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General formalism

� Statistical linear estimation :

xa = xb + δx = xb + K d = xb + BHT (HBHT+R)-1 d, 

with d = yo – H (xb ), innovation, K, gain matrix,

B et R, covariances of background and observation errors.

� Solution of the variational problem

J(δx) = dxT B-1 dx + (d-H δx)T R-1 (d-H δx).

� Incremental formulation (Courtier et al, 1994):

J(x) = (x - xb)T B-1 (x - xb) + (yo-H (x))T R-1 (yo-H (x)).
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General formalism

� Even in such a (slightly) non-linear problem,
analysis, background, model and observation errors are linked,
at first order, by

 εεεεa  = (I – KH) εεεεb + K εεεεo ,

 with εεεεa = xa – xt, εεεεb = xb – xt, εεεεo = yo – H (xt)

 εεεεb+ = M εεεεa + εεεεm, with εεεεm  model error.

� Evolution of estimation error covariance matrices:

 At = (I – KH) Bt (I – KH)T + K Rt KT

 Bt+ = M At MT + Qt .
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General formalism

� Observation errors (Daley, 1993):

εεεεo = yo – H (xt)

= yo – yt + yt – H (xt), where yt is the true state equiv. of yo

= εεεεoi+ εεεεoH .

� εεεεoi is the instrument error.

� εεεεoH is a complex function of the

� type of observation (in situ or integrated),

� resolution of the state (representativeness error),

� precision of the observation operator (satellite observation) ...
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Hollingsworth and Lönnberg method

(From Bouttier and Courtier, ECMWF)
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A posteriori « Jmin » diagnostics

� We should have

E[J(xa) ] = p, with

p = total number of observations.

(Bennett et al, 1993)

� More precisely, for a sub-part of Jo :

E[Jo
i(xa) ] = pi – Tr(Ri

-1/2 H iA H i
TRi

-1/2 ), with

pi : number of observations associated with Jo
i,

Ri ,H i : associated error cov. matrix and obs. operator. 

(Talagrand, 1999)
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A posteriori « Jmin » diagnostics: 
optimization of R

� Normalization of Ri : soi Ri

Coef. soi diagnosed with soi = E[Jo
i(xa)]/(E[Jo

i(xa)])opt

= E[Jo
i(xa)]/(pi–Tr(Ri

-1/2H iAH i
TRi

-1/2)),

(Desroziers and Ivanov, 2001; Chapnik et al, 2004;
Desroziers et al 2009)

� Equivalent to a Maximum-likelihood estimation (Dee, 1998)

f(d|s) = 1 / ((2p)p det(D(s))1/2 exp (-1/2 dT D(s)-1 d),

where D(s) is the covariance matrix of parameters s.

Optimal parameters s are those that minimize the Log-likelihood

L(s) = -log ( f(d|s) ).
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Diagnostics in observation space

� d = yo – H (xb)

� doa = yo – H (xa)

� dab = H (xa) – H (xb)

� E[doa dT]    = R

� E[dab dT]    = HBHT

� E[dab doaT]  = HAHT

� <εεεε, εεεε’> = E[εεεε εεεε’T]

yo

εεεεa

εεεεo

xt xb 

xa

d

doa

dab

(Desroziers et al, 2005)
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� For any subset i with pi observations, simply compute

(σoi)2 = Σk=1,pi (yoik – yaik)(yoik – ybik) / pi .

� Covariances between different observation errors can also be
computed:

(Coi,j)2 = Σk=1,pi,j (yoik – yaik)(yojk – ybjk) / pi,j

�inter-channel covariances,
�spatial covariances ...

Diagnostics in observation space:
practical implementation
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Convergence: vo
diag(vo)

Idealized case: analysis on an equatorial circle (40 000km).
votrue = 4.

Lb = 300 km / L0= 0 km.
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Convergence: vo
diag(vo)

Idealized case: analysis on an equatorial circle (40 000km).
votrue = 4.

Lb = 300 km / L0= 200 km.



14/36

Outline

1. General framework

2. Methods for estimating observation error statistics

3. Diagnostic of observation error variances

4. Diagnostic of observation error correlations

5. Observation error correlation specification in the assimilation

6. Conclusion



15/36

Observation error standard-deviations

Normalization of Ri :

soi Ri

Coef. soi diagnosed with

soi = E[Jo
i(xa)]/(E[Jo

i(xa)])opt.

Normalization coefficients of σo
i in the French Arpège 4D-Var

(Chapnik, et al, 2004; Buehner, 2005; Desroziers et al, 2009)
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Satellite error standard-deviations

(Bormann et al, ECMWF, 2010)
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AMSU-A inter-channel error correlations

(Bormann and Bauer, ECMWF, 2010; Bormann et al, ECMWF, 2011)
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IASI inter-channel error correlations

(Bormann et al, ECMWF, 2011)
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IASI inter-channel error correlations

(Stewart, University of Reading, 2009)
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AIRS inter-channel error correlations

(Garand et al, Environment Canada, 2007)
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AMVs spatial error correlations

(Bormann et al, ECMWF, 2003)
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SSM/I spatial error correlations

Spatial error correlations for the F13 SSM/I
(solid lines; black: clear sample; grey: cloudy sample) 

(Bormann et al, ECMWF, 2011)
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Doppler radar wind
spatial error correlations

Radial error correlation Rll
o (r).

