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What makes the EnKF different?

e Data assimilation requires “background-error
covariances”
— Describe error characteristics of first-guess forecast.

— Determines how forecast and new observations are
blended.

* |In EnKF, these are estimated from an ensemble.
— They can change with the dynamical situation.

 This leads to:

— Improved quality analyses.

— “Situation-dependent” estimates of analysis uncertainty
are captured from ensemble of analysis states.



Benefits of Flow-Dependent Background Errors:

850mb wind background (ms™)
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Data assimilation terminology

y : Observation vector (weather balloons, satellite
radiances, etc.) with expected error €.

X : model state vector. Superscript b denotes prior
(background), a posterior (analysis), t “truth”.

H : operator to convert model state to observation
space, i.e. y=Hx! + ¢

R : Observation-error covariance matrix, i.e. <eg™
P : Background-error cov matrix, s.t. x! = N(x°, P?)



The Kalman Filter (KF)

Assume:
Gaussian forecast errors x' = N(x",P?)
Gaussian observation errors ¢ = N(0,R)

Bayes rule p(x|y) « p(y|x)p(x) implies:
x*=x"+K(y—Hx"); P*=(I-KH)P’
where K = PPHT (HP'HT + R)
e Computationally hard since PP is N x N (N, = dim x).

* EnKF uses sample of P of size N, converges to KF as N,
approaches N, (with linearity, Gaussianity;, ...).



Computational shortcuts in EnKF:
(1) serial processing of observations (requires
observation error covariance R to be diagonal)

Method 1 Observations
1and?2

Background Kal Fil

forecasts alman Filter— Analyses
Method 2

Observation Observation

1 2
Background Analyses

Y
A 4

Kalman Filter—> Kalman Filter— Analyses

forecasts after obs 1




Computational shortcuts in EnKF:
(2) Simplifying Kalman gain calculation

K=PH'(HPH" + R)_l
|

define Hx" = —EHX?
m i
T
1 & Y Y
P'H" = —Z(x?’ — xb)(be : be)
m_l i=l1 1

The key here is that the huge matrix P? is never explicitly formed



Computational shortcuts in EnKF:
(3) Covariance localization

e (Calculate covariances only between “nearby” model
priors and observation priors.

— Assumes large scale separation means small covariance.

* Since N, >> N, covariance estimate is rank deficient
anyway.
— Noisy covariance estimates will cause P? to be
underestimated.

— To reduce sampling noise, taper covariance estimate as a
function of separation (using Gaussian-ish function).

— Increases effective rank of sample covariance matrix.

This (and covariance inflation) is the key to making the whole thing work!



Algorithmic details

Basically two types of EnKF codes are being used:

v ‘'stochastic’ EnKF (original formulation by Houtekamer
and Mitchell, 1998 MWR) treats obs as ensemble by
adding N(O,R) noise. This is needed to prevent
underestimation of P2 when every member updated with
the same KF update equations.

v‘deterministic’ EnKF (LETKF, Hunt et al 2007, Physica
D; serial EnSRF, Whitaker and Hamill 2002 MWR) avoids
this by updating ensemble perturbations separately from
mean in such a way that P2 consistent with KF is
obtained.



EnKF - Current state of the art

Env. Canada EnKF vs 4DVar (Buehner et al MWR, 2010)

* Fit of 120-h control

forecasts to

radiosondes (NH)
EnKF red, 4DVar

blue

 ENKF run at 100
Km resolution,
4DVar 35 km (outer
loop), 150 km (inner

loop).

EnKF performance nearly identical to operational 4DVar
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EnKF - Current state of the art

Global ensemble hurricane track forecasts (Hamill et al MWR, 2010)

(c) NCEP operational (b) ECMWF operational
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EnKF - Current state of the art

ECMWF EnKF vs 12-h 4DVar (T159), conv obs only

Mean curves ——— operations t799191 all obs
500hPa Geopotential
Root mean square error forecast —e 4dvar t159160 conv. obs.
N.hem Lat 20.0 to 90.0 Lon -180.0 to 180.0
Date: 20050101 00UTC to 20050131 00UTC e enkf 1159160 conv. obs

Mean calculation method: standard
Population: 31,31,31,31,31,31,31,31,31,31,31,31 (averaged)
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What makes the EnKF suboptimal?

* Var and ensemble methods both attempt to solve
the KF eqgns, but take different shortcuts!

