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When it was introduced, the ECMWF Ensemble Prediction System (EPS) was based on the assumption 
that errors in medium-range forecasts are mainly associated with errors in initial conditions. Later it was 
recognised that uncertainties in the model formulation may also be a significant factor. In particular, the 
physical parametrizations can be a significant source of random error. This led to the development of a 
stochastic representation of physical parametrization uncertainty (now known as the Stochastic Perturbed 
Parametrization Tendency (SPPT) scheme). The SPPT scheme has been used in the operational EPS 
since October 1998 – this version will be referred to as SPPT-98. Through the judicious application  
of random number multipliers to forecast tendencies, there has been an increase in ensemble spread  
in the EPS and improved probability skill scores (Buizza et al., 1999).

Investigation of the performance of the EPS has shown that there would be benefits in enhancing the 
representation of model errors. This resulted in recent operational changes. The impacts of those changes 
are outlined in this article.

The Ensemble of Data Assimilations (EDA) was introduced in June 2010 to generate initial perturbations  
for the ensemble from ten independent 4D-Var assimilations with representations of observation and model 
errors (see, for example, Bonavita, 2011 and Isaksen et al., 2010). EDA-based perturbations replaced the 
evolved singular vectors and the initial singular vectors were retained to ensure sufficient spread in the 
medium-range. In the EDA, SPPT plays an essential role in providing different realizations of the physics 
tendencies within each ensemble member. Importantly, EDA provides a means by which stochastic model 
error representations may be confronted with observational reality.

Improved representation of model errors
The SPPT scheme has been significantly revised in September 2009 and was further refined in November 
2010. The revisions provided substantial improvements in ensemble spread: reduction in the error of the 
ensemble-mean and improved skill scores (e.g. Brier Skill Score and Continuous Ranked Probability Skill 
Score). These improvements followed from a more realistic version that uses a single spatially-smooth 
random pattern generator to perturb all parametrization tendency variables rather than independent, 
piecewise constant patterns for each variable as in the original scheme. The latest version of the SPPT 
scheme (November 2010) will be referred to as SPPT3 – for more detail see Box A.

Random error in physical parametrization is not the only source of model uncertainty so deficiencies in the 
dynamical component of the forecast model also need to be addressed. The upscale cascade of energy from 
sub-grid scales (or those scales that are poorly resolved in the model) is thought to be such a source of model 
error and considerable effort has been expended on formulating a Stochastic Kinetic Energy Backscatter 
(SKEB) scheme (also known as SPBS in earlier documentation; see Shutts, 2005 and Berner et al., 2008).

The SKEB technique randomly forces vorticity perturbations into the model flow in such a way that 
the average energy input is a fraction of some measure of the local energy dissipation rate. Numerical 
dissipation and the implicit energy dissipation in the mountain wave drag and convection parametrization 
schemes are all regarded as sources of kinetic energy to be backscattered upscale. The SKEB scheme  
was introduced into the operational EPS in November 2010 to be used alongside the revised version  
of the SPPT scheme already implemented. More detail about the SKEB scheme is given in Box B.

This article appeared in the Meteorology section of ECMWF Newsletter No. 129 – Autumn 2011, pp. 19–24.
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The Stochastic Perturbed Parametrization Tendency (SPPT) scheme
In the revised SPPT scheme the total physical 
parametrization tendency is multiplied by a 
randomly-evolving, global pattern field whose 
average value at any point is unity and whose 
standard deviation is prescribed. The pattern 
field is composed of three independent 
patterns, each generated from triangularly-
truncated spherical harmonic expansions 
which have the property that their spatial auto-
correlation function is independent of position 
on the sphere. Each spherical harmonic mode 
in each expansion is evolved in time using a 
first-order autoregressive process with fixed 
decorrelation time and wavenumber-dependent 
noise term. This three-pattern version of SPPT 
is referred to as SPPT3.

In the current operational implementation, the 
three patterns have quasi-Gaussian mean power 
spectra with horizontal correlations scales of 500 
km, 1000 km and 2000 km, standard deviations  
of 0.52, 0.18 and 0.06, and decorrelation times  
of 6 hours, 3 days and 30 days respectively  
(see the figure in this box).