(Xu et al, NOAA, 2007)
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Representation of 
time-correlated errors in R

� Serial correlation for SYNOP and DRIBU in 4D-Var.

� Modelled by a continuous correlation function
c(t1, t2) = a exp ( - ((t1 – t2) / b)2 ) (with b = 6h).

� For observations yoi with uncorrelated observations errors,
Jo

i(dx) = ziT zi , with zi = Si
-1 (yoi – Hi (xb) – Hi dx ),

(departures normalized by the standard-dev. of obs. errors).

� For observations yoi with time-correlated observations errors, 
computation of « effective » departures zeffi,

by solving the linear system of equations zeffi C = zi.

(Järvinen et al, ECMWF, 1999)
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Representation of 
inter-channel error correlations in R

(Garand et al, Environment Canada, 2007)
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Representation of
spatial error correlations in R

� Construction of a square-root correlation model for a block 
Ri = ΣΣΣΣi

-1 Ci ΣΣΣΣi
-T of R with horizontal correlations

(ΣΣΣΣi
-1  normalization by standard-dev., Ci correlation matrix)

� Ci = Ui Ui
T

� Ui = Ti Si
-1 Gi

1/2 , where

Gi is the spectral (Hankel) transform of the correlation
function,
Si

-1 is the inverse spectral transform
(with a low, but sufficient resolution to represent the spatial 
correlation),
Ti is an interpolator to observation locations.

(Fisher and Radnoti, ECMWF, 2006)
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Representation of
spatial error correlations in R

� Very useful, at this stage, to represent realistic perturbations 
for observation errors in EnKF / En Var assimilation:

εεεεa  = (I – KH) εεεεb + K εεεεo , with

εεεεo = Rt 1/2 ηηηηo where ηηηηo is a vector of random numbers,

even if Rt is not used in K.

(Fisher et al, ECMWF, 2003)

� Used in operational implementations of Ensemble Variational 
Assimilation

(Berre et al, Météo-France, 2007; Isaksen et al, ECMWF, 2010).
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Representation of
spatial error correlations in R

� Approximation of Ci by

Ci = ΣΣΣΣ1
K ( λi,k - 1) vi,k vi,kT ,

where only a limited number K of eigenpairs (λi,k, vi,k) of C is used.

� The eigenpairs of  C can be determined by a Lanczos algorithm.

� Approximation of C-1 given by

Ci = ΣΣΣΣ1
K ( 1/λi,k - 1) vi,k vi,kT .

� Computation of effective normalized departures zeffi,
with zeffi = Ci

-1 = 1/ai zi + S1
K ( 1/λi,k - 1 /ai ) vi,k (vi,kT zi),

where ai is a parameter accounting for the truncation K.

(Fisher and Radnoti, ECMWF, 2006;  Isaksen and Radnoti, ECMWF, 2010).
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Representation of
spatial error correlations in R

∆s = 100 km 

Lb = 200 km

Lo = 100 km

σb = σo = 1

(Liu and Rabier, Météo-France, 2002)
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Representation of
spatial error correlations in R

No spatial correlation in observation errors: Lb = 200 km, Lo = 0 km
sb = so = 1, ∆s = 25 km

∆so = 200 km                                               ∆so = 50 km 
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Representation of
spatial error correlations in R

Spatial correlation in observation errors: Lb = 200 km, Lo = 100 km
sb = so = 1, ∆s = 25 km

∆so = 200 km                                               ∆so = 50 km 
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Conclusion (I)

� Observation errors are not explicitely known.

� They can be inferred by a comparison with
other observations or with the background (innovations).

� Available diagnostics of observation errors (variances and 
correlations),
but relying on explicit or implicit hypotheses.

� Observation error variances are classicaly inflated.

� Correlation of observation errors can be found in many
datasets:

� SYNOP time-correlations,
� AIRS, IASI inter-channel correlations,
� AMVs, SSM/I, radar spatial correlations.
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Conclusion (II)

� Observation error correlations are often neglected,
but with an empirical thinning and/or an inflation of error variance.

� Correlations can be more or less easily taken into account.

� A relevant formulation for spatial error correlation has been proposed
and implemented in a real size system (ECMWF).

� Algorithms without R-1: PSAS, saddle-point formul. (Fisher, 2011)?

� One has to keep in mind that correlated observations are less
informative than uncorrelated observations, even if R is well specified.

� It may thus appear inefficient to add too many correlated observations.

� The tuning of R must be consistent with the tuning of B.


