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Outline

• Why do we need an Ensemble of Data Assimilations?

• Sequential DA methods and Non-Sequential DA methods

• Hybrids methods: the best of both worlds?

• Use of EDA variances in a hybrid DA

• Use of EDA covariances in a hybrid DA

• Conclusions and perspectives
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Why do we need an EDA?

A crash course in Data Assimilation!

“DA is the process through which all the available information is used 
to estimate as accurately as possible the state of the atmospheric or 
oceanic flow” (Talagrand, 1997) 

A Bayesian inference problem (Lorenc, 1986; Wikle and 
Berliner,2007)

If X is the state and Y our data the full probability model can be 
factored as:

which can be written (Bayes’ Rule):
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Why do we need an EDA?

i.e., in order to infer the distribution of the state given the data 
(posterior distribution, p(x|y)), we need only form the product of the 
distributions of measurement errors (data distribution, p(y|x)) and our 
prior knowledge about the state (prior distribution, p(x)). The marginal 
distribution                             can be thought of as a normalising 
constant.
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Why do we need an EDA?

Let us introduce the time dimension: we want to estimate a set of 
states X0:t=[X0,X1,..,Xt]  given all the observations over the same time 
interval Y1:t=[Y1,Y2,..,Yt], i.e. 

p(x0:t|y1:t)     p(y1:t|x0:t)p(x0:t)

Two hypotheses are commonly introduced: 

a) A Markov assumption on the prior distribution, i.e. 

p(x0:t)=p(x0) p(x1|x0) …p(xt|xt-1)

b) Statistical independence of the observations:

p(y1:t|x0:t)=p(y1|x1)…p(yt|xt)

This leads to:

p(x0:t|y1:t)      p(x0) p(x1|x0) p(y1|x1)… p(xt|xt-1) p(yt|xt-1)
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Why do we need an EDA?

p(x0:t|y1:t)      p(x0) p(x1|x0) p(y1|x1)… p(xt|xt-1) p(yt|xt-1)

This form naturally leads to a sequential algorithm, i.e., when new 

observations are available the state is updated from the previously 

available estimate.

In real time applications we are mainly concerned with the Filtering 

problem: Knowing p(xt-1|y1:t-1) how does a new batch of observations 

Yt change our estimate of the state?

Two step procedure:

1. Compute the forecast distribution at time t (forecast step) :

p(xt|y1:t-1) = ∫ p(xt|xt-1) p(xt-1|y1:t-1)dxt-1             

2. Compute the analysis distribution (analysis step) : 

p(xt|y1:t) = p(xt|yt,y1:t-1)    p(yt|xt,y1:t-1)p(xt|y1:t-1) = p(yt|xt) p(xt|y1:t-1) 
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Why do we need an EDA?

For Gaussian error distributions and linear model and observation 

operators we recover the Kalman Filter (KF) equations: 

xt = Mt-1,txt-1 + ηt-1,t η~ N(0,Qt-1,t) (1)

yt = Htxt + εt εt ~ N(0,Rt)    (2)

Models (1) and (2) give the prior p(xt|xt-1) and data p(yt|xt) 
distributions, so that the forecast distribution xt|y1:t-1~ N(xt|t-1,Pt|t-1): 

xt|t-1 = Mt-1,txt-1 (3)

Pt|t-1 = Mt-1|tPt|t-1M
T

t-1|t + Qt-1|t (4)

The analysis distribution xt|y1:t~ N(xt|t,Pt|t) is given by:

xt|t = xt|t-1 + Kt (yt - Ht xt|t-1) (5)

Pt|t = (I - KtHt)Pt|t-1 (6)

Kt = Pt|t-1H
T

t (Rt + HtPt|t-1H
T

t)
-1            (7)
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Why do we need an EDA?

We may be interested in the distribution p(xt|y1:T) for t=1,…,T, i.e. we 

want to estimate the state using observations both before and after 

time t (smoothing distribution). Under the same hypothesis used for 

the Kalman filter, a Kalman smoother (KS) can be derived (Cosme et 

al., 2011). 

Two aspects need to be emphasised: 

a) The Kalman smoother differs from the filter only by using cross-

covariances in time to correct the state at time t using 
observations at future times;

b) At the end of the assimilation window (t=T) the KS and KF 
estimates are the same
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Why do we need an EDA?

The KF is the optimal solution of the filtering problem for linear, 

Gaussian systems. 