The above nine numbers characterizing SPPT3 
are meant to span the uncertainty at mesoscale, 
synoptic scale and planetary space and time 
scales with pattern 1 (500 km decorrelation scale) 
being the starting point and most important 
component for the medium-range EPS. The  
other two patterns particularly improve the  
spread in seasonal forecast ensembles for  
which perturbations created using pattern 1  
are insufficient. The decorrelation time of about 

6 hours assumed in pattern 1 is loosely identified 
with a characteristic mesoscale time scale 
(e.g. for a mesoscale convective system). The 
longer decorrelation times used for the other two 
patterns in SPPT3 can be thought of as more 
persistent but smaller amplitude parameterization 
error that depends on the weather regime and 
thus exhibits variations on the medium-range to 
intra-seasonal timescales. Note that the standard 
deviation of the intermediate scale and large-
scale patterns are much smaller (0.18 and 0.06 
respectively) than that of the fastest pattern (0.52).

The three patterns underlying the SPPT3 scheme. 
The numbers next to the spheres indicate the 
horizontal spatial and temporal correlation scales  
in kilometres and hours. The three curves on the 
graph show time series of the pattern values at a 
point employed in the operational scheme The colour 
of the arrows relates the patterns to the time series.

A

1

0.5

0

–0.5

–1
150 1 2 3 4 5 6 7

Time (days)
8 9 10 11 12 13 14

500 km – 6 hours 1000 km – 3 days 2000 km – 30 days

Impact on medium-range and seasonal-range ensemble forecasts
The relative impacts of the SPPT3, SKEB and SPPT-98 schemes have been assessed using an operational 
configuration of the EPS (as in model cycle Cy36r4). The horizontal resolution is T639 up to day 10 and T319 
thereafter. The ensemble is initialized with perturbations from the EDA combined with initial singular vector 
perturbations with a 50% reduced amplitude compared to the previous operational model cycle (Cy36r2). 
Each 15-day ensemble forecast has one control member and 50 perturbed members. The evaluation period 
consists of 19 equally-spaced dates in August/September 2008 and 21 equally-spaced dates in October/
December 2009.

Figure 1 shows the root-mean-square (r.m.s.) error of the ensemble-mean 500 hPa geopotential and the 
ensemble spread (also measured as a root-mean-square) as a function of time for various representations  
of the model error: SPPT3+SKEB, SPPT3, SKEB and SPPT-98. Also shown are results from the EPS with 
only initial perturbations (labelled CONTROL) which acts as a baseline against which the effect of different 
model error representations can be judged. It can readily be seen that without accounting for model error, 
the EPS is under-spread (i.e. the ensemble spread is less than the r.ms. error of the ensemble mean). With 
SPPT-98 there is some small increase in spread and reduction in r.m.s. error but considerably less than 
both SPPT3 and SKEB. The combination of SPPT3 and SKEB gives a close match of spread to error.

The relative merits of the different model error choices are clearly seen in the Continuous Ignorance Score 
(CIS) with the lowest values representing the most skilful prediction (Figure 2). It is clear from Figure 1 that 
SKEB generates more spread than the SPPT-98 scheme and Figure 2 shows that this results in more skilful 
forecasts. Acting on their own, SKEB and SPPT3 give similar increases in spread over the ‘no model error’ 
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The Stochastic Kinetic Energy Backscatter (SKEB) scheme
As with SPPT3, the SKEB scheme is based on 
the product of a spectrally-generated pattern field 
and a derived model field. However, instead of 
using model tendencies, the backscatter scheme 
uses a horizontally-smoothed dissipation rate field 
to modulate the pattern field and defines this to 
be a streamfunction forcing function. The pattern 
uses a noise term with a different wavenumber 
dependence to that used in SPPT3 and one that 
gives a power law spectrum. This choice was 
determined by coarse-graining the streamfunction 
tendency (obtained from the u and v tendencies)  
in high-resolution forecasts and comparing with 
their counterparts in low resolution forecasts  
(see the section on coarse-graining).

Unlike SPPT3, the backscatter scheme allows  
for pattern variation with height and does this  
by randomly shifting the phase of each spectral 
mode using a first-order autoregressive process 
based on a Laplace probability distribution 
function. Again, coarse-graining results have  
been used to calibrate the dependence  
on pressure and wavenumber.

