Data assimilation of the hydrological cycle

Jean-François Mahfouf* Météo-France / CNRM

* With material from Météo-France (N. Fourrié, E. Gérard, F. Karbou, E. Wattrelot, X. Yan) and ECMWF (P. Bauer, D. Dee, A. Geer, P. Lopez)

The hydrological cycle

Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

Trenberth et al. (2007)

- What are we talking about ?
 - The atmospheric water vapour reservoir
 - The atmospheric condensed water: ice and water clouds, snowfall and rainfall
- Remaining components presented in other talks

Outline

- Introduction
- Assimilation of observations sensitive to water vapour
- Assimilation of observations sensitive to precipitation
- Conclusions and remaining challenges

The atmospheric water reservoir

- Water vapor and clouds strongly modulate the energy balance of the Earth's system
- Surface precipitation and cloudiness are among the most important weather parameters to forecast (deterministic and probabilistic, including extreme events)
- Analysis of observed components of the water cycle can provide a consistent picture of « unobserved » ones : *precipitation*, evaporation and runoff

Surface precipitation in ECMWF reanalyses

ERA-40 +24h

ERA-Int +12h

3.2 3 2.8 2.6 2.4 1980198219841986198819901992199419961998200020022004200620082010 ERA-40+24h (c) All Land 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1980198219841986198819901992199419961998200020022004200620082010 All Oceans (e) New Mywh Mywh Mar 4.2 4 3.8 3.6 3.4

The entire globe

(a)

3.6 3.4

3.2

3 2.8

2.6

ERA Int +12h **GPCP ERA Int + 24h ERA Int + 36h**

Dee et al. (2011)

The current observing system

Where are « moist » observations ?

Data of interest on water

- Conventional data : surface and upper-air sondes (relative humidity)
- Ground based remote sensing : GPS receivers (total precipitable water) – meteorological radars (precipitating hydrometeors)
- Satellite instruments : infra-red and microwave radiances (water vapour, condensed water)

Specificities (1)

- Moisture fields have high spatial and temporal variabilities :
 - representativity of local measurements
 - denser networks and more frequent observations
 background error statistics (case dependent)
- Moisture fields have lower predictability than other fields (U, V, T, Ps)
- Bounded variables with several orders of magnitude (latitude and altitude)

Specificities (2)

- Non trivial choice of variable for atmospheric moisture analysis : q, log(q), RH, *RH*
- Non-linearities {e_{sat}(T,p)} and thresholds => issues with data assimilation hypotheses
- Observations are often biased : reference measurements of « moist » variables are difficult (or very expensive)

Building blocks of data assimilation

of er
_
of

ASSIMILATION OF OBSERVATIONS SENSITIVE TO WATER VAPOUR

Water vapour from satellites

- Infra-red sounders: between 6.2 and 7.3 μm
 - (A)TOVS/HIRS
 - AQUA/AIRS, MetOp/IASI
 - GOES, Meteosat, MTSAT
- Micro-wave imagers and sounders:
 - 22 GHz : SSMI/S, TMI, AMSR-E
 - 183 GHz : ATOVS/AMSU-B and MHS

IASI water vapour channels

Current usage at Météo-France – over 8461 channels

4D-Var assimilation in ARPEGE

- Météo-France global model ARPEGE
- 4D-Var assimilation with 6-h window
- Period : February 2009
- Thinning of satellite data : 250 km
- REF : reference experiment
- IASIWV : REF + assimilation of 9 WV IASI channels

Impact on forecast scores

SSM/I and SSMI/S instruments

- Passive microwave radiometer with conical scanning
- US DMSP : availability of SSM/I since 1987 followed by SSMI/S since 2005 (additional sounding capabilities)
- Assimilation of TCWV derived from statistical regressions
- Assimilation of 1D-Var retrievals (TCWV + sea surface wind)
- Assimilation of clear-sky radiances over oceans
- Recent progress : Assimilation of clear-sky radiances over land (Gérard et al., 2011) and all sky radiances (Geer et al., 2010)

Frequency (GHz)	Polarisation	Resolution
19.35	H,V	45x74
22.2235	V	45x74
37	H,V	28x45
91.665	H,V	13x16