Unfortunately it is impractical for large systems: a current NWP system 

has N~108. In the KF we have to compute and evolve in time error 

covariances of NxN dimension!  

Two possible types of solutions: 

a) 4D Variational methods

b) Reduced-rank Kalman Filters

Slide 9



Slide 10

ECMWF DA Seminar – 6-9 September 2011

Why do we need an EDA?

4D Variational methods

If we neglect model error (perfect model assumption) the smoothing 

problem of finding the model trajectory that best fits the observations 

over an assimilation interval (t=0,1,…,T) given a background state xb

and its error covariance Pb is the minimum of the cost function: 

This is equivalent to the Kalman smoother solution over the 

assimilation interval for the same xb, Pb and to the Kalman filter 

solution at the end of the interval (t=T).

The 4D-Var solution implicitly evolves background error covariances 

over the assimilation window (Thepaut et al.,1996), but does not cycle 

them! Information from past observations is only carried forward by xb
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Why do we need an EDA?

4D Variational methods

What if we pushed back the start of the assimilation window ‘enough’ 

so that the smoothed solution (and the filter solution at the end of the 

window) would no longer depend on the specified Pb? 

Enough means 3-5 days for state of art NWP models:
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Why do we need an EDA?

4D Variational methods

For assimilation windows > 12h we can not assume the model to be 

perfect any more. We have to add a model error term to our cost 

function (Weak-constraint 4D-Var):    

This is an elegant solution, but:

1) Problem is shifted from estimation of Pb to estimation of Q.           
Q can also have a non negligible flow-dependent component

2) It remains difficult in the 4D-Var framework to have realistic 
estimates of Pa
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Why do we need an EDA?

Reduced-rank Kalman Filters

In order to remain in the sequential paradigm we need to use the 

Kalman Filter analysis with a low-rank approximation of Pb/a

In this framework we look for a low-rank approximation to Pb of the 

form 
Pt

b=Xb(Xb)T where Xb is Nxm and m<<N

It then follows that 

K = Pt
bHT[HPbHT+R]-1 = Xb(HXb)T[(HXb)(HXb)T + R]-1 

Pt
a = Xb [Imxm + (HXb)TR(HXb)] (Xb)T

Pt+1
b = Mt->t+1 Pt

a MT
t->t+1 + Qt->t+1 = Mt->t+1X

b [Amxm] (Mt->t+1X
b)T + Qt->t+1

i.e., dimension N has been replaced by m in the KF equations! 

However…
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Why do we need an EDA?

Reduced-rank Kalman Filters

However…

xa-xb = K (y – H(xb)) = Xb (HXb)T [(HXb)(HXb)T + R]-1 (y – H(xb))

It then follows that the analysis increments are confined to the 

subspace spanned by Xb, which has rank m<<N

Reduced-rank KF became popular only with the introduction of the 
Ensemble Kalman Filter (EnKF, Evensen, 1994; Burgers et al., 1998) 

EnKF is a Monte Carlo approx. of the KF which crucially does not 
require the Tangent Linear and Adjoints of M and H.  

But the subspace spanned by Pb
ens= 1/√(Nens-1) Xb’(Xb’)T , (Xb’ are 

the ensemble perturbations to the ensemble mean) has still dimension 
Nens–1 << N
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Why do we need an EDA?

Reduced-rank Kalman Filters

Pb
ens= 1/√(Nens-1) Xb’(Xb’)T , Nens–1 << N

There are ways to artificially increase the effective ensemble size 
(Shur product covariance localization, Hamill and Whitaker, 2001; 
Local analysis, Evensen, 2003; Ott et al., 2004; adaptive localization, 
Anderson 2007, Bishop and Hodyss, 2007,2009), but they (too!) come 
at a price: 

a) Dynamical balance may be degraded;

b) Asymptotic optimality of the EnKF lost;

c) More difficult for non-local observations, since usually applied in

observation space   
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Why do we need an EDA?

Results with the ECMWF EnKF
Surface Pressure observations only
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Why do we need an EDA?

Results with the ECMWF EnKF
Conventional observations only
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Why do we need an EDA?

Results with the ECMWF EnKF
All observations
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Why do we need an EDA?

