same deep convection subroutine. Thus one is, for instance, able to mimic closure as in Arakawa 
and Schubert (1974), as in Kain and Fritsch (1992) or as in Kuo (1974). The available 16 different 
closures can interact with any of the other closures giving a potential total of 13824 (16 x 6 x 4 x 6 x 
6) different schemes. Grell and Dévényi propose to use a Bayesian assimilation method to determine 
the likelihood that a particular closure is correct. One could imagine that different closures would be 
selected for different characteristic atmospheric conditions. For the Arctic one might, for instance, end 
up using different closures than for the Intertropical Convergence Zone. Estimating the likelihood of 
all the possible closures in different locations and seasons will evidently be a complex estimation 
problem.  

In spite of the great potential of this approach, it is more common to select available parameterizations 
for deep convection to form an EPS.  

4. Operational use of multi-parameterization ensembles. 

At operational centers, the development of a set of physical parameterizations is historically only 
weakly connected with the improvement of the EPS. Have an expert in medium-range ensemble 
forecasting develop, for instance, a new alternative parameterization for deep convection, to better 
sample the uncertainty in convection, is unlikely to lead to an algorithm with a strong foundation in 
either observations or atmospheric physics. Conversely, a specialist in convective processes may not 
fully appreciate the amplitude of the uncertainty and be reluctant to introduce structural changes. To 
arrive at an appropriate description of uncertainty in a well working parameterization for deep 
convection it would seem that model development and probabilistic forecasting should be combined.  

It has been suggested (Houtekamer and Lefaivre, 1997) that a global multi-parameterization ensemble 
can actually be used as a tool to improve the model physical parameterizations. In practice, there are a 
number of problems, however, that will have to be addressed: 
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1. The global EPS is at lower resolution than the deterministic model. The latter model may 
permit the use of more state-of-the-art physical parameterizations and is thus a more 
attractive tool for model development. 

2. The global EPS is fairly heavy to run and only a fraction of the available information may be 
of relevance to the study of a particular process. Additional assumptions, such as linearity, 
may be necessary to relate the response of the ensemble to a specific physical 
parameterization. In a deterministic context, it is easier to extract information that can be 
compared with the available observations of a measurement campaign. 

3. It is fairly rare that a single person is interested in the simultaneous development of multiple 
physical parameterizations. 

Over the last 15 years, the improvement of the model physics in the Canadian experimental and 
operational global EPS has been largely driven by external factors as indicated schematically in Figure 
1. Similar dynamics likely drive the evolution of other multi-parameterization ensembles.  

For a given physical process, at the initial time (say 1995) a center uses parameterization A for the 
operational forecasts and two persons are responsible for it. From time to time they are made aware of 
cases where forecast errors were unusually large and subsequent investigations often lead to 
improvements of the system. Oddly, they often find that an actual “bust” was due to some other 
component of the model which does not behave in an optimal manner. Always comparing their 
 

 

Figure 1. Schematic evolution over a period of O(10) years of the model configurations that are 
used.  
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proposed modifications against verifying observations, they steadily improve the quality of the system. 
This small team is, however, aware of the fundamental limitations of the parameterization and decides 
to import a more modern parameterization B from another center. The initial results with the new 
parameterization are somewhat disappointing, but, with its entire attention on parameterization B, the 
team soon manages to equal the quality of scheme A. In fact, continuing the good work, the new 
parameterization soon outperforms the old one. In part, this is due, however, to parameterization A no 
longer being optimally adjusted to changes in the environment such as the use of a higher horizontal 
resolution. In this picture, there is some period in which schemes A and B are of similar quality 
suggesting they both be used in the operational EPS. At some stage, however, it becomes questionable 
if the inferior parameterization A still has a positive contribution to the overall quality of the EPS and 
it might be decided not to port the parameterization to a new computational environment. A few years 
later, say in 2005,  the story may repeat itself with the arrival of parameterization C. Oddly, this new 
parameterization may conceptually be closer to the original parameterization A than to the 
parameterization B it now will come to replace. 

From a management viewpoint, figure 1 presents solid evidence that scientists did a good job in 
improving the quality of the forecast model. The team working on the parameterization of the physical 
process can also be happy because, as a result of their work on new algorithms, the agreement with 
nature has much improved.     