Assimilation of SSMI/S imager in ARPEGE 4D-Var

- One month assimilation (22 Feb – 22 March 2010) in the Météo-France global model ARPEGE (6-h 4D-Var system)
- EXP : with SSMI/S
- CONT : without SSMI/S
- Thinning of satellite data : 125 km
- Recent experimentation but conclusions very similar to older ones (e.g. Gérard and Saunders, 1999)

Data availability at 00 UTC February 2010

F16: (171.570 -> 16.699) F17: (171.150 -> 14.287)

Gérard (2010)

Impact on global humidity analysis

Exp-Ctr TCWV analysis differences Mean = 0.239 kg.m⁻² (+1%)

TCWV Analysis difference 22 Feb-22 Mar'10 - B1 AN-B1 BY - Mean: 0.239 kg/m2 (1%)

Exp: with SSMI/S imager Ctr: without SSMI/S

Moistening of the model (first guess & analysis)

Gérard (2010)

∆(TCWV) (Exp-Ctr)/Ctr	All points	Land	Sea
Globe	+1.0%	+0.8%	+1.1%
North Hem.	-0.3%	+0.3%	-0.5%
Tropics	+1.6%	+1.0%	+1.8%
South Hem.	+0.5%	+0.8%	+0.5%

First-guess fit to observations

Normalized RMSE of TCWV forecasts

MHS/AMSU-B radiances

- Since 1998, sounding instruments AMSU-B and MHS have been a very valuable source of humidity information (mid-troposphere) from satellites for data assimilation (reduced cloud contamination)
- Recent efforts have enabled an increased usage over land and sea-ice thanks to a better specification of surface emissivity (methodology developed by Fatima Karbou, Météo-France)

Assimilation of AMSU-B over land

Top of the atmosphere radiance

$$T(\theta, \nu) = \varepsilon(\theta, \nu)T_s\tau + [1 - \varepsilon(\theta, \nu)]\tau T \downarrow (\theta, \nu) + T \uparrow (\theta, \nu)$$

Surface emissivity deduced from 89 GHz window channel

$$\varepsilon(\theta, \nu) = \frac{T(\theta, \nu) - T \uparrow (\theta, \nu) - T \downarrow (\theta, \nu)\tau}{\tau[T_s - T \downarrow (\theta, \nu)]}$$

Emissivity is assigned to sounding channels (no frequency dependency)

From Karbou et al. (2006)

Assimilation of AMSU-B over land

- 4D-Var assimilation with ARPEGE
- 45 day (1 Aug-14 Sep 2006) during AMMA field campaign
- CTL = AMSU-B channels
 3 and 4
- **EXP** = CTL + AMSU-B channels 2 (150 GHz) and **5** over land

Karbou et al. (2010)

Impact on total column water vapour

Karbou et al. (2010)

Impact on total column water vapour

Observation System Experiment (OSE) MERIS (TCWV) versus AMSU-B

TCWV (MERIS-REF) assim at ECMWF

Bauer (2009)

TCWV (AMSUB-REF) assim at ECMWF

Impact on rainfall rates

24-h Rainfall rate accumulation (EXP-CTL)

Better comparison with GPCP data but increased spin-down

Karbou et al. (2010)

Assimilation of GPS observations

Information on **Total Precipitable Water** from the delay induced in the troposphere between a GPS transmitter and GPS stations.

Available in all conditions (L-band) at high temporal frequency

Zenith Total Delay (ZTD) observation operator coded in variational assimilation systems

European network – E-GVAP

Assimilation of GPS observations

- Currently more interest for data assimilation in regional models than in global models :
 - Lack of global data exchange from regional networks
 - Temporal frequency compatible with « Rapid Update Cycle » data assimilation systems
 - Total column water vapour => information on low tropospheric humidity [highly relevant for the initiation of deep moist convection at mesoscale : Ducrocq et al. (2000)]

Assimilation of GPS data in AROME

- AROME : Météo-France NH model (2.5 km) with explicit deep convection with 3D-Var (3-hour cycling)
- Pre-processing : data selection according to GPS station and processing centre – spatial thinning – error assignment – bias correction
- **REF** : reference
- **COP** : REF + GPS E-GVAP and COPS
- **OPR** : REF + GPS E-GVAP