The kinetic energy dissipation rate field calculated 
here is not actually a true dissipation rate at  
all but is meant to provide an estimate of the  
sub-gridscale production of kinetic energy.  

For instance, the convective dissipation rate 
component is the product of the kinetic energy 
based on a vertically-averaged, updraught velocity 
multiplied by the convective mass flux detrainment 
rate – both terms being obtained from the 
convection parametrization scheme.
Parametrized mountain form drag and gravity 
wave drag remove energy from the forecast model 
yet some of this energy loss should go  
into sub-gridscale quasi-balanced eddies rather 
than turbulent energy dissipation. These eddies, 
although not represented explicitly, could interact 
with the resolved flow and cascade their energy 
upscale as a kind of backscatter process. 
Similarly, numerical dissipation of energy via 
explicit horizontal diffusion terms (or through  
the smoothing effect of interpolation in the semi-
Lagrangian advection scheme) loses energy from 
the model without any relation to what should 
truly be dissipated into thermal energy. A certain 
fraction of this lost energy should therefore be 
backscattered to the resolved scales and this  
is what the SKEB scheme aims to do.
Thanks go to Martin Steinheimer (now at  
Austro Control GmbH, Vienna) for his substantial 
contribution to the development of SKEB.

B

case and yet SPPT3 seems to provide better improvements in the CIS. When combined with SPPT3, SKEB 
gives some modest additional reduction in CIS.

In the tropics, the EPS versions without SPPT3 are substantially under-spread and skill is low – presumably 
due to the inability of the forecast model to represent the interaction between parametrized convection 
and its local environment. Figure 3 shows that here, SKEB is less effective than the SPPT-98 scheme 
in generating spread in the 850 hPa temperature for the tropics. Presumably SKEB’s wind forcing only 
generates weak temperature perturbations since the small Coriolis parameter there is unable to support 
balanced, horizontal temperature gradients.

Figure 3 shows, on the other hand, that SPPT3 is highly effective in generating spread and this results  
in substantially more skilful CIS (see Figure 4).
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Figure 1 The r.m.s. error of the ensemble-
mean (solid lines) and ensemble spread 
(dashed lines) versus forecast time (in days)  
for 500 hPa geopotential in the northern extra-
tropics (20°–90°N) for various representations 
of model error: SPPT3+SKEB, SPPT3, SKEB 
and SPPT-98. Also results for the EPS with 
only initial perturbations are shown 
(CONTROL). All 40 EPS forecasts have 51 
members and use initial perturbations from  
the Ensemble of Data Assimilations and initial 
singular vectors. The horizontal resolution of 
the forecasts is T639 and the number of model 
levels is 62. An expanded view of the marked 
rectangular region is shown for clarity.
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Figure 2 Continuous Ignorance Score for 500 
hPa geopotential height in the northern extra-
tropics for various representations of model 
error: SPPT3+SKEB, SPPT3, SKEB and 
SPPT-98 plus CONTROL. Note that the  
CIS is computed as the logarithmic score  
of the Gaussian distribution with mean and 
variance corresponding to the ensemble 
mean and ensemble variance.
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Seasonal range
The impact of the new stochastic parametrization schemes has also been tested in ECMWF’s seasonal-
range, coupled ocean-atmosphere ensemble forecasting system. A set of retrospective ensemble forecasts 
with 11 ensemble members over the re-forecast period 1989–2005 has been carried out where 4-month 
long forecasts were initialised on 1 May and 1 November each year. The forecasts were made with a 
system that closely resembles the new Seasonal Forecast System 4 which is due to become the operational 
seasonal forecasting system at the end of 2011. The simulations were run with T255L91 resolution and used 
IFS Cycle 36r4, coupled to the 1°-NEMO ocean model.

