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ABSTRACT

Model error is now recognize as an important source of uncertainty in Numerical Weather Prediction. Several
approaches have been proposed to represent model uncertainty in Ensemble Prediction Systems. The multi-
parametrization technique is based on the use of several physical parametrization schemes in the same forecast
model to account for model errors. After a short descriptionof the multiparametrization approach basis, its im-
plementation and effects on the Météo-France Ensemble Prediction System are addressed.

1 Introduction

Probabilistic prediction, in the form of ensemble prediction, has now become an important component
of Numerical Weather Prediction. Ensemble prediction consists of performing in parallel a number of
numerical forecasts, the dispersion of the forecasts beingtaken as an estimate of the uncertainty on the
future state of the atmosphere. The two main sources of forecast uncertainty are initial condition error
and model error. Model error can arise from parameter and parametrization deficiencies or misrepresen-
tation of subgrid scale processes. Since a few years severalattempts have been made to represent model
uncertainty in ensemble forecasting systems (EFS). Up to now there is no unique approach the scientific
community has agreed upon. Some have promoted stochastic dynamical approaches to represent model
uncertainty due to unrepresented sub-grid processes (Palmer 2001). Others have suggested to stochasti-
cally perturb the physics tendencies (Buizza et al. 1999), the use of parameter variations in the physical
packages (Stainforth and coauthors 2005) or multiple physics schemes (thereafter multiparametrization
approach, (Murphy et al. 2004, Houtekamer et al. 1996)) to account for parametrization uncertainty. It
has also been shown that the multimodel approach could be an efficient alternative to account for model
uncertainty (Hagededorn et al. 2005).
The present paper presents a short overview of the multiparametrization method and its impact on an op-
erationnal global Ensemble Prediction system (EPS) . The basics of the approach are remind in section 2.
Section 3 briefly presents the EPS of Météo-France and the implementation of the multiparametrization
technique in this operational system. Using classical probabilistic scores, section 4 shows the impact of
the approach on EPS skill. A summary and a brief discussion are given in section 5.

2 The multiparametrization approach

The multiphysics approach assumes that the major part of forecast error is linked with the underlying
assumptions required to parametrize the subgrid scale processes. Therefore, it promotes the use of a va-
riety of physical parametrization schemes in the same forecast model to account for model uncertainties.
For a particular physical phenomenon, for example shallow convection, a wide variety of parametriza-
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tion schemes have been developped and proposed in the past decades by the scientific community to
properly represent it in a numerical model. The schemes differ on how convection and its effect on the
flow are represented. None of them is perfect but the variety of the schemes could be view as a sample
of the uncertainty in the representation of the physical phenomenon.
An important underlying assumption of the multiparametrization approach is that the different schemes
should produce different evolutions of the atmosphere but with comparable global skill. On a day to
day basis the differences between forecasts based on different parametrization schemes should reflect
the uncertainty of the flow evolution while over a long periodof time the different forecasts should have
the same statistical skill.
This point has been for example verified in a 1997 paper of Wangand Seaman. Using the MM5
Mesoscale model (Dhudia 1993), the authors compare four cumulus parametrization schemes for six
different precipitation events over the United States of America. They show that on a case to case basis
the different schemes produce different evolutions of the convective activity. Concerning the general
skill of the schemes they conclude that ’None of the schemes consistently out performs the others by a
wide margin or in all measures of skill’.

2.1 Effectiveness of the multiparametrization approach

The effectiveness of the multiphysics approach has been confirmed in several studies. For global En-
semble Prediction System (EPS), Houtekamer et al. (1996) and Charron et al. (2010) show that it has a
positive impact on the Canadian EPS skill. Houtekamer et al.show that the use of multiphysics increases
by about 20% of the ensemble spread. Charron et al. (2010) note that it has a positive impact on the
reliability component of the Brier Skill Score (BSS) for 24hrainfall and mid-tropospheric temperature.
Focusing on strong convective events, Stensrud et al. (2000) and Jones et al. (2007) show that the use
of multiple parametrization schemes in a Mesoscale Local Area Model-EPS has a positive impact on
forecast skill, especially when large-scale forcing is weak.
In a recent paper, Berner et al. (2011) used two 10 members Short-Range EFS with a Mesoscale model
over the United States of America. One ensemble uses multiparametrization approach, the other uses
Spectral Kinetic Energy Backscatter technique (SKEB). Theauthors conclude that SKEB outperforms
multiparametrization technique for upper air variables. For near-surface variable, multiphysics approach
outperforms SKEB. The best performing ensemble system is obtained by combining the two approaches
(this last point has also been pointed out by Charron et al. (2010) and Hacker et al. (2011)).