The main problem with the picture in figure 1 and the above story is its ad hoc character. This is in 
particular apparent to the person responsible for the development of the EPS. At the initial time (in 
1995), the EPS was under dispersive. During a short period, there were two very different competitive 
parameterizations for the same process and the ensemble enjoyed an improved reliability. At some 
stage, however, this reliability had to be sacrificed to improve the statistical resolution of the ensemble 
and the ensemble again became under dispersive. 

At least on a conceptual level, one could imagine a different situation in which the parameterization of 
the process is entirely based on first principles. Where there is uncertainty about a principle, for 
instance on the choice of a closure approximation, alternative branches in the algorithm are available 
for sampling by the members of the ensemble. As knowledge about the process improves, branches 
are either modified, abandoned or created. Gradually the parameterization will improve and the 
associated simulated uncertainty will decrease.  

Schemes such as the one proposed by Grell and Dévényi (2002) seem to offer this natural link 
between quality and simulation of uncertainty. 

5. The standard package 

It would be impossible for a small team to maintain alternative codes for all aspects of the model 
which have uncertainty. Suppose that one has a nicely modular physics library in which N different 
subroutines correspond to N different physical processes. If the center has exactly one subroutine for 
any particular process it is virtually guaranteed that weaknesses in the library will be found sooner or 
later by any of the many persons using the model and its output. When a change in the computational 
environment occurs only one configuration will have to be migrated.  
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Alternatively, one could imagine having a much richer library with 2 subroutines for every individual 
process. Naively, one could think that it will take just twice as much effort to maintain and develop 
this library. However, there are now 2N different combinations of the subroutines that, since different 
components of the model may interact non-linearly, ideally would all have to be tested. For a small 
team of non-experts, such a task will be very challenging. 

For this reason, it is important to only seek out alternatives for aspects of the model where the choices 
made have a substantial impact on the forecasts.    

Over the years different groups have experimented with the multi-parameterization approach and in 
order of decreasing impact on short to medium-range forecasts, we can identify substantial uncertainty 
in the handling of: 

1. deep convection, 

2. the planetary boundary layer, 

3. the surface. 

Examples of multi-parameterization ensembles are given in Mullen and Baumhefner (1988), 
Houtekamer and Lefaivre (1997), Stensrud et al. (2000), Pellerin et al. (2003), Fujita et al. (2007), 
Meng and Zhang (2007), Charron et al. (2010) and Berner et al. (2011).  

In general, it would seem that the multi-parameterization approach is relatively popular for short-range 
EPSs. This may be because selecting a different parameterization will quickly lead to weather systems 
that have a different structure and look different to users of the EPS.  

6. The Ensemble Kalman Filter 

Eventually evolving errors project onto large-scale growing modes (Toth and Kalnay 1993). This 
observation led to the development of the breeding and singular vector methods for ensemble 
prediction.   

It has long been common in medium-range EPSs to somehow add amplitude to the initial perturbation 
in order to arrive at a sufficiently large spread in the medium-range. In the Canadian system, we used 
to have a special procedure named “the kick” to correct the analysis for some members towards and 
beyond a higher quality operational analysis (Houtekamer and Lefaivre, 1997, option 7 in section 2). 
This ad hoc procedure would increase the initial spread as desired.  

After an adjustment period of a few days all perturbations evolve towards and come to project upon 
growing modes of the system. Thus, whatever perturbation strategy is used, medium-range EPSs have 
fairly similar spread characteristics after a few days (Buizza et al. 2005). This observation makes 
medium-range ensembles ill-suited to discriminate between different strategies to account for and 
sample model error. One would really like to validate the model error component before it changes 
nature and transforms into a regular growing mode of the system.  

In an ensemble Kalman filter (EnKF), it is of crucial importance to have high-quality error statistics 
for short-range forecasts and unjustifiable methods, such as described above, are likely to degrade 
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performance. In the context of a global EnKF, such as used in Canada with interpolation towards 
observation times in the 6h assimilation window, the error statistics are used between forecast times of 
3 and 9h. For a regional-scale EnKF, the assimilation window may be shorter and consequently the 
error statistics need to be of high quality at an even shorter forecast range. This requirement makes the 
EnKF a candidate tool for the evaluation of different methods to account for model error. 

To the author's knowledge, the experience with the multi-parameterization method in EnKF systems 
has invariably been positive.   

As noted by Fujita et al. (2007), the ability of the multi-parameterization method to account for 
structural model error directly translates into improved results for meteorologically relevant features: 

Particularly important are the improvements in the location and structure of mesoscale features 
that are seen when using the ensemble Kalman filter. The ICPH ensemble shows considerable 
improvement in the placement and intensity of the dryline, dryline bulges, frontal boundary, 
PBL depth and structure and rainbands that form during both days studied. 