* EnKF is optimal IFF:
— Observation and forecast errors Gaussian

— Ensemble size large enough so that sampling errors
are small (N, ¥ N,) covariance localization

— All sources of error sampled by ensemble, including
model errors! covariance inflation

* EnKF development is focused on better ways to
deal with sampling and model errors, and other
sources of un(der)represented errors.



Covariance localization
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* statistical noise degrades the spread of information from

observation locations to model variables.

e signal-to-noise small when covariance is small.

* Methods used now are not flow-dependent.
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Localization: is flow-dependence needed?

Scales of
covariances can
dependent on
flow, localization
should too.

Bishop & Hodyss,
2009, Tellus
present a strategy
for doing this

Temperature Covariance with Temperature ob
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T 850 with Localization

12S 4 2 12S 4 2
15S 1 15S
18S 18S 1
21S 1 4 21S 1
24S 1 24S 1
27S 1 27S 1
30S 1 30S 1
33S 1 33S 1
36S = 36S =
39S 1 . . i i i : . . . L : 39S 1 i . i i i i i . i . i
100E 105E 110E 115E 120E 125E 130E 135E 140E 145E 150E 155E 160E 100E 105E 110E 115E 120E 125E 130E 135E 140E 145E 150E 155E 160E
T 10 T 10 with Localization
- —
12S 1 2 12S 4 2
15S 4 15S 1
18S 4 18S 1
21S 1 21S 1
24S 1 24S 1
27S 1 w 27S 1
30S 1 30S 1
33S 33S 4
36S 1 = 36S =
39S 1 i . . . . . i . . . . 39S 4 . . . . . . . . i . .
100E 105E 110E 115E 120E 125E 130E 135E 140E 145E 150E 155E 160E 100E 105E 110E 115E 120E 125E 130E 135E 140E 145E 150E 155E 160E

[ [ [ [ T [ |

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 045 0.5



Flow-Adaptive Localization based on sample
correlations (Bishop + Hodyss 2011)

Localization
function based
on sample
correlations
computed using
smoothed,
normalized
perturbations.
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F1G. 3. Unlocalized ensemble covariance function of meridional wind at 1800 and 1200 UTC with 1800 UTC
meridional wind variables at 40°S, 90°E and o-level 15 (about 400 hPa). The ensemble has 128 members. The hor-
izontal cross sections at o-level 15 of the covariance function at (a) 1800 and (b) 1200 UTC. The zonally oriented
vertical cross sections at 40°S of the covariance function at (c¢) 1800 and (d) 1200 UTC.



Flow-Adaptive Localization based on sample
correlations (Bishop + Hodyss papers)

Localization
function based
on sample
correlations?
computed using
smoothed,
normalized
perturbations.
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FI1G. 4. The AECL function for the raw covariance function shown in Fig. 3 is shown. This localization function is
the element-wise square of the correlation function of a 128-member ensemble of smoothed and normalized

streamfunction fields.
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Simpler version proposed by Jeff Anderson
(2011 AMS talk Localization and Correlation in Ens. Kalman Filters)

Localization a as function of ensemble size N

Localization alpha
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Other localization issues

Localization should really be done in model space, not localization space
(Campbell et al MWR, 2009)
— May be important for accurate obs with complicated forward operators
(radiances?)

— Ensemble Var systems localize in model space, EnKF localizes in ob space
(because of the way covariances are calculated, see slide 10).

What about localization in ‘variable’ space? (Kang et al, JGR 2011)
— Covariance between observation priors and model priors can be essentially all
sampling noise even if physical separation is zero (e.g. tracer observation,
temp variable)

— Need a more general concept of “distance”, or a method like Bishop+Hodyss
that uses sample correlations.

What to do in LETKF (when obs. prior/model prior covariance not explicitly
computed)?
— Local analyses already deals with rank deficiency, like ‘box method’ in Ol.
Abrupt transitions can lead to noisy increments.

— To get smoother increments, can also apply ‘observation error localization’ -
similar to covariance localization, but instead of modulating covariances
increase obs. error as a function of distance from analysis point (Greybush et
al, MWR 2011)



Un(der)-represented error sources in an EnKF ensemble

Model error Mx,
N
l —, . ,
Sampling error T ( N << o0 )
4 }: 1
Observation error R

Boundary conditionerror  T'(z = 0) = T

Forward operator error Hx;,

Neglecting or under-representing any of these will cause assimilation to
give too little weight to observations 20



Idealized expts with 2-level PE model
(from WGNE model uncert. workshop)

2-level PE model on a sphere (Lee and Held, 1993 with parameters as in Hamill

and Whitaker, 2010).