The El Niño Southern Oscillation (ENSO) phenomenon is of crucial importance for seasonal forecasting and 
thus we focus our comparison on the performance of predicting tropical Pacific sea surface temperatures 
(SSTs), specifically for the Niño3 region (5°S–5°N, 150°W–90°W). Figure 5 shows the impact of the new 
schemes in forecasting SST anomalies in terms of the evolution of the ensemble-mean r.m.s. error (solid 
curves) and ensemble spread (dashed curves) over lead time. In Figure 5a, the simulations using the new 
model uncertainty representation (SPPT3 +SKEB) are shown along with the control simulation without any 
representation of model error (CONTROL). For comparison, the r.m.s. error of a simple persistence forecast 
is shown (PERSISTENCE). For a well-calibrated forecasting system one would expect that the ensemble-
mean r.m.s. error would match the ensemble spread. This is clearly not the case for the simulations shown 
in Figure 5a. Here, the forecasting system is under-dispersive, or over-confident, by not generating enough 
ensemble spread. However, it can be seen that the stochastic tendency perturbation schemes have an 
overall positive effect on the problem of over-confidence by noticeably increasing the spread and slightly 
reducing the ensemble-mean r.m.s. error.

What are the relative contributions of SPPT3 and SKEB schemes to increasing ensemble spread and 
reducing the RMSE? Figure 5b shows results from ensemble forecasts where each scheme was switched  
on individually. As can be seen, the biggest impact in terms of spread and r.m.s. error comes from the SPPT3 
scheme. The SKEB scheme also tends to increase the ensemble spread but to a much smaller extent.

Model uncertainty can be represented in different ways and stochastic physical parametrization is a 
newly-emerging field for long-range forecasts. The ‘traditional’ approach to address model uncertainty on 
seasonal and longer time-scales is the multi-model ensemble which relies on the assumption that individual 
models were developed quasi-independently. It is considered to be an ‘ensemble-of-opportunity’ for 
sampling model error. In the past, multi-model ensembles have been very successful in improving the skill 
of seasonal forecasts by reducing the over-confidence of the individual model ensembles. The ENSEMBLES 
multi-model ensemble (Weisheimer et al., 2009), shown in Figure 5c, demonstrates the very good spread-
skill relationship obtained by the multi-model approach.

Another method for modelling uncertainty uses ensemble forecasts with perturbed physical model 
parameters. For comparison, Figure 5d shows results from seasonal forecast experiments with perturbed 
parameters carried out in the ENSEMBLES project. 

From Figure 5 it can be concluded that the stochastic physical parametrization provides a powerful 
alternative to other approaches for representing model uncertainty in seasonal forecasts and it is suggested 
that these schemes should now be developed for multi-decadal climate predictions using Earth System 
Models as well (Weisheimer et al., 2011).
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Figure 6 (a) Radiosonde innovation standard deviations for zonal wind in the northern extra-tropics (dashed 
line) and predicted innovation standard deviations for an EDA experiment without model error (CONTROL), with 
SPPT3 active (SPPT3) and with both SPPT3 and SKEB active (SPPT3+SKEB). (b) Spatial correlation of the EDA 
vorticity spread with the EDA mean background error vorticity field in the southern extra-tropics (model levels 
on the y axis).
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Model error parameterizations in the EDA 
The ECMWF Ensemble of Data Assimilations (EDA) is a system of N (N=10 at the time of writing) 
independent, reduced-resolution, assimilation cycles which differ by using randomly-perturbed 
observations, sea-surface temperature fields and model physics tendencies. If the perturbations are drawn 
from the true distributions of observation and model error, then the spread of the EDA about the control 
(unperturbed) analysis will be representative of the analysis error (Isaksen et al., 2010). The use of EDA 
perturbations has already proved to have a beneficial impact on the representation of initial uncertainties in 
the EPS and on the estimation of flow-dependent background errors in the deterministic 4D-Var assimilation 
system (Isaksen et al., 2010).

The ability of the EDA to correctly capture the analysis and background errors of the reference analysis 
is based on an accurate representation of all the relevant sources of uncertainty in the deterministic 
analysis cycle, among which model error plays an important role. It is then important to evaluate how the 
different model error schemes affect the performance of the EDA. This is, in fact, a very stringent test of 
their ability to represent the true sources of model error because the effects of using a certain model error 
representation accumulate in time over the analysis cycles and they are confronted with the observational 
reality, both directly and through the EDA-sampled statistics used in the deterministic high-resolution 
analysis. A further distinction is that in an EPS context, one is typically concerned with the verification  
and use of univariate probability distributions at a given lead time and location, while one of the main uses 
of the EDA is to diagnose spatial and multivariate covariances. Finally, background errors (i.e. forecast 
errors at 12 hours lead times, in the present case) have been shown to span a much larger portion of the 
error space than errors at longer forecast lead times, since they have not collapsed yet on to the dominant 
modes of instability of the system. This obviously makes their estimation a more challenging problem.

