

The 2010/11 drought in the Horn of Africa: Monitoring and forecasts using ECMWF products

Emanuel Dutra Fredrik Wetterhall Florian Pappenberger Souhail Boussetta Gianpaolo Balsamo Linus Magnusson

© ECMWF

DEWFORA, droughts in Africa session, 5 October 2011

Slide 1

Comparison of precipitation products in the HoA

Large uncertainty between products;
Significant differences between GPCPv2.1 and GPCPv2.2

 Two rainy seasons (March-June high; October-December –low);

•ERA-Interim seems to "overestimate" the peck rainfall during the rainy seasons

•Good agreement between ERAI and deterministic, but determ. Is closer to GPCPv2.2

•Stronger Oct-Dec 2010 anomaly in determ. Than in ERAI

•What should be used as ground true ?

Averages over the HoA

Slide 2

ERA-Interim/deterministic forecasts monitoring (precipitation)

•2010/2011 accumulated precipitation (Aug– Jul) was the lowest in the 32 years record of ERAI.

ERA-Interim monitoring (soil moisture, LAI)

•Precipitation anomalies are followed by soil moisture

•LAI anomalies follow the reduced water availability

•Soil moisture and LAI anomalies are consistent with long recover (memory effect)

Averages over the HoA

ERA-Interim monitoring (drought indices)

Drought indices calculated from ERAI 2010/2011

•All indices identify an anomalous situation;

Different onset-intensity;

•Large uncertainty;

•Would this be helpful for decisions makers ?

Averages over the HoA

Seasonal forecasts: April 2010 to August 2011

Verification date

•Good in the first month of forecasts (S4 better)

•Forecasts of dry conditions for Oct-Dec 2010 since July 2010

•Marc-April 2011 very noisy, no consistency in the forecast

•Why the difference in skill between Oct-Dec / March-May (in both systems) ?

Averages over the HoA

Precipitation anomalies and link with ENSO

Regression ERAI Nino3.4 SST Sep-Nov. precip

•Oct-Dec precipitation anomalies (both ERAI and GPCP) connected with Nino3.4 : Some predictability in S3/S4 ?

Anom. correlation SST Nino3.4 precip HoA

S3 Nino3.4 forecast Aug 2010

Associated with the Indian Ocean dipole

•Main rainy season March-June no relation with Nino3.4 (difficult for S3/S4 ?), mainly driven by ITCZ

•2010 strong La Niña (2th strongest since 1979)

Seasonal forecasts S3/S4 skill

•Both S3/S4 show a good skill for Nino3.4 (Oct-Dec) 4 months in advance.;

•S3 skill for precipitation is very low (CRPSS<0 Jun, Aug, Oct).;

•S4 shows some skill in predicting precipitation in the HoA region;

 The teleconnection between Nino3.4 and precip is present in both S3 and S4 up to 4 months in advance.

•Precip scores for Mar-May are very low in both S3/S4 (especially for Apr)

Seasonal forecasts 2010/11

From July 2010 onwards S3 > 50% (below percentile 30) and >20% (below percentile 10), persistent;
S4 similar S3 but predicting normal situation in September (only 15 ensemble members, S3 has 41);
Mar-May 2011 forecasts from Nov to Feb indicated normal conditions, only the March forecasts pointed to a dry situation;

•Would this information be useful to the population ? Decision makers ?

•How to process / deliver these forecasts to users ?

Overview

ERA-Interim monitoring

- ERAI precipitation comparable with other global datasets (large uncertainty)
- 2010/11 anomaly of precipitation well captured by ERAI, with a consistent signal in soil moisture and LAI anomalies
- Ongoing analysis with more drought indexes. The results point to the feasibility of using ERA-Interim as a monitoring tool for drought conditions (near-real time update very important)

Seasonal Forecasts

- October to December precipitation anomalies in 2010 were predicted from July onwards, due to the strong La Niña situation;
- S4 outperforms S3 in the prediction of precipitation and nino3.4 (S4 is penalized in the 2010/11 case study hindcast period: 15 ensemble members);
- October-December 2011 forecasts point to normal situation;

Ongoing:

- Further analysis of the ENSO-Indian Ocean-Precipitation (HoA);
- Drought indices based on ERAI, more case studies (Russia 2010), extend drought indices from monitoring to seasonal forecasts.
- Disseminate these results as possible applications of ERAI and seasonal forecasts to end users.