Experimental domain with 316 GPS stations (E-GVAP + COPS)

COPS = field campaign experiment

Yan et al. (2009)

Impact on precipitation forecasts

12 accumulated precipitation from 03 to 15 UTC on 19 July 2007

Yan et al. (2009)

Mesoscale assimilation of MSG/SEVIRI radiances

- Importance of satellite geostationnary infra-red radiances for mesoscale data assimilation (temporal frequency)
- Assimilation in Météo-France mesoscale models (ALADIN and AROME) over sea and land (also above low level clouds)
- Ongoing efforts to assimilate more channels over land (significant fraction of LAM domains)

MSG/SEVIRI water vapour sounding channels

Montmerle et al. (2007)

Satellite data over ALADIN France

ASSIMILATION OF OBSERVATIONS SENSITIVE TO PRECIPITATION

A short history

- Use of diabatic heating rates derived from observed precipitation (physical initialization at global scale, nudging schemes at mesoscale)
- Development of linearized physics in Var schemes
 : assimilation of surface precipitation and of rainy microwave satellite radiances
- Assimilation of radar reflectivities in limited area models
- Assimilation of infra-red satellite radiances affected by clouds

Precipitation from remote sensing

Radar reflectivities

Micro-wave radiances

Variational assimilation of precipitation information

- Feasibility studies in « simplified » 4D-Var systems (Zupanski and Mesinger, 1995; Zou and Kuo, 1996; Tsuyuki, 1996)
- Feasibility studies in the ECMWF 4D-Var system using a two step approach : assimilation of 1D-Var retrievals of TCWV using TRMM rainfall rates (Marécal and Mahfouf, 2002)
- Operational assimilation at JMA in a 4D-Var LAM (Tsuyuki et al., 2002)
- Operational assimilation at ECMWF of rainy MW radiances with 1D+4D-Var approach (Bauer et al., 2006) and with direct 4D-Var (Geer and Bauer, 2009)
- Recent experimentation with US radar derived precipitation direct assimilation in the ECMWF 4D-Var (Lopez, 2011)

Lopez (2011) experimental design

- Change of variable : $\ln(RR6h + 1)$
- Screening of observations : selection of « non zero » precipitation observations where model precipitation is also « non zero »
- Observation error : $\sigma_0 = 0.18$
- Bias correction scheme : $BC = \sum_{i=0}^{2} \alpha_i \overline{\ln(RR6h+1)^i}$
- Evaluation periods : April-May 2009 and September-October 2009
- ECWMF 12-h 4D-Var system : T511L90 one experiment with NEXRAD (NEW) and one without NEXRAD (CTRL)

12h precipitation forecast scores

Lopez (2011)

against NEXRAD observations

Behaviour of the minimization

Model – observation : -> $D_{minim} = H(x_b) + H\delta x - y$ -> $D_{traj} = H(x_b + \delta x) - y$

Trajectory : T799 (~25 km) First minimization : T95 (~200 km) One single 12h 4D-Var cycle (01 April 2009 at 00 UTC)

Taylor diagram

Lopez (2011)

Assimilation of radar reflectivities : Météo-France example

French ARAMIS network :

- 24 Doppler radars, 10
 Polarimetric, between 3 and 11 PPIs in 15'
- Within 3D-Var AROME (NH LAM 2.5 km) :
- Radial wind from 15 radars since December 2008; from 22 radars since 24 November 2010 (Grèzes and Plabennec missing)
- Reflectivity from 24 radars since 6 April 2010

1D+3D-Var method (1)

- Choice of retrieving humidity information (RH)
- 1D Bayesian inversion
- Use of background information in the neighbourhood of an observation to create a database of profiles
- Need for radar reflectivity observation operator (but no TL/AD)
- Importance of QC (a-priori and a-posteriori)

$$\mathsf{E}(\mathsf{RH}) = \sum_{i} RH_{i} \frac{\exp\left[-\frac{1}{2} \|Z_{o} - Z_{s}(RH_{i})\|^{2}\right]}{\sum_{j} \exp\left[-\frac{1}{2} \|Z_{o} - Z_{s}(RH_{j})\|^{2}\right]}$$

RH = relative humidity*Zo*= observed reflectivity*Zs* = simulated reflectivity

1D+3D-Var Method (2)

« No rain » information (1)

Importance of accounting for the « no-rain » information in the assimilation : better balance between creation and destruction of rainy areas in the model, reduced variance of analysis increments, reduced model humidity bias.