511 12-hourly obs of geopotential height at sonde locations (error = 10 m)
— 20 member ensemble, serial determinstic (i.e. square-root) EnKF.
— 1000 assimilation cycles, 3500 km localization (none in vertical)

Truth from T42 nature run, assimilation with T31 model. Only sources of DA

error are model error and sampling error.
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Multiplicative inflation

* Simple constant inflation not suitable when
observing network and dynamics vary in space
and/or time.

* Both sampling error and model error are expected
to be a larger fraction of the total background
error where observations have a larger impact
(where 0,/0, is large).

* We use “relaxation to prior spread” (RTPS)

0% ¢ (1 — a)o® + ac®

which implies y'a . y'a, /,cb=c* |
1 1

O-CL




Additive inflation

 Add random samples from a specified
distribution to each ensemble member after
the analysis step.

* Env. Canada uses random samples of isotropic
3DVar covariance matrix.

* Here we use a dataset of 12-h forecast errors
with the T31 model in which the initial
conditions are perfect (T31 truncated states
from the T42 nature run).



Multiplicative + Additive inflation

Additive inflation
alone outperforms
multiplicative inflation
alone (compare values
y-axis to values along
X-axis)

A combination of both
is better than either
alone.

Multiplicative and
additive inflation
representing different
error sources in the
DA cycle?

additive inflation parameter

addltlve and multlpllcatlve inflation

multiplicative inflation parameter

[
o
%]
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Large ensemble results (Additive +

Multiplicative Inflation)

200 instead of 20
members, with model

error. Min error reduced
from 8.7to0 7.7.

When sampling error is
reduced, additive
inflation alone
outperforms
combination of add
+mult inflation.

Suggests that additive
inflation is better at
capturing model-related
errors.

inflation parameter

additive

additive and multiplicative inflation
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Multiplicative inflation + Stochastic Kinetic
Energy Backscatter (SKEB)

A combination of SKEB and
multiplicative inflation
works better than either
alone.

SKEB alone comparable to
multiplicative inflation alone
(compare values along x and
y axes).

Results are slightly inferior
to those obtained using
additive + multiplicative
inflation.

y-axis is amplitude of
random pattern (o) — results
do not change much if p
(power law) or time-scale (t)
are varied.

SKEB parameter

multiplicative inflation parameter

=
o©
%]
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Experiences with Env. Canada system
(Houtekamer, Mitchell and Deng, MWR July 2009)

Operational EnKF tested with

— Multiple parameterizations

— SKEB (stochastic kinetic energy backscatter)

— SPPT (stochastically perturbed physics tend)

— Additive inflation (isotropic covariance structure)
— Multi-physics plus additive inflation

Most of these designed to represent specific

model errors, additive inflation is ‘catch-all’ to
represent what'’s left.

Multiplicative inflation not tested.



Experiences with Env. Canada system
(Houtekamer, Mitchell and Deng, MWR July 2009)

O-F (energy norm) Energy spread in ob space

Additive inflation 3.1388 2.0622
Multi-physics 3.2978 1.2773
SKEB 3.4348 1.2671
SPPT 3.3899 1.1670
Multi-physics + add. Infln.  3.0846 2.1335
SKEB + SPPT 3.3352 1.3608
SKEB+SPPT+Mult-physics 3.0940 2.1092

+rescaled additive infln.

* Biggest impact from ad-hoc additive inflation.
e Addition of multi-physics improves assimilation slightly.

 SPPT and SKEB have less impact (tuned for EPS?, model
error not dominant?)

28
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Summary

* EnKF algorithms now fairly mature, are highly
| scalable.

) .
. * Research now focused on treatment of sampling Q{
= and model error (and other un(der) represented
4 sources of error in the background ensemble).

— Flow-adaptive localization has not yet been shown to
out-perform non-adaptive localization in NWP systems.

— Multiplicative and additive inflation are a tough
baseline to beat.

* Now implemented in operations at Env Canada.
Hybrid Var/EnKF system implemented at UKMO,
NCEP in 2012. ECMWEF has an experimental EnKF

system.
SR S S R . )rzﬂ




Hybrid Var/EnKF - best of both worlds?

Features from EnKF Features from VAR

Extra flow-dependence in PP Localization done correctly (in
model space)

More flexible treatment of Reduction in sampling error in
model error (can be treated in  time-lagged covariances (full
ensemble) rank evolution of PP in

assimilation window in 4DVar).

Automatic initialization of Ease of adding extra constraints
ensemble forecasts, to cost function

propagation of covariance info

from one cycle to the next.



