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1 Introduction

The non-hydrostatic NWP model AROME is operational since December 2008. The dynamical kernel
of AROME is part of a big NWP software library which also includes IFS, ARPEGE, ALADIN systems.
After a short description of the AROME system, its behaviourand performances during these two years
of routine operation will be reported in terms of practical output for forecasters. Besides, current works
about quasi-elastic systems will be briefly presented, as a future possible option for the dynamical cores
of the above-mentioned library.

2 Description of the AROME system

The AROME NWP system is a non-hydrostatic limited-area model with a 3D-var data-assimilation, used
operationally at Météo-France for high-resolution forecasts since December 2008. The dynamical kernel
and the data-assimilation packages are common with those ofthe limited-area ALADIN and the global
ARPEGE models, used operationally at Météo-France at larger scales. The dynamical kernel is also
common with the one of the global IFS model, used at ECMWF. However each particular application
may use specific options (through logical switches) for its own purpose. For instance, ARPEGE and IFS
have a 4D-var assimilation systems whereas ALADIN and AROMEhave a 3D-var system; similarly,
from all these applications, AROME is the only one to use a non-hydrostatic dynamics operationally.

The dynamical kernel of AROME (Bénardet al., 2010) is based on the fully compressible Euler Equa-
tions system cast in mass-based hybrid terrain-following coordinate (Laprise, 1992). The evolution is
time-discretised with a semi-Lagrangian semi-implicit two-time levels scheme. The Helmholtz equation
of the linear implicit problem is solved by a direct spectralsolver based on a double Fourier transform in
the horizontal. The Fourier transforms are used to compute horizontal derivatives, and vertical derivatives
are computed with second-order finite-differences. A discretization with higher order finite-elements in
the vertical is used in hydrostatic applications (ARPEGE, IFS) but is not available in the non-hydrostatic
version.

The physical package of AROME is adapted from the Meso-NH meso-scale research model (Laforeet
al., 1998): The microphysics scheme is derived from the ICE3 scheme (Pinty and Jabouille, 1998), with
five prognostic condensate species (liquid cloud, solid cloud, rain, graupel, snow). The turbulence pa-
rameterization scheme is a 1.5 order closure turbulence scheme with a prognostic TKE, adapted from
Cuxart et al., 2000. The surface scheme SURFEX is also derived from the Meso-NH environment.
Since the AROME model is mostly designed for convection-permitting scales, no convection parame-
terization is used. The data-assimilation system is based on a 3D-var rapid-update cycle with a 3 hours
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window. In comparison with ALADIN and ARPEGE, additional meso-scale observation data are assim-
ilated in AROME (radar reflectivities and radial wind velocities, AMSU-A profiles, and higher density
of AIREPS). More details on the physical and data-assimilation packages of AROME can be found in
Seityet al., 2011.

The operational suite of AROME consists in a continuous assimilation cycle from which a 30 h forecast
is started every 6 hours. The horizontal grid increment is 2.5 km. A first version was implemented during
the first 16 months of exploitation, until 6th April 2010. In this first version, the horizontal domain had
600×500 points along East and North directions respectively, asdepicted in Fig.1, and 41 irregularly
spaced levels along the vertical. The time-step was set to 60s. The AROME model was coupled to
ALADIN (9 km grid-mesh) itself coupled to the operational stretched version of ARPEGE (15 km local
grid-mesh). From 6th April 2010, with a new computer installed, the number of levels was set to 60,
and AROME was directly coupled to ARPEGE, whose grid-spacing had been reduced to 10 km. A new
version of AROME was implemented operationally on 24th November 2010 with a larger horizontal
domain (750×720 points, still at 2.5 km grid-mesh), as depicted in Fig.1. A new prognostic variable
for hail was added with all relevant microphysics exchangesparameterized. More mesoscale observed
data were finally used (seven additional Doppler radars, more AIREPS and IASI data assimilated). The
coverage of assimilated radar data is shown in Fig.2.

Figure 1: Domains of the first (in-
side red line) and second versions of
AROME. Color shading : height of to-
pography, in meters

Figure 2: New assimilated radars (in
blue). The numbers inside circles are
the number of vertical sightings

3 Results and performances of the AROME system

As for all non-hydrostatic models, the changes and improvements against hydrostatic models outputs are
limited to extreme events. In moderate conditions, the impact of non-hydrostatic processes and high-
resolution remains weak, at least at kilometric scales. Therefore, although the routine objective scores
indicate some added-value in the AROME forecasts (comparedto its host models ALADIN or ARPEGE
for instance), the signal is weak in average. Generally speaking, the improvement with AROME is more
noticeable for temperature and humidity than for wind (not shown).