Quick recap:

a) Kalman Filter is computationally unfeasible for realistic NWP;

b) Non-sequential approx. (4D-Var) do not cycle state error 
estimates: work well for short assimilation windows (6-12h), but 
longer windows have proved more difficult;

c) Sequential approx. (EnKF) cycle low-rank estimates of state error 
covariances, but analysis increments are confined to perturbations 
subspace;

….

Hybrid approach: Use flow-dependent state error estimates (from an

EnKF/EDA system) in a 3/4D-Var analysis algorithm
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Hybrids

Hybrid approx.: Use flow-dependent state error estimates (from an

EnKF/EDA system) in a 3/4D-Var analysis algorithm

This solution would:

1) Integrate flow-dependent state error covariance information into 
the variational analysis

2) Keep the full rank representation of B and its implicit evolution 
inside the assimilation window

3) More robust than pure EnKF for limited ensemble sizes and large 
model errors

4) Allow (eventual) localization of ensemble perturbations to be 
performed in state space;

5) Allow for flow-dependent QC of observations
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Hybrids

In operational use (or in an advanced testing), there are currently two 

main approaches to doing an hybrid DA in a VAR context:

1. Alpha control variable  method (Met Office, NCEP/GMAO)

2. Ensemble of Data Assimilations method (ECMWF, Meteo France)
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Hybrids: α control variable

Conceptually add a flow-dependent term to the climatological B matrix:

Bc is the static, climatological covariance
Pe ○ Cloc is the localised ensemble covariance

In practice this is done through augmentation of control variable:

and introducing an additional term in the cost function:
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Hybrids: EDA

The Ensemble of Data Assimilations (EDA,Isaksen et al. 2010) can be

considered a flow-dependent extension of the way the climatological 

background error matrix is estimated (Fisher, 2003).

For a linear system the data assimilation update is:

In our system the sources of error are the observations and the
forecast model:

xb
k+1 = Mkxa

k + ηk         ηk~ N(0,Qk)

yk = Hkxk + ζk ζk ~ N(0,Rk) 
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Consider now the evolution of the same system where we perturb 
the observations and the model evolution with random  noise 
drawn from the respective error covariances:

where ηk~(0,R), ζk~(0,Q).

If we define the differences between the perturbed and 
unperturbed state and                    , their evolution is 
obtained by subtracting the unperturbed state evolution 
equations from the perturbed ones:
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i.e., the perturbations evolve with the same update equations of 

the state

What about the errors? 

If we take the statistical expectation of the outer product of the 

perturbations:      
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These are the same equations for the evolution of the system 

error covariances:

provided that:

1. The applied perturbations ηk, ζk  have the required 

covariances (R, Q);

2. At some stage in time                                                 

(asymptotic convergence, Fisher et al., 2005)
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What does all this mean in practice?

1. We can use an ensemble of perturbed 4D-Var to simulate the 
errors of our reference high resolution 4D-Var;

2. The ensemble of perturbed DAs should be as similar as 
possible to the reference DA (i.e., same or similar K matrix)

3. The applied perturbations ηk, ζk must have the required error 
covariances (R, Q); however we do not need an explicit 
covariance model of Q
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• 10 ensemble members using 4D-Var assimilations

• T399 outer loop, T95/T159 inner loops. (Reference DA: T1279

outer loop, T159/T255/T255 inner loops)

• Observations randomly perturbed according to their specified R

• SST perturbed with realistically scaled structures

• Model error represented by stochastic methods (SPPT, Leutbecher, 

2009)
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The EDA system simulates the error evolution of the 4DVar analysis cycle. 

As such it has two main applications:

1. Provide a flow-dependent sample of analysis errors to use as initial 
perturbations for the Ensemble Prediction system (EPS)

2. Provide a flow-dependent sample of background errors at the initial 

time of the 4D-Var assimilation window
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Improving Ensemble Prediction System by including EDA 
perturbations for initial uncertainty

The Ensemble Prediction System (EPS) benefits from using EDA based 
perturbations. Replacing evolved singular vector perturbations by EDA 
based perturbations improve EPS spread, especially in the tropics.
The Ensemble Mean has slightly lower error when EDA is used. 
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The EDA system simulates the error evolution of the 4DVar analysis cycle. 

As such it has two main applications:

1. Provide a flow-dependent sample of analysis errors to use as initial 
perturbations for the Ensemble Prediction system (EPS)

2. Provide a flow-dependent sample of background errors at the initial 

time of the 4D-Var assimilation window
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In the ECMWF 4D-Var, the B matrix is defined implicitly in terms of a 
transformation from the background departure (x-xb) to a control 
variable χ:

(x-xb) = Lχ

So that the implied B=LLT.