What is a precipitating signal?

- RADAR: rain when measured reflectivity is above a threshold : the minimum detectable reflectivity (**MDZ**) prescribed for each pixel
- AROME: as soon as precipitating hydrometeors are produced in the model

« No-rain » information (2)

10 When Z_{SIM} < MDZ the model value is set to the radar one ($Z_{SIM} = MDZ$). This prevents from wrongly removing undetected weak rainfall -10 events -20 -30 *Example of areas of possible model* -40 « drying » from the ARAMIS network 0 50 Large impact on POD precipitation 0.2scores – 29 April to 0.1 12 May 2010 ×

×

X

42°N

2∕₿S

Illustration - reflectivity field - radar and model

Illustration – comparison between radar reflectivity and reflectivity 1D analysis : 1D convergence and quality control

Illustration – Active data of humidity retrievals and 3D-Var analysis increments

Wattrelot et al. (2011)

Towards the assimilation of cloudy/rainy radiances

- Direct simulation of cloudy radiances possible with radiative transfer models (single cloud layer, multi-layer clouds with absorption and scattering processes)
- IR region : importance of cloud geometry most clouds are opaque. Retrieval of single layer cloud properties (P_{top}, Nε) to allow the assimilation of radiances having sensitivity above cloud top.
- *MW region* : clouds are more transparent. Use of hydrometeor profiles from moist physics. Importance of scattering processes at high frequencies.

Assimilation of all-sky microwave radiances at ECMWF

- ECMWF 12h 4D-Var T511L91
- Experiments :
 - ControlOff : No MW radiances (clear sky and cloudy)
 - Control : 4D-Var for clear sky MW radiances and (1D+4D-Var) for cloudy radiances
 - Allsky : 4D-Var for clear sky and cloudy radiances
 - Allskyoff : No MW radiances but physics in 1st minimisation
- More recent design : « symmetric » cloud concept for observation errors and background check (normalized departures)

Normalized forecast scores

CONCLUSIONS AND REMAINING CHALLENGES

Conclusions

- Assimilation of the atmospheric water cycle has significantly progressed during the last 20 years due to :
 - Data assimilation systems allowing complex operators between observations and control variables
 - New observing systems (remote sensing principally) and better usage of existing ones
 - Improved description of physical parametrization schemes (cloud microphysics) – realistic simulation of radiances and reflectivities – (model evaluations in observation space)
- Sensitivity studies have shown positive impacts in terms of forecast skill scores on humidity, precipitation, winds, and temperature – Improved reanalyses of humidity

Remaining challenges (1)

- Extension of the control vector to hydrometeors
- Background error statistics (new + revised)
- High temporal availability of observations for mesoscale data assimilation (which method ?)
- High spatial resolution of observations (error correlations) and mesoscale models (scale issues)
- Mislocation of cloudy and rainy structures
- Combined assimilation with other components (e.g. atmospheric moisture + soil moisture)
- Importance of new (revised) diagnostic tools => impact of « moist » observations in NWP systems
- Importance of field campaign experiments : HYMEX (water cycle over the Mediterranean basin) autumn 2012

Remaining challenges (2)

- Improved usage of existing satellite instruments (+radars) and preparation of new ones (NPP, Mégha-tropiques, GPM, EarthCARE)
- Revised description of microphysical processes (dualpolarization radars, high frequencies from MW radiometers)
- Ground based networks :
 - Global data availability is needed : GPS and radar (remain only available at national or continental levels – EUMETNET OPERA initiative)
 - New surface networks : vertically pointing cloud radars, lidars and radiometers

Thank you for your attention !