3 The PEARP system

PEARP (Prevision d’ensemble ARPege) is the operationnal EPS of Météo-France. PEARP uses the
ARPEGE model (courtier et al. 1991) with an horizontal spectral truncation of T538 and a stretching
factor of 2.4 (variable horizontal resolution with a maximum of 15km over France). There are 65
levels on the vertical with a top level at 50km. The ensemble size is 35 members including a control
’unperturbed’ member, which is a ’coarser resolution’ version of the deterministic operational ARPEGE
forecast, and 34 perturbed members centered around the control one. PEARP is running twice a day at
06UTC (72h forecast range) and at 18UTC (108h forecast range).

3.1 Initial perturbations

The initial perturbations of PEARP are built by combining a small ensemble data assimilation sys-
tem (AEARP) with Tl95 singular vectors (SVs). The SVs are computed over 7 different areas (EU-
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RAT (30N/80W/65N/40E), the complement of EURAT over Northern hemisphere, Southern hemisphere
(30S/90S) and four tropical areas where cyclonic activities is likely to occur), with different optimiza-
tion times (18h for Europe and Tropical areas, 24h for all other) and norms (Kinetic Energy norm for
Tropical SVs, dry Total Energy norm for all other).

3.2 Model error

In PEARP, the multiphysics approach is used with a set of 10 differents physical parametrizations sets,
including the ARPEGE operational physical package (see table 1). We consider two different vertical
diffusion schemes : the Louis scheme (Louis 1979 thereafterL79), and a prognostic Turbulent Kinetic
Energy scheme (TKE, cuxart et al. 2000, Bazile et al. 2008, Bouteloup et al. 2009). For shallow
convection we use the ’modified Richardson number’ formulation proposed by Geleyn (1987 thereafter
G87) or a mass flux scheme (thereafter KFB approach) written by Bechtold et al. (2001) based on a
CAPE closure with an updraft derived from Kain and Fritsch (1993). For deep convection we use the
Bougeault mass flux scheme with the orginal closure on the moisture convergence (1985, thereafter B85)
or the CAPE formulation. For computing oceanic fluxes we consider the classical Charnock formula-
tion (Charnock 1955, thereafter C55) and the ECUME (Exchange Coefficients from Multi-campaigns
Estimates) scheme (Belamari 2005).
Slightly modified version of some schemes are also used. In CAPEmod and B85mod deep convection is
allowed only if cloud top is above 3000m. In TKEmod, the parametrization is used without horizontal
advection. In ECUMEmod, ECUME is used with a modified tuning for the exchange coefficient for the
humidity to reduce the evaporation over the sea.
An objective deterministic evaluation of each of the combination has been done. Over two one-month
periods (March 2008 and December 2010) and for different variables (500hPa geopotential height,
850hPa temperature, 850hPa wind speed, mean sea level pressure, 24h precipitation) it has been ver-
ified that, as assumed in the multiparametrization approach, the different combinations have similar
global skills.

number diffusion scheme shallow convection deep convection oceanic fluxes
ref TKE KFB B85 ECUME
001 L79 G87 B85 C55
002 L79 KFB CAPEmod ECUME
003 TKE KFB B85 ECUMEmod

004 L79 KFB B85mod C55
005 L79 G87 CAPE C55
006 L79 G87 CAPE ECUME
007 L79 KFB CAPEmod C55
008 TKEmod KFB B85 ECUME
009 TKE KFBmod B85 ECUMEmod

Table 1: Physical parametrizations used in PEARP, see section 2 for details.

4 Impact of the multiparametrization approach on PEARP

Using classical probabilistic scores, impact of the multiparametrization approach on PEARP skill has
been evaluated. Two PEARP configurations have been running :a reference system (REF) which does
not include any technique for taking into account model error and another one (MUP) which include the
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Figure 1: Evolution of theδ score, as a function of lead time, for 850hPa temperature, for two expermients: REF
(solid line) and MUP (dash line).

multiparametrization approach.
Scores have been computed over two one-month periods (March2008, December 2010) for synoptic
scale variables (850hPa temperature, 500hPa geopotentialheight, 850hPa wind speed, mean sea level
pressure) and local weather variables (24h precipitation,10 meter wind speed). For synoptic scale
variables scores have been computed against ARPEGE analysis. For local weather variables SYNOP
observations have been used as the reference.