In the current wavelet formulation (Fisher, 2003), the variable 
transform can be written as:

T is the balance operator

Σb is the gridpoint variance of background errors 

Cj(λ,φ) is the vertical covariance matrix for wavelet index j

ψj are the set of radial basis function that define the wavelet transform.
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Cj(λ,φ) are full vertical covariance matrices, function of  (λ,φ). They
determine both the horizontal and vertical background error correlation 
structures;

In standard 4D-Var T and Cj are computed off-line using a climatology 
of EDA perturbations.
Σb is computed by random sampling of the static B matrix 
(randomization procedure, Fisher and Courtier, 1995)

How do we make this error covariance model flow-dependent?

We look for flow-dependent EDA estimates of Σb and Cj(λ,φ)
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Σb is defined in grid space; it can be directly sampled from the EDA 
background forecasts:

However the sampled variance estimates are affected by two errors:

a) Sampling Noise due to the small EDA dimensionality (Neda=10):

b) Systematic errors due to incorrect specification of error sources in 
the EDA (i.e., mis-specification of R, Q, uncertainties in the 
boundary conditions)

Slide 35

EDA variances

      
2

1

,,,,
1

1
,, 







EDAN

l
b

l
b

EDA

b kjikji
N

kji xxΣ

b

EDANb
ΣΣ

1

2
ˆ






Slide 36

ECMWF DA Seminar – 6-9 September 2011

a) Sampling Noise due to the small EDA dimensionality (Neda=10)

The key insight is to recognise that sampling noise is small scale with 
respect to the error variance field (Raynaud et al., 2008)

We may use a spectral filter to disentangle noise error from the signal
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Raw Ensemble StDev
VO ml64

Filtered Ensemble StDev
VO ml64
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Operational StDev
Random. Method
(Fisher & Courtier, 1995)

Filtered Ensemble StDev
VO ml64
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The sampling noise effectively limits the scales that we can robustly 
estimate from the EDA.

The effective spatial resolution of the diagnosed errors is much 
coarser than the nominal EDA resolution (T399) and is primarily 
determined by  the ensemble size (Bonavita et al., 2010)
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A larger EDA effectively allows the sampling of errors at finer 
resolutions. 

This helps improve analysis and forecast skill!
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The current noise filter is spectral: 

This means that there is full resolution in terms of scale but none in 
physical space (i.e., the same filtering function is applied everywhere 
on the globe). 

A wavelet filter would trade in some spectral resolution in exchange for 
spatial resolution:
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A wavelet filter would trade in some spectral resolution in exchange for 
spatial resolution. 

Filter for Vorticity (ml=64), wavelet 14 (wavenumbers 95-127)
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b) Systematic errors due to incorrect specification of error sources 
in the EDA (i.e., mis-specification of R, Q, uncertainties in the 
boundary conditions)

A statistically consistent ensemble should satisfy:

<ensemble	variance>	≈ <squared	ensemble	mean	error>	
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Vorticity ml 78 (~850hPa)
Ensemble Error                                                        Ensemble Spread

Spread - Error
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EDA variances

Conditional distribution of the EDA mean background RMS 
error for given EDA background standard deviation
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“Spread-Skill” regressions of the type shown serve two purposes:

1. Diagnose the progress (or lack thereof!) in the modelling of 
system uncertainties in the EDA 
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“Spread-Skill” regressions of the type shown serve two purposes:

1. Diagnose the progress (or lack thereof!) in the modelling of 
system uncertainties in the EDA 

2. Calibrate on-line the EDA sample variances to obtain realistic 
estimates of background errors (Ensemble Variance Calibration, 
Kolczynsky et al., 2009, 2011; Bonavita et al., 2011) 
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Tropical Storm Aere, 9 May 2011 00UTC:

Operational Analysis                             E-suite Analysis                                              
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Tropical Storm Aere, 9 May 2011 00UTC:
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Tropical Storm Aere, 9 May 2011 00UTC:

Operational Analysis                   E-suite Analysis                                              

BG Error

StDev

Analysis

Increments
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What is the impact of flow-dependent EDA variances 

on the IFS scores?

CY36R4, T1279L91 

• ffg8 20100111 - 20100331 (control: fezj): WINTER

• ffge 20100802 – 20101030 (control: 0051): SUMMER

EDA variances



Slide 52

ECMWF DA Seminar – 6-9 September 2011 Slide 52

Geopotential RMSE reduction

winter summer
Blue=☺
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CY37R2 (18 May 2011):

 Use of EDA Variances in 4D-Var
 Reduction of AMSU-A observation errors

EDA variances
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Cj(λ,φ) are full vertical covariance matrices, function of  (λ,φ). They
determine both the horizontal and vertical background error correlation 
structures;

How do we make this error covariance model flow-dependent?

We look for flow-dependent EDA estimates of Σb and Cj(λ,φ)
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Diagnosing the Background Error Correlation Length-Scales

Hurricane Fanele, 20 January 2009
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Hybrids: EDA Covariances
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20 member EDA
Surf. Press. Background Err. St.Dev.      Surf. Press. BG Err. Correlation L. Scale
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Hybrids: EDA Covariances
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BG Error Length Scale field has more high frequency spatial structure 
than BG error StDev -> need for larger ensemble 

Off-line estimates of Cj(λ,φ) are computed over a period of 2 months.

Simplest approach to introduce flow-dependency in the correlation 
structures is through use of an evolving, on-line estimation of 
Cj(λ,φ) over a short calibration period (Varella et al., 2011)
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Hybrids: EDA Covariances



Slide 58

ECMWF DA Seminar – 6-9 September 2011 Slide 58

Hybrids: EDA Covariances

wavelet-implied length-scales of wind near 500 hPa
3-week average, from 15/2 to 7/3 2010

from: L.Berre
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Hybrids: EDA Covariances

wavelet-implied length-scales of wind near 500 hPa
4-day average, from 24/2 to 27/2 2010

from: L.Berre
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Hybrids: EDA Covariances

Mean Geopotential Height at 500 hPa
4-day average, from 24/2 to 27/2 2010
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Regularization of the on-line correlation estimates through temporal 
averaging and the implicit spatial averaging of the wavelet
representation

Larger ensemble would allow for a larger flow-dependent component 
to be retained

Other forms of regularization of the on-line correlation estimates can 
be envisaged (i.e., convex combinations of on-line and off-line Cj(λ,φ)
estimates)
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 The Kalman Filter/Smoother is still the gold standard of 
atmospheric global NWP data assimilation, but practically 
unfeasible

 Non-sequential approx. to KF (4D-Var):

1. Keeps full-rank representation of B matrix and its implicit evolution 
during the assimilation window; 

2. Unable to cycle B estimates;  

3. Difficult to access realistic estimates of Pa;

4. Long-window weak-constraint 4D-Var would potentially solve issue 2. 
but still to be demonstrated in realistic NWP settings 

Conclusions and Perspectives
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 Low-rank, Monte Carlo, Sequential approx. to KF (EnKF):

1. Explicit evolution and cycling of low-rank approximation of B matrix 
(and Pa);

2. Computationally scalable and efficient;  

3. The EnKF analysis is restricted to the error subspace spanned by the 
ensemble perturbations. This is unrealistically small and requires 
covariance localization/inflation to keep the EnKF from diverging; 

4. EnKF performance degrades with respect to 4D-Var when Nobs in the 
local analysis patch is >> Nens and observations are non-local 
(satellite radiances). Can this problem be cured with larger but 
affordable ensemble size and more careful observation selection?   

Conclusions and Perspectives
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 Hybrid approx. to KF: try to combine the strengths of the 
sequential and non-sequential approaches 

a) Low-rank, Monte Carlo error representation through cycling 
EnKF/EDA system;

b) State estimate from full-rank 4D-Var analysis where static B at    
the start of the window is (partially) replaced by EnKF/EDA flow-
dependent B

 Hybrid can be done by adding an ensemble, flow-dependent 
component to the static B used in 4D-Var (alpha control var.)