Figure 6 shows two diagnostics of the impact of SPPT3 and SKEB on the EDA variances. Figure 6a 
compares the observed radiosonde innovation standard deviations for the zonal wind component in 
the northern extra-tropics with the expected innovations (square root of the sum of the EDA variance 
and observation error variance) for three different EDA systems: one with no model error representation 
(CONTROL), one with SPPT3 active (SPPT3), and one with both SPPT3 and SKEB active (SPPT3+SKEB). 
Since a statistically-consistent EDA should have matching observed and expected innovation standard 
deviations, it is apparent that the use of model error parametrizations improves the reliability characteristics 
of the EDA. This is confirmed by Figure 6 (b) which plots, as a function of model level, the spatial correlation 
coefficient of the EDA mean background error vorticity field with the corresponding EDA vorticity spread for 
the three EDA experiments.

The impact of the model error parametrizations on the EDA sample covariances is the subject of ongoing 
investigation. Preliminary results indicate that while the SPPT3 scheme has an overall neutral impact, the 
SKEB parametrization tends to slightly degrade the quality of the EDA covariances. This result, if confirmed, 
could be an indication that the spatially-correlated error structures introduced in the SKEB scheme in the 
EPS configuration are not appropriate for the estimation of background errors.

Improving the stochastic schemes by coarse-graining
Considerable effort is currently aimed at calibrating the schemes, or at the very least, providing some 
justification for the chosen parameters (e.g. like the standard deviation of the random pattern values about 
their mean value of unity). The coarse-graining method compares high- and low-resolution forecasts to infer 
the statistical character of tendency error in the low-resolution forecast, e.g. by coarse-graining operational 
T1279 and matching T159 forecasts.

Estimates made so far suggest a somewhat lower standard deviation than that currently assumed in SPPT3 
although this is to be expected since a T1279 forecast parametrizes convection and much of the gravity 
wave spectrum. Coarse-graining using model data (cloud-resolving model and IFS forecasts) has also been 
used to determine the power spectrum of streamfunction forcing and the probability distribution function  
of vertical phase shifts in SKEB (Palmer et al., 2009).

Current research is aimed at better targeting the uncertainty in physical parametrization and in backscatter. 
For instance it may be wrong to perturb the radiative temperature tendency in SPPT3 since the origin of 
radiative flux uncertainty lies in the representation of cloud principally. If we assume that the dominant 
uncertainty arises from spatial truncation, coarse-graining will be able to quantify the uncertainties 
associated with lower resolution versions of the model.
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Future developments
SPPT3 is fairly straightforward to code in the forecast model whereas the SKEB scheme is complex and 
costly. In spite of its complex implementation, the approach upon which SKEB is based is quite crude and, 
for instance, there is no phase relationship between the streamfunction forcing and individual flow features. 
Work is underway to devise schemes which generate backscatter vorticity perturbations from the model’s 
instantaneous vorticity field and in such a way that energy is more directly transferred to large-scale  
flow features. This type of ‘negative viscosity’ effect has been shown in recent studies by Thuburn (2011) 
which used the barotropic vorticity equation and has also been revealed by coarse-graining IFS forecasts.

Refinement of SPPT3 using the coarse-graining methodology is currently focused on assessing the 
uncertainty associated with individual processes and improved representation of the pattern generator. 
The assumption that the standard deviation of the perturbations is proportional to the magnitude of the 
tendency is currently under scrutiny and there is evidence from coarse-graining that the variance of the 
perturbations is proportional to the mean.

The performance of ensemble data assimilation with different formulations of random model error provides 
a more stringent test on their underlying physical basis than their impact on medium-range probability 
skill scores. Indeed it may even be possible to use EDA to determine optimal parameter settings in the 
stochastic algorithms. Ultimately, it would be desirable to have stochastic forcing formulations that work 
across all time scales from those of data assimilation to climate modelling. Only then can one be confident 
in the physical basis for the chosen model error representations.
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