We choose to focus on two specific cases with severe weather. The first case is a recent Mediterranean
heavy rain situation as those that commonly occur in the Languedoc region during Autumn (called
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"cévenol" episode). The comparison of 1-hour accumulated precipitation forecast by AROME (left)
and Radar reflectivities (right) is shown in Fig.3. All AROME forecasts start at 00:00 UTC on the
30/10/2010, with forecast ranges of +6, +12, +18 and +24 hours. The structures and patterns of the pre-
cipitation field are quite well represented by the model (timing, bending of the bands, spreading of the
large-scale structure). Smaller and weaker patterns occurring in other areas are also well captured. The
correct location of precipitating areas from the beginningof the forecast may be attributed to the inclu-
sion of related high-resolution data in the assimilation system and also to a smooth absorption of these
relevant data through the rapid update cycle. However, evenif the two fields shown in the panels are not
directly comparable (instantaneous precipitations at varying heights and ground accumulated flux), this
figure also illustrates a well identified under-estimation of weak precipitations rates in AROME forecasts.

Figure 3: Maps of precipitations on 2010/10/30, at 0006, 1200, 1800 and 2400UTC. Left: AROME
forecasts from 0000UTC for 1h accumulated precipitation at ground (in mm); right : instantaneous
RADARS reflectivities

The Xynthia storm, that crossed the AROME domain on 2010/02/27 and 28, led to a severe sea flood on
the Atlantic coast (30 deads) and strong winds over the Pyrénées mountains (1 dead) as can be seen from
the map of the observed maximum gust for this event in Fig.4.

The pattern of high values over the Pyrénées mountain is quite unusual (not to say very rare in such a
context of Southerly flow) and the model predicted exceptional wind velocities. This was quite challeng-
ing for forecasters, who had to decide if they should trust the model or not. Other models confirmed the
extreme character of the event, and the forecast was thus successful. The maximum gust was observed
at the Pic du Midi observatory (209 km/h), and the event caused a lot of damages in the neighbourhood
as well as in some valleys. In contrast, some areas located inthe downwind flat region did experience
relatively moderate winds during the whole event. A complexand transient evolution of the wind took
place in the downwind side of the mountain range. Fig.5 depicts the evolution of vertical velocity pro-
files observed above the Lannemezan VHF profiler. A wavy pattern with fast updrafts and downdrafts
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Figure 4: Map of maximum observed wind gust V for the
Xynthia event 2010/02/27-28. Shadings : yellow : V > 95
km/h; orange : V > 100km/h; red : V > 105km/h

reflects the presence of waves (with associated divergence areas) quite far away (about 60 km) from the
nountain ridge. AROME forecasts did capture these complex and mostly non-hydrostatic phenomena
quite well, including the transient evolution of relatively windy and windless areas. The map of 10 m
gust wind at 2100UTC on 2010/02/27 is displayed in Fig.6 as forecast by AROME from 0000UTC
illustrates the complex pattern field. The maximum gust predicted by AROME is 213 km/h, at the top of
the ridge, while the maximum observed gust is 209 km/h at the Pic du Midi observatory, located at the
very top of the mountain (there are no other verifying observation sites elsewhere on the top ridge of the
mountain range). Areas of relative high and low values take place up to a hundred of km of the ridge in
the downwind direction, and from this point of view, the AROME forecast was more accurate than the
(hydrostatic) ALADIN forecast, bringing a significant added-value.

Figure 5: Evolution of observed ver-
tical wind (in m/s) over Lannemezan
(see red cross in Fig. 6).

Figure 6: Map of the 10 m gust wind
from AROME forecast starting at
2010/02/27 0000UTC for 21000UTC.
Scaling in km/h. The red cross near
the middle represents the location of
Lannemezan.

Some results about the subjective evaluation of AROME by forecasters are presented now. The goals
of this study is twofold: to evaluate AROME on specific real-case events, and to compare the merits
of both AROME and ALADIN in operational use. The evaluation procedure is activated by forecasters
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Figure 7: Synthesis of subjective comparison between
AROME and ALADIN, by type of challenging event.

only on specific predicted events which appear as challenging for them and the models. Several types
of challenges are defined (convective precipitations – orographically driven or not–, strong winds, snow,
fog, ...). In order to make the subjective evaluation as fairand objective as possible, the indications given
by the two models are logged before the event, then the verifying report and the performances are added
after the event. Other questions about the a priori and a posteriori confidence to the model forecasts are
also addressed. Concerning the performance itself, a synthesis of the comparison between AROME and
ALDIN is shown in Fig. 7. A better behaviour is attributed to AROME in about 10% of thecases in
average. There is a large variability of the relative performance as a function of the type of event. The
best improvements brought by AROME are for wind-type and orographically driven events. Conversely,
AROME behaves poorly with regards to cold-air convection, this is probably due to the well identified
underestimate of predicted light precipitations.

Finally, a summary of the availability of the AROME forecasts is now given. Over some 700 days or so
of operational use, 10 problems were reported, and among them, two led to an absence of forecast for
one of the four daily runs. In one of these two cases the problem was not due to the model itself, but to
the environment. The other one was linked to a too strong windat the top of the domain. This was due
to a drift in the data assimilation cycle, linked to the low density and high rejection of observed wind
data in the stratosphere near the model top. The problem was rapidly solved by adding a slight restore-
term toward the coupling model state in the very first uppermost levels of the model’s domain top. The
remaining problems mostly occured in the scheduler, because for peripheral reasons, files proved to be
unavailable. Regarding these case, the forecast was most ofthe time made from an older analysis of the
rapid-udpdate cycle, or by dynamical adaptation, with the up-to-date coupling data.