Figure1 shows the time evolution of theδ score for 850hPa temperature over Norhtern Hemisphere
(20N/90N) comPuted over March 2008. Theδ score is a measure of the effective flatness of the rank
histogram (Candille and Talagrand 2005). The rank histogram is a measure of the reliability of an EPS:
the flatter the histogram (the lower theδ score ), the better the reliability.
It can be seen that the MUP experiment has a significantly better score than the REF experiment. For the
REF experiment, the increase of theδ score between 24h and 72h is caused by a systematic negatif biase
of the forecasts (’J shape’ rank histograms, not shown). In the MUP experiment, the use of different
physical packages which have different biases (positive ornegative) allows to obtain flatter histograms
and a natural decrease ofδ score with forecast lead time.
Using the multiparametrization approach greatly improvesthe reliability of PEARP for 850hPa tem-
perature. The same results (not shown) have been found for other variables and for other measure of
reliability such as the reduced centered random variable (Candille et al. 2007).

Figure 2 shows the time evolution of the Brier Skill Score (BSS) for 10-meter wind speed over an
Europe-Atlantic area (20N/60W/72N/40E) computed over December 2010. The event used to compute
BSS has, over the verification period, a climatological frequency of 0.5. The BSS is a positively ori-
ented score: the higher the BSS, the better the resolution ofthe system. It can be observed that the MUP
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Figure 2: Evolution of the Brier Skill Score, as a function oflead time, for 10m wind speed, for two expermients:
REF (solid line) and MUP (dash line).
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Figure 3: Same as Fig2 but for 24h precipitation.
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experiment obtains better score than the REF one.
Computed over the same verification period and the same Europe-Atlantic area, figure3 shows the time
evolution of the Brier Skill Score (BSS) for 24h precipitation. The event used to compute BSS has, over
the verification period, a climatological frequency of 0.15. As for figure2 it can be seen that the use of
multiparametrization significantly improve the resolution of PEARP.

For a wide range of variables and the two periods of verification used in this study, the MUP system
shows better scores than the REF system (not shown). The general conclusion is that the use of the
multiparametrization approach has a positive impact on theskill of the PEARP system. The positive
impact is more pronounced on the reliability of Mid-Tropospheric temperature and precipitation.

5 Summary and discussion

Since a few years model error has been recognized as an important source of forecast uncertainty. Dif-
fering on the views of the nature of model error, several techniques have been proposed to represent it
in EPS. The multiparametrization approach is based on the idea that most of forecast error is due to the
assumptions used to develop the parametrization schemes inthe Numerical Weather Prediction models.
Therefore, it suggests the use of a wide range of physical parametrization schemes in the same Numer-
ical Weather prediction System to sample model uncertainties. It implicitly assumes that the different
schemes could produce different evolutions of the atmosphere while having the same global skill. The
effectiveness of the multiparametrization approach has been demonstrated in a wide range of studies.

Most of papers show that using multiparametrization technique for LAM as for global EPS improves
the skill of the systems. This has been confirmed in this paperfor the global EPS of Météo-France.
Implementing multiparametrization has greatly improved PEARP reliability and resolution.

As stressed in Charron et al. (2010) a pratical drawback of multiparametrization approach is that the
maintenance of several state-of-the-art subgrid parametrizations packages within the same NWP model
is very challenging. The recent development of calibrationtechniques and its need for reforecast data
sets (Hagedorn et al. 2008, Hamill et al. 2008) potentially raises another practical problem. Using a
single reforecast data set may not be sufficient to properly calibrate an EPS that uses multiple sets of
parametrization schemes. One may need a reforecast data setfor each of the physical package to prop-
erly represent the global behavior of the system. This couldgreatly increase the numerical cost of the
calibration procedure.

The use of stochastic techniques could be a costless alternative to multiparametrization approach. Re-
cent studies (Hacker at al. 2011, Palmer et al. 2009, Berner et al. 2011) have proven their ability to
produce, for synoptic-scale variables, similar or better probabilistic skill than multiparametrization ap-
proach. An interesting outcome of these works is that combining stochastic-dynamic techniques with
multiparametrization approach yield to the most skillfullEPS. The authors (Berner et al. 2011) argue
that different model-error approaches could represent fundamentally different forms of model error.
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