 Hybrid can also be done by using an EDA/EnKF to get an on-line, 
flow-dependent estimate of parameterised B (EDA approach)

Conclusions and Perspectives
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 Use of hybrids consistently improves deterministic analysis and 
forecast skill w.r.to pure sequential (EnKF) and non-sequential 
(4D-Var) solutions; 

 EDA/EnKF, possibly re-centred around deterministic analysis, 
provide improved sampling of initial errors for Ensemble Prediction

 We can expect growing ensemble use in 4D-Var:

1. A larger ensemble (both in the EDA and EnKF) improves error 
characterization and ultimately skill scores;

2. 4D background error covariances sampled from an EDA/EnKF could 
be used over the all 4D-Var assimilation window (not only at the 
start!): En-4D-Var (Liu et al., 2008; Buehner et al., 2010). This would 
remove the need of developing and maintaining a TL and Adjoint 
version of the forecast model

Conclusions and Perspectives
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 We can expect growing ensemble use in 4D-Var:

3. Weak-constraint Long-window 4D-Var revolves around the 
estimation of Q:  It is conceivable that an EDA will provide a way of 
effectively sampling Q

4. The EnKF is more computationally efficient than an ensemble of 
4D-Var analysis (EDA):  if it can be shown to be as accurate as 
standard 4D-Var with the full observing system, then it will provide 
a relatively cheap and efficient way of cycling error estimates in a 
hybrid system  

Conclusions and Perspectives
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Questions and Answers!
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Additional Slides
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Randomization procedure, Fisher and Courtier, 1995

Define N random vector in control-variable space, with independent 
elements drawn from a Gaussian distribution with zero mean and unit 
variance ξi~N(0,I). Then Lξi will be drawn from the distribution N(0,B)

A grid point estimate of background error variances can then be 
computed from:

Where S-1 denotes the inverse transform from Spectral space.

The variances are then rescaled based on an estimate of analysis 
errors from the leading eigenvectors of the Hessian matrix.

Finally an error growth model (Savijärvi, 1995) is applied to account for 
error growth over the short range forecast
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Use of EDA variances in 4DVar

• There is not much variability on daily-weekly scales but 
seasonal variability is important

• General solution: slowly varying adaptive calibration 
coefficients
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winter summer

Temperature RMSE reduction

Blue=☺
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winter

Wind Vector RMSE reduction

summer
Blue=☺
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Variance post-process

xa+εi
a

Analysis Forecast
SST+εi

SST

y+εi
o

xb+εi
b

xf+εi
f

i=1,2,…,10

EDA Cycle

εi
f raw 

variances

Variance 
Rescaling

Variance 
Filtering

EDA scaled
variances

4DVar Cycle

xa

Analysis ForecastEDA scaled Var

xb xf
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a) Sampling Noise due to the small EDA dimensionality (Neda=10)

The key insight is to recognise that sampling noise is small scale with 
respect to the error variance field (Raynaud et al., 2008)

Define Ge(i) as the sampling  error in the estimated ensemble variance at 
gridpoint i:

Then the covariance of the sampling noise can be shown to be a simple 
function of the expectation of the ensemble-based covariance matrix:

(1)

A consequence of (1) is that LGe(i)=Lεb(i)/√2, i.e., sampling noise is smaller 
scale than background error. 
The variance field varies on larger scales then the background error, so we 
may use a spectral filter to disentangle noise error from the variance field
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There is indeed scale separation between signal and sampling 
noise!

Truncation wavenumber is determined by maximizing signal-to-
noise ratio of filtered variances (details in Raynaud et al., 2009; 
Bonavita et al., 2011) 

Optimal truncation wavenumber depends on parameter and model 
level
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Vorticity ml 30 (~50hPa)
Ensemble Error                                                        Ensemble Spread

Spread - Error
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EDA variances
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How does a flow-dependent error variance estimate change the 
4D-Var analysis?
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EDA variances

Z500 Geopotential 
(shaded) and MSLP  

30-09-2010  21Z   
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Vorticity Background Error ml=78 (850hPa)

EDA“Randomization method”

EDA variances



Slide 79

ECMWF DA Seminar – 6-9 September 2011

“Randomization method”
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EDA

Single obs. experiment: Tobs-Tfg=+1K, (34N,74W), 900 hPa

EDA variances
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Randomization
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Single obs. experiment: Tobs-Tfg=+1K, (34N,74W), 900 hPa

EDA

Tana-Tfg

900 hPa

EDA variances

VOana-VOfg

850 hPa
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1. The observation weight in the analysis is increased in 
the area of large background uncertainty: 

EDA                     Randomiz.

ΔT         
ΔVO

2. The EDA analysis increments show a degree of flow-
dependency 

0.75 K 0.37 K

5.E-5 s-1 1.3E-5 s-1

EDA variances
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Why do we need an EDA?

Results with the ECMWF EnKF
All observations
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S.Hem. 500 hPa AC