Note that ICPH refers to having perturbations in both the initial conditions and the physics.   

It has been confirmed by Meng and Zhang (2007) that the EnKF framework benefits from having an 
appropriate sample of parameterizations:  

Through various observing system simulation experiments, the performance of an ensemble 
Kalman filter is explored in the presence of significant model error caused by physical 
parameterization. The EnKF is implemented in the mesoscale model MM5 to assimilate 
synthetic sounding and surface data derived from the truth simulations at typical temporal and 
spatial resolutions for the cold-season snowstorm event that occurred 24-26 January 2000 and 
the warm-season MCV event that occurred on 10-13 June 2003. 

Results show that although the performance of the EnKF is degraded by different degrees 
when a perfect model is not used, the EnKF can work fairly well in different kinds of 
imperfect scenario experiments.  

Using a global EnKF,  Houtekamer et al. (2009) concluded that: 

1. The use of the multimodel option improves assimilation results in particular for temperature in 
the lower troposphere. 

2. The multimodel and PTP (Physical Tendency Perturbation) option both sample uncertainty in 
the physical tendencies but, by selecting alternative legitimate configurations of the model 
physics, the multimodel option samples the uncertainty in a more appropriate manner. 

3. The SKEB (Stochastic Kinetic Energy Backscatter) algorithm that had been adjusted for 
optimal performance in the medium-range EPS could not be used to improve EnKF 
performance. 

In EnKF implementations using real observations, we need a model error forcing much bigger than 
can currently be obtained from any of the popular approaches to account for model error in EPSs. 
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Using the multi-parameterization approach, SKEB and/or PTP does not provide nearly enough spread 
to the EnKF system. Houtekamer et al. (2009) had to add random isotropic perturbation fields, 
reflecting error sources of unknown origin, to obtain a realistic amount of spread in their EnKF. 
Possibly these error sources correspond with specific data-assimilation problems.  

The need for large-amplitude components reflecting error sources of unknown origin may cast some 
doubt on the validity of EnKF-based statements on the validity of specific ways to simulate 
weaknesses in the forecast model. To eliminate the unknown component, one could consider using an 
OSSE (Observation System Simulation Experiment) with an EnKF and a nature run obtained with a 
different model. In such an environment, all unexplained error would truly be model error and one can 
investigate how to best sample this model error.  

In any experimental environment, negative conclusions with respect to certain algorithms may always 
be associated with the specifics of a local implementation. There is, for instance, no general agreement 
on the parameters that need to be used in the SKEB and PTP algorithms.  Perhaps the EnKF 
framework can be used to tune some of the parameters in these schemes.  

7. Discussion and conclusion 

Use of multiple parameterizations in an EPS amounts to sampling the model uncertainty in a realistic 
manner. This leads to improved statistical resolution and reliability of the EPS and provides users with 
possible scenarios with different meteorological structure. 

In numerical weather prediction, due to the finite resolution of the forecast model, ad hoc assumptions 
are often necessary to make the number of equations equal to the number of unknowns. This is known 
as the  closure problem and justifies having multiple algorithms for a single process. Having multiple 
parameterizations gives a lower limit to the uncertainty due to the process. This uncertainty can 
possibly be reduced by further model development.  

Eventually, remaining stochasticity could perhaps be simulated in a natural way in parameterizations 
(Houtekamer and Lefaivre, 1997, page 2425; Charron et al. 2010, page 1900). A specific example for 
deep convection is described by Plant and Craig (2008). 

In theory, one can use a multiple parameterization system, in combination with data assimilation, 
towards model improvement. This possibility has been little exploited in practice. This is partly due  to 
the low resolution of EPSs and partly due to the difficulty of extracting specific information on a 
specific process. 

The EnKF can be used to validate a system with multiple parameterizations. It has generally been 
found to be of interest to have multiple algorithms for deep convection, for the planetary boundary 
layer and for surface processes. This suggests that, at least for short-range forecasts, these are the areas 
where the most significant improvements can be made. It should be noted, however, that with current 
EnKF systems one is only able to explain a fraction of the forecast error. Houtekamer et al. (2009) 
report that for winds, temperature and surface pressure the ensemble spread more than doubles due to 
the simulation of model error. It would be very important to perform OSSEs to better understand the 
error dynamics in a data-assimilation cycle. 
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