4 Some remarks about Quasi-Elastic systems

Although a fully-compressible dynamics using Euler Equations (EE) exists in the IFS/ARPEGE/ALADIN
kernel, its formulation makes it difficult to implement high-order accurate finite-element discretizations
in the vertical, and to modify the set of prognostic variables if desired. Among the possible avenues to
circumvent these drawbacks, the use of a class of alternative equations systems is currently explored at
ECMWF. This class of systems was recently proposed (Arakawaand Konor, 2009, AK09 hereafter) and
may be viewed as the minimal modification to the EE system which allows a filtering of elastic waves.
These systems have one less prognostic variable than the EE system, and therefore the pressure field is
obtained through a diagnostic relationship. However, in opposition to anelastic systems, the approxima-
tion is not made around a stationary and horizontally homogeneous reference-state, but around a more
general state close to the hydrostatic state.
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In the EE system, the continuity equation writes:

∂ρ
∂ t

+ ∇(ρV) = 0, (1)

whereρ the density andV the 3D wind vector. For the considered class of systems, the continuity
equation is in written (i.e. approximated) as:

∂ρh

∂ t
+ ∇(ρhV) = 0, (2)

whereρh is an "hydrostatic density". Typicallyρh will be defined by :

∂ ph

∂z
= −ρhg and ph = ρhRT; (3)

here,ph is therefore a modified hydrostatic pressure. Similar (but always close) variants are possible to
define (ρh, ph), thus leading to a class of systems. It is readily seen that in the limit of hydrostatic regimes,
the continuity equation becomes exact, and the response of the system then approaches the response of
the EE system. Moreover, in atmospheric flows at kilometric or hectometric scale, the relative deviation
(ρ −ρh)/ρ is very small and the approximation of the continuity equation is very good (in opposition
to the approximation made in anelastic systems when the actual density significantly deviates from the
specified basic-state density).

In the EE system, the continuous dispersion equation for linear eigenmodes around an isothermal resting
state in Euclidian framework rotatingf -plane is:

− (ν2
− f 2)(N2

−ν2)−k2c2(ν2
−N2)−c2(m2 + µ2)(ν2

− f 2) = 0, (4)

whereν is the frequency,k (m) the horizontal (vertical) wavenumber,c the speed of sound,N the Brunt-
Väïsälä frequency, andµ is a height-scale factor (see AK09). In the proposed system,the dispersion
equation becomes

− (ν2
− f 2)N2

−k2c2(ν2
−N2)−c2(m2 + µ2)(ν2

− f 2) = 0. (5)

The only modification with respect to the EE version is the absence ofν2 in the second factor of the
first term. However, this term which dispappears as a result of the approximation is not the leading term
for the fast modes considered in this framework. Numerically, the frequency of a given mode (k,m)
is therefore almost undistinguishable from its EE counterpart, and as a consequence, the structure and
the frequency of eigenmodes are not distorted compared to EEones. An argument developed at the
end of Davieset al., 2003 (D03 herefater) shows that this results holds for Rossby modes in the case
of a rotatingβ -plane framework. Finally, the systems examined here are not subjected to the main
theoretical objection against anelastic systems, also developed in D03, that is, the distorsion of Rossby
waves propagation.

Since these systems are very close to the EE system, especially in the hydrostatic limit, and in the linear
framework as far as elastic waves are not considered, they may be viewed as "quasi-elastic" systems
(although they are termed "Quasi-Anelastic" in AK09).

We have shown that some of the variants of the proposed systemlend themselves to a rather simple
and direct formulation in mass-based vertical coordinates(very similar to Laprise, 1992), and that the
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resulting equation system could be discretized in a very natural way in the framework of the IFS system
(semi-Lagrangian, spectral...). Concerning the semi-implicit time-discretisation, here also, the system
can be formulated in the same general framework as the very efficient one used in IFS (horizontally uni-
form and time-independent reference-state, separable problem, direct spectral solver, and precomputed
vertical inverse operators).

Drawing from these inferences, the proposed system is promising. However, the main problem seems
to be in the formulation and the solution of the diagnostic pressure equation. It appears to be much
more cumbersome than in classical anelastic systems. The principle for deriving the pressure equation
is similar to the anelastic case : the time derivative of the continuity equation must be combined with
the divergence of the momentum equation. However, the presence of the time-derivative ofρh in (2)
makes things much more complicated than in the anelastic case. To circumvent the problem, Arakawa
and Konor, 2009, proposed as a practical trade-off, to keep this term formally as it is, and to compute it
through a time-discrete estimate in the model. A full solution of the equation seems to be possible with
an iterative 3D solver, but the efficiency of such a strategy remains open.

Besides, in order to establish if this system is sound and appropriate for IFS, it is necessary to determine
the form of the energetic invariant, and the theoretical stability of the time-discrete system in presence of
explicitly treated residuals (in the manner of Simmonset al. 1978). These points will be studied in the
near